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Abstract. Hepatocellular carcinoma is recognized as one 
of the most frequently occurring malignant types of liver 
cancer globally, making the identification of biomarkers criti‑
cally important. The aim of the present study was to identify 
the genes involved in the anticancer effects of flavonoid 
compounds so that they may be used as targets for cancer 
treatment. Sinensetin (SIN), an isolated polymethoxyflavone 
monomer compound, possesses broad antitumor activi‑
ties in vitro. Therefore, the identification of a transcriptome 
profile on the condition of cells treated with SIN may aid to 
better understand the genes involved and its mechanism of 
action. Genomic profiling studies of cancer are increasing 
rapidly in order to provide gene expression data that can 
reveal prognostic biomarkers to combat liver cancer. In the 
present study, high‑throughput RNA sequencing (RNA‑seq) 
was performed to reveal differential gene expression patterns 
between SIN‑treated and SIN‑untreated human liver cancer 
HepG2 cells. A total of 43 genes were identified to be differ‑
entially expressed (39 downregulated and 4 upregulated in the 
SIN‑treated group compared with the SIN‑untreated group). 
An extensive network analysis for these 43 genes resulted in 
the identification of 10 upregulated highly interconnected hub 
genes that contributed to the progression of cancer. Functional 
enrichment analysis of these 10 hub genes revealed their 
involvement in the regulation of apoptotic processes, immune 
response and tumor necrosis factor production. Additionally, 
the mRNA expression levels of these 10 genes were evaluated 
using reverse transcription‑quantitative PCR, and the results 
were consistent with the RNA‑seq data. Overall, the results 
of the present study revealed differentially expressed genes 

involved in cancer after SIN treatment in HepG2 cells and may 
help to develop strategies targeting these genes for treating 
liver cancer.

Introduction

Liver cancer is one of the most common cancers with an 
increasing death rate. Approximately 0.56 million new cases 
are reported annually (1). Approximately 50% of patients 
during treatment with chemotherapy develop metastasis, thus 
reducing their survival rate (2). Difficulties in chemothera‑
peutic techniques have led to other treatment options such as 
the use of nutraceuticals and natural therapies for combating 
this diseased with prior knowledge about their mechanisms 
of action (3). Thus, an emerging theme in cancer biology is 
targeting genes and/or proteins that can link to the progres‑
sion of cancer and factors that directly or indirectly affect the 
proliferation and metastasis (4).

Natural herbs have gained attraction in the current era due 
to their roles in controlling cancer growth by targeting onco‑
genes and proteins that are altered in cancers. Isolated monomer 
polymethoxyflavones (PMFs) have shown a broad spectrum of 
anti‑cancer activities by inhibiting cell proliferation and cancer 
prevention (5). Sinensetin (SIN) is one such polymethoxyfla‑
vone present in citrus fruits that has notable anti‑inflammatory 
and anti‑tumor activities (6). Although the anti‑cancer effect 
of SIN in cancer cells has been studied recently, gene expres‑
sion changes and molecular mechanisms associated with its 
anti‑cancer activities remain largely unknown. Transcription 
profile using RNA‑sequencing (RNA‑seq) technology can 
help us understand its mechanism of action (7). Transcriptome 
analysis is a technology using bioinformatics and data‑mining 
tools to analyze changed target genes and understand the 
mechanism of action of a drug after treatment with an in vitro 
model (8). The major way to explore the molecular mecha‑
nism involved in the anti‑cancer effect of flavonoids is by 
determining gene activities and functions using transcriptome 
analysis (9). Genomic findings through a sequencing approach 
provide features of genomes due to external influences such as 
a drug treatment. Differential gene expression under treated 
conditions of a disease can provide us a better understanding of 
factors in a particular state modified by a candidate drug (10). 
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Furthermore, gene expression obtained from transcriptome 
data can lead to the discovery of novel key genes associated 
with the related pathway (11). The advent of next‑generation 
sequencing (NGS) data provides a detailed cancer profile 
that can explain the relationship and connection of genes 
involved in a disease. In addition, the analysis of differential 
patterns of genes can help us understand biological processes, 
cellular components, and interacting pathway network related 
to cancer pathogenesis for each one (12). Furthermore, bioin‑
formatics analysis of differential gene profiles is an attractive 
strategy to identify novel therapeutic biomarkers for treating 
a disease (13). In this regard, taking an integrated approach to 
identify mRNA targets using next‑generation sequencing data 
can reveal specific biomarkers for cancer types.

Developed almost a decade ago, RNA‑seq is a potent 
tool for understanding genomic functions. Differentially 
expressed genes (DEG) remains the primary application of 
RNA‑seq (14). DEGs are genes whose expression levels are 
significantly altered between two or more conditions such 
as before and after treatment with a drug. In this regard, the 
concept of hub genes is gaining interest. Hub genes are highly 
interconnected genes in a protein‑protein interaction (PPI) 
network. Their associated biological process gene ontology 
terms and pathways might improve our understanding of their 
roles in carcinogenicity (15).

In the current study, we performed Illumina NovaSeq6000 
sequencing for SIN‑treated and ‑untreated HepG2 liver cancer 
cells and studied differential gene expression patterns. Highly 
interconnected genes (hub) genes among these were studied 
extensively for their roles in cancer. The expression of these 
hub genes was further validated by qRT‑PCR.

Materials and methods

Cell culture. A human liver cancer cell line (HepG2) authenti‑
cated using short tandem repeat (STR) profiling was obtained 
from the Korean Cell Line Bank (Seoul, Korea). HepG2 cells 
were cultured in DMEM (Gibco; Thermo Fisher Scientific, 
Inc.) supplemented with 10% fetal bovine serum (Gibco; 
Thermo Fisher Scientific, Inc.), 100 U/ml penicillin, and 
100 µg/ml streptomycin (Gibco; Thermo Fisher Scientific, 
Inc.) at 37˚C with 5% CO2.

Isolation of RNA for sequencing. HepG2 cells were seeded 
into 6‑well plates and treated with 100 µM of SIN for 48 h at 
37˚C. After 48 h treatment, total RNAs were extracted using 
TRIzol. The concentration of RNA was determined using a 
spectrophotometer. Isolated total RNA was then subjected to 
sequencing to obtain expression data.

Library preparation and sequencing. Sequencing was 
performed by TheragenEtex (Gyeonggi‑do) with the following 
described protocol. RNA‑seq libraries were constructed using 
a TruSeq Stranded mRNA Sample Prep Kit (Illumina, Inc.) 
for 150‑bp paired‑end sequencing. Poly‑A‑containing 
mRNA molecules were purified and fragmented from 
2 µg of DNase‑treated total RNA using oligo(dT) magnetic 
beads. Following the purification step, mRNAs were frag‑
mented and used for synthesis of single‑stranded cDNAs by 
means of random hexamer priming. With the constructed 

single‑stranded cDNAs as templates, second strand cDNA 
synthesis was carried out to prepare double‑stranded cDNAs. 
These cDNAs were then amplified with a sequential process of 
end‑pair repair, addition of A‑tail, and adapter ligation using 
polymerase chain reaction (PCR). The quality of constructed 
cDNA libraries wase evaluated with an Agilent 2100 
BioAnalyzer (Agilent Technologies, Inc.) and quantified 
with a KAPA library quantification kit (Kapa Biosystems) 
according to each manufacturer's protocol. These products 
were then purified and enriched with cluster amplification 
using PCR to obtain the final complementary DNA library 
for high‑throughput paired‑end (2x150 bp) DNA sequencing 
using an Illumina NovaSeq6000 (Illumina, Inc.).

Transcript data analysis. After filtering out low quality reads, 
TopHat was used to map quality‑filtered reads to a reference 
genome (hg38) (16). We measured gene expression levels with 
Cufflinks v2.1.1 using the Ensembl human gene annotation 
database. We performed differential expression analysis using 
cuffdiff (17). To improve the accuracy of measurement, we 
applied frag bias and multi‑read correct options for both cuff‑
links and cuffdiff. All other options were set to default values. 
DEGs were identified and filtered with the following criteria: 
false discovery rate <0.05 and |log2 FC| >1 (18).

Identification of hub genes and their analysis. To identify hub 
genes among DEGs, a PPI network of 43 DEGs was constructed 
using STRING (https://string‑db.org/) with a ‘minimum 
required interaction score’ set to medium confidence (0.400) 
and ‘maximum number of interactors to show’ set to query 
proteins for both 1st and 2nd shells (19). The PPI network was 
imported in cytoscape using CytoHubba's Maximal Clique 
Centrality (MCC) scoring method to identify top ten hub genes 
incorporated in STRING and to discover significantly enriched 
biological process gene ontology (GO) terms and KEGG 
pathways (20). Top ten biological process GO terms with the 
lowest false discovery rate were analyzed using REVIGO (21). 
Additionally, we performed an extensive literature survey for 
these genes to uncover their roles in cancer.

qRT‑PCR and data analysis. To validate hub genes differen‑
tially expressed based on transcriptome analysis, we studied 
mRNA expression levels of these hub genes by quantitative 
real‑time polymerase chain reaction (qRT‑PCR). HepG2 cells 
were seeded into 6‑well plates and treated with 100 µM of SIN 
for 48 h at 37˚C. Total RNA was isolated and its concentration 
was determined using a spectrophotometer. Total RNA (1 µg) 
was converted to cDNA using an iScript™ cDNA synthesis kit 
(Bio‑Rad Laboratories, Inc.). qRT‑PCR was then performed 
using cDNA and AccuPower® 2X Greenstar™ qPCR Master 
(Bioneer). qPCR primers used in this study are listed in Table I. 
All data were analyzed using Bio‑Rad CFX Manager 
Version 3.1. We measured relative quantification using the 
2‑ΔΔCq method. mRNA expression levels of target genes were 
normalized against those of β‑actin.

Statistical analysis. All data were analyzed using GraphPad 
Prism version 5.0 (GraphPad Software). Results are expressed 
as means ± SEM. They were evaluated using the Student's t‑test. 
P<0.05 was considered to indicate statistical significance.
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Results

Identification of DEGs. In our previous study on SIN treat‑
ment in HepG2 cells, we found that SIN could induce HCC 
cell death in vitro (22). RNA‑seq and Cuffdiff identified 
43 DEGs (Table II) between SIN‑untreated and SIN‑treated 
HepG2 cells based on the selection criteria (a false discovery 
rate <0.05 and |log2 FC| >1). Out of these 43 DEG's, 39 were 
downregulated and 4 were upregulated. These DEGs were 
plotted using the heatmap.2 function from R's gplot package. 
Fragments per kilobase of transcript per million (FPKM) 
values per genes in SIN‑untreated (control) and SIN‑treated 
(case) HepG2 cells were used for heatmap generation (Fig. 1).

Hub genes and their enrichment analysis. Hub genes are 
highly interconnected genes that might be involved in impor‑
tant cancer‑related biological processes and functions. Fig. 2 
shows the protein‑protein interaction network of the ten hub 
genes identified by Cytohubba’s MCC tool.

When these hub genes were subjected to STRING and 
enrichment analysis to identify significant GO terms and 

Table II. Upregulated and downregulated genes in SIN‑treated 
HepG2 cells compared with SIN‑untreated HepG2 cells.

A, Upregulated genes

No. Genes

  1 REEP6
  2 CYP1A1
  3 RASGRP2
  4 UGT1A1

B, Downregulated genes

No. Genes

  1 PLA2G2A
  2 C4BPA
  3 CCL20
  4 AGXT
  5 BHLHE40
  6 ITIH3
  7 CP
  8 FGB
  9 PDE4D
10 ADGRV1
11 IER3
12 PGC
13 SGK1
14 IGFBP1
15 SERPINE1
16 RELN
17 GK
18 SERPINA7
19 SLC6A14
20 MBNL3
21 PLIN2
22 ORM1
23 ORM2
24 C5
25 IGF2
26 SAA4
27 SERPINH1
28 DKK1
29 LOXL4
30 CHST15
31 INHBE
32 NAV3
33 NR1H4
34 DRAM1
35 FAM181A
36 THBS1
37 ALDH1A2
38 ADGRG1
39 GDF15

SIN, sinensetin.

Table I. Forward and reverse primers used for reverse tran‑
scription‑quantitative PCR of hub genes.

Gene name Primer sequence (5'‑3')

Ceruloplasmin F: TGCAAATGGGAGACAGAAAGA
 R: TCAGGTGCAGTTGTAAACATTC
FGB F: CAGGACCATGACCATTCACA
 R: CATCCACCACCGTCTTCTTTA
IGF2 F: CGGCTTCTACTTCAGCAGG
 R: GTAGCACAGTACGTCTCCAG
ITIH3 F: CAGTTGCAGGGCTTCTATGA
 R: GCTGGTAAGTGTTCTGGGTG
NR1H4 F: TACCAGGATTTCAGACTTTGGAC
 R: CCCAGACGGAAGTTTCTTATTGA
ORM1 F: ACCAGTGCATCTATAACACCAC
 R: AGCAAGCATGTAGGTCTTGG
ORM2 F: ACCAGTGCTTCTATAACTCCAG
 R: ATCGTCCAGGTAGGAACCAA
SERPINA7 F: ATATGACCTTGGAGCCACAC
 R: CCTTATGGGCAGCATTGGAA
SERPINE1 F: GACCCATGACCTGCAGAAAC
 R: TACAGGTCCTTCTTGCCTGA
THBS1 F: CCTGGACTCGCTGTAGGTTA
 R: CTGGACTGGTAGCCAAAGAC
β‑actin F: TTCTACAATGAGCTGCGTGTGG
 R: GTGTTGAAGGTCTCAAACATGAT

F, forward; R, reverse; FGB, fibrinogen β chain; IGF2, insulin‑like 
growth factor 2; ITIH3, inter‑α‑trypsin inhibitor heavy chain 3; 
NRIH4, nuclear receptor subfamily 1 group H member 4; ORM1/2, 
orosomucoid 1/2; SERPINE1, serpin family E member 1; SERPINA7, 
serpin family A member 7; THBS1, thrombospondin 1.
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KEGG pathways, a list of 101 biological process GO terms 
and three significant pathways were retrieved. For the ease 
of analysis and visualization, we did a REVIGO analysis 

for top ten biological process GO terms showing the lowest 
FDR values (23). REVIGO indicated that these genes were 
mainly involved in immune‑system responses, regulation of 
tumor necrosis factor production, regulation of the apoptotic 
process, regulation of protein metabolism, and transport 
and secretion processes as shown in the REVIGO scatter 
plot (Fig. 3). Additionally, KEGG pathway analysis revealed 
that SERPINE1 and THBS1 modified wild‑type human 
p53 (TP53), complement, coagulation cascade, and proteogly‑
cans in cancer pathways.

Roles of expression of hub genes in cancer. All our hub genes 
were downregulated. Therefore, we did a comprehensive 
literature search to figure out roles of these upregulated hub 
genes in cancer.

Insulin‑like growth factor‑2 (IGF2). IGF2 is a 
67‑amino‑acid mitogenic peptide hormone involved in the 
regulation of cell growth, differentiation, and metabolism. It 
is mainly expressed by the liver, although it can be expressed 
in many other tissues (24). IGF2 is overexpressed in a variety 
of cancers. Cancer cells that overexpress IGF2 have a strong 
tendency to metastasize (25,26). One study has shown that 
there is a five‑fold increase in the expression of IGF2 in 
HepG2 cells (27). The use of antisense oligodeoxynucleo‑
tides (ATON) to halt the translation of IGF2 mRNA has shown 

Figure 1. Heatmap of differentially expressed genes. Each row represents a gene and each column represents a control (SIN‑untreated HepG2 cells) or 
case (SIN‑treated HepG2 cells) sample. Numbers indicate fragments per kilobase per million mapped reads values. The analysis revealed 43 differentially 
expressed genes (4 upregulated and 39 downregulated). SIN, sinensetin.

Figure 2. Protein‑protein interaction network of hub genes from STRING. 
Interactions from curated databases, experimentally measured, text‑mining 
and co‑expression are shown in blue, pink, green and black, respectively.
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that a decrease of IGF2 can inhibit the growth of HepG2 cells. 
Another study has also observed an overexpression of IGF2 
in hepatocellular carcinoma cells. Similarly, there is a notable 
decrease in tumor growth and an increase in mice survival 
when antibodies against IGF1 and IGF2 are administered (28).

SERPINE1 and SERPINA7. SERPINE1 and SERPINA7 
belong to the human SERPIN gene family, which gets 
its name from its originally identified function of serine 
proteinase inhibition. However, many of its members also 
act as chaperones involved in storage, transport, and other 
roles (29‑31). SERPINE1 encodes for a serine proteinase 
inhibitor. It can inhibit tissue plasminogen activator (tPA) and 
urokinase (uPA). High levels of SERPINE1 have been associ‑
ated with low prognosis rate and survival of lung, breast, oral, 
stomach, and ovarian carcinoma patients (32‑34). In addition, 
reducing the level of SERPINE1 can decrease cell migration 
in thyroid cancer (35). In relation to HCC, higher levels of 
SERPINE1 and increased SERPINE1 proteins associated 
with invasiveness, metastasis, and prognosis in patients with 
liver cancer have been observed (36,37). SERPINA7 encodes 
thyroxine‑binding globulin (TBG), a human thyroid hormone 
protein. SERPINA7 has been found to be upregulated in 
colorectal cancer patients (38). One study on 30 patients with 
primary liver cancer has found that 22 of them have higher 
TBG concentrations. Additionally, in 28 out of 31 patients with 
liver metastasis, TBG concentration is higher than normal (39).

Fibrinogen beta chain (FGB). Fibrinogen is a glycopeptide 
synthesized by hepatocytes. It is formed by connection of two 
trimers with each trimer containing a fibrinogen alpha chain 
that is encoded by the FGA gene, along with the fibrinogen 
beta chain or gamma chains encoded by FGB or FGG gene, 

respectively. Increased fibrinogen activity can affect tumor cell 
growth, progression, and metastasis (40). Moreover, colorectal 
cancer growth is reduced in fibrinogen‑deficient mice (41). 
The FGB gene is also upregulated in lung carcinomas and 
breast cancer (42,43). Although we could not find a direct link 
between upregulation of FGB and HCC, in vitro studies have 
shown that FGG (another gene involved in fibrinogen forma‑
tion) upregulation can promote the migration and invasion of 
HCC whereas knockdown of FGG can significantly inhibit 
phenotypes (44).

Orosomucoid 1 (ORM1) and orosomucoid 2 (ORM2). The 
orosomucoid gene family contains two polymorphic genes 
(ORM1 and ORM2) primarily secreted by the liver, although 
they are also abundant in the plasma. They encode for 
acute‑phase proteins that are expressed during stressful condi‑
tions such as tissue injury, infections, and inflammations (45). 
It has been reported that ORM genes are over‑expressed in 
breast cancer, bladder cancer, lung cancer, cholangiocarci‑
noma (bile duct cancer), colorectal cancer, and HCC (46‑50). 
However, the mechanism of how orosomucoid genes affect 
cancer cells remains unclear. Of particular interest, knock‑
down of ORM1 can result in decreased proliferation of HCC 
cells (46).

Nuclear receptor subfamily 1 group H member 4 (NR1H4). 
NR1H4, also known as farnesoid X receptor (FXR), is 
mainly expressed in the liver, kidney, intestine, and adrenal 
gland. It is a member of the nuclear receptor superfamily. 
It is activated upon binding to bile acid for regulating bile 
acid homeostasis (51‑53). In vitro studies have revealed 
that the expression of FXR is significantly increased in 
non‑small‑cell lung carcinoma (NSCLC), resulting in 
cell proliferation. Knockdown of NR1H4 can inhibit cell 

Figure 3. REVIGO scatter plot showing top 10 biological process GO terms with least FDR values. Color indicates the FDR value. Size indicates the frequency 
of the GO terms in the underlying GO annotation database. GO, Gene Ontology; FDR, false discovery rate.



KIM et al:  TRANSCRIPTOME ANALYSIS OF SINENSETIN‑TREATED HEPG2 CELLS6

proliferation and xenograft growth in nude mice models. 
A delay in the G1/S transition of cell cycle has also been 
reported after knockdown of NR1H4 in NSCLC (54). The 
expression of FXR in esophageal carcinoma is shown to be 
highly associated with increased tumor size and lymph‑node 
metastasis, whereas deletion of this gene can suppress 
tumor‑cell growth in both in vitro and in vivo studies (55). 
Some evidence has highlighted the role of FXR in liver carci‑
nogenesis. How FXR promotes cell proliferation has been 
elucidated in a HepG2 cell line among others by suppressing 
the expression of p16/INK4a. Downregulation of FXR also 
shows proliferation‑inhibitory effects (56).

Thrombospondin 1 (THBS1). THBS1, a member of the 
thrombospondins family of proteins, is an important compo‑
nent of the extracellular matrix (57). Upregulation of THBS1 
can increase the invasion and migration of gastric cancer 
cells, prostate cancer, gliomas, pancreatic cancer, and ovarian 
cancer (58‑62). High expression level of THBS1 is associated 
with invasiveness and progression of hepatocellular carcinoma 
cells as well as poor prognosis (63). THBS1 expression is also 
observed in stromal cells surrounding the cancer (64). A study 
by Lee et al has highlighted the role of THBS1 in HCC tumor 
progression because suppression of THBS1 can mediate CD47 
signaling and decrease the growth of cancerous liver cells (65).

Ceruloplasmin (CP). CP is an enzyme involved in ferroxi‑
dase activity, copper transport, amine oxidase activity, and 
superoxide dismutase activity (66). In breast cancer, elevated 
CP levels are associated with metastasis and higher chances of 
recurrences (67). CP levels are also increased in patients with 
pancreatic ductal adenocarcinoma, ovarian cancer, bile duct 
cancer, and cervical cancer (68‑71).

Inter‑alpha‑trypsin inhibitor heavy chain 3 (ITIH3). 
Inter‑alpha‑trypsin inhibitors are a family of serine protease 
inhibitors that are formed by the combination of one light chain 
and one or two heavy chain proteins. Structurally, two or more 
heavy chains are covalently linked to hyaluronic acid (HA) 
which forms the major portion of the cellular matrix (72). 
Upregulation of ITIH3 expression has been observed in lung 
cancer and gastric cancer (73‑75). The present transcriptome 

data showed that ITIH3 was downregulated in SIN‑treated 
HepG2 cells than in untreated HepG2 cells. Literature evidence 
accentuates the role of these hub genes in cancer development 
when they are expressed at higher than normal levels.

qRT‑PCR confirms downregulation of hub genes. Differently 
expressed, highly integrated hub genes (CP, FGB, IGF2, ITIH3, 
NRIH4, ORM1, ORM2, SERPINE1, SERPINA7 and THBS1) 
were quantified for mRNA expression by Qrt‑PCR. In agree‑
ment with transcriptome analysis data, qRT‑PCR analysis 
results validated the downregulation of these hub genes in 
SIN‑treated cells than in untreated HepG2 cells (Fig. 4). These 
data further confirm the role of SIN in regulating the expres‑
sion of hub genes in HepG2 cells.

Discussion

A transcriptome of an organism describes a small proportion of 
its genetic codes that can be transcribed into RNA molecules. 
Post‑transcriptional processing of RNA plays a crucial role 
in terms of producing more variant forms of mRNA (76). 
Thus, it is clear that studying the whole transcriptome and 
understanding their modifications can provide an extensive 
knowledge for developing novel strategies to control diseases. 
Transcriptome profiling has gained extensive attention in cancer 
research because it enables disease condition analysis and treat‑
ment outcomes. The analysis of RNA‑seq data to obtain gene 
expression and transcriptional changes in cancer supports moral 
outcomes and treatment options (77). Genes and signaling 
pathways involved in cancer and treatment outcomes have been 
identified by microarray and RNA‑seq approaches. With the 
advent of second‑ and third‑generation sequencing technologies, 
RNA‑seq is a significant method owing to its low false‑positive 
results and increased reproducibility rate compared to micro‑
arrays (78). It also gives an accurate expression change of 
transcripts and their isoforms that can help us discover novel 
transcripts. Transcriptome profiling via RNA‑seq has discov‑
ered many genes that are potentially involved in the anti‑cancer 
effect of natural compounds like flavonoids. A recent report on 

Figure 4. Quantification of genes using RT‑qPCR. Hub genes were quantified by RT‑qPCR analysis. The expression levels of each gene were suppressed when 
treated with SIN compared with those in the control group. ***P<0.001 vs. control. RT‑qPCR, reverse transcription‑quantitative PCR; FGB, fibrinogen β chain; 
IGF2, insulin‑like growth factor 2; ITIH3, inter‑α‑trypsin inhibitor heavy chain 3; NRIH4, nuclear receptor subfamily 1 group H member 4; ORM1/2, oroso‑
mucoid 1/2; SERPINE1, serpin family E member 1; SERPINA7, serpin family A member 7; THBS1, thrombospondin 1.
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integrated whole‑transcriptome profiling of genes in HCT‑116 
cancer cells by quercetin treatment has revealed pathways that 
can regulate cancer progression (79).

Sinensetin (SIN), a polymethoxyflavone present in the 
citrus family, can inhibit several cancers by regulating oxida‑
tive stress of cells (80). Our previous study has displayed an 
autophagy‑mediated anti‑cancer potential of SIN in liver 
cancer cells. In the current research, we performed RNA‑seq 
analysis for SIN‑treated and SIN‑untreated liver cancer 
cells (HepG2) to identify critical genes associated with the 
anti‑cancer potential of SIN.

In vitro and in silico techniques have been widely used 
to study anti‑cancer effects of natural compounds and their 
mechanisms of action. In vivo animal models have also 
demonstrated different mechanism involved in their abilities 
to prevent diseases such as cancer, neurodegenerative diseases, 
and cardiovascular disorders (81). Such studies can help us 
understand effects of chemotherapeutics on different enzymes, 
cell signaling protein cascades, and gene expression.

In the current study, a total of 43 differentially expressed 
genes were identified between SIN‑treated and untreated samples 
in HepG2 cells. Interestingly, most (39/43) of these genes were 
downregulated while only four were upregulated by treatment 
with SIN. With the help of STRING and Cytohubba, we identified 
ten hub genes from the DEG list. Enrichment analysis indicated 
that these hub genes were mainly involved in immune‑system 
responses and regulation of tumor necrosis factor production, 
apoptosis, and protein metabolism. As presented in detail in the 
results section, we did an extensive literature survey on these 
identified hub genes, highlighting their roles in tumor growth, 
tumor invasiveness, poor prognosis, and recurrence in various 
cancers upon upregulation of their expression. RNA‑seq analysis 
of HepG2 cells treated with SIN showed downregulation of these 
hub genes. Literature analysis sheds light on how downregula‑
tion of these hub genes might mediate anti‑cancer processes. 
qRT‑PCR data confirmed that expression levels of these hub genes 
were consistent with RNA‑seq data. Hub genes CP, FGB, IGF2, 
ITIH3, NRIH4, ORM1, ORM2, SERPINE1, SERPINA7 and 
THBS1 are highly expressed in several cancers, including liver, 
lung, pancreatic, and cervical cancers. Significant downregulation 
of these genes upon SIN treatment showed its prominent capacity 
in suppressing these genes in HepG2 cells. The confirmation 
of expression data revealed that these genes could emerge as 
attractive therapeutic targets in the treatment of liver cancer. 
Furthermore, RNA‑seq and relative expression data strengthened 
the argument that SIN is a strong anti‑cancer agent in HCC.

In conclusion, ιn the current study, transcriptome analysis 
of SIN‑treated HepG2 cells by next generation sequencing 
supported its anti‑cancer effect. Analysis of DEGs provided 
a strong insight on the involvement of hub genes related to 
cancer progression. Results of this study indicate that SIN 
might induce HCC cell death by regulating the expression of 
these genes. The objective of this study was to identify the 
related gene on SIN anti‑cancer effect using transcriptome 
analysis. This paper highlights the necessity for further studies 
to support anti‑cancer effect of those genes.
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