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Multi‑scopic neuro‑cognitive 
adaptation for legged locomotion 
robots
Azhar Aulia Saputra*, Kazuyoshi Wada, Shiro Masuda & Naoyuki Kubota

Dynamic locomotion is realized through a simultaneous integration of adaptability and optimality. 
This article proposes a neuro‑cognitive model for a multi‑legged locomotion robot that can seamlessly 
integrate multi‑modal sensing, ecological perception, and cognition through the coordination 
of interoceptive and exteroceptive sensory information. Importantly, cognitive models can be 
discussed as micro‑, meso‑, and macro‑scopic; these concepts correspond to sensing, perception, 
and cognition; and short‑, medium‑, and long‑term adaptation (in terms of ecological psychology). 
The proposed neuro‑cognitive model integrates these intelligent functions from a multi‑scopic point 
of view. Macroscopic‑level presents an attention mechanism with short‑term adaptive locomotion 
control conducted by a lower‑level sensorimotor coordination‑based model. Macrosopic‑level serves 
environmental cognitive map featuring higher‑level behavior planning. Mesoscopic level shows 
integration between the microscopic and macroscopic approaches, enabling the model to reconstruct 
a map and conduct localization using bottom‑up facial environmental information and top‑down 
map information, generating intention towards the ultimate goal at the macroscopic level. The 
experiments demonstrated that adaptability and optimality of multi‑legged locomotion could be 
achieved using the proposed multi‑scale neuro‑cognitive model, from short to long‑term adaptation, 
with efficient computational usage. Future research directions can be implemented not only in 
robotics contexts but also in the context of interdisciplinary studies incorporating cognitive science 
and ecological psychology.

The development of legged robots is increasing significantly. It is versatile because more than half of the world’s 
terrain can be accessed by legged structures. Importantly, quadruped robots will cover a larger area than biped 
robots if their movement and energy efficiency are  improved1. Current legged robots are disadvantaged in terms 
of movement efficiency and adaptation capability. Enabling higher (task) level control through assembling goal 
pursuit dynamics from efficient behavioral primitives remains an outstanding  challenge2 which would vastly 
benefit robot mobility in dynamic environments.

From the cognitive science perspective, dynamic human locomotion is realized through the integration 
of various phenomena based on adaptability and optimality. Adaptability depends on real-time perception, 
a bottom-up-learning-based approach from the microscopic perspective; optimality depends on cognition, a 
top-down knowledge-based approach from the macroscopic perspective. In the context of behavior generation, 
optimality implies efficient developing behaviors with thorough consideration of costs and  benefits3. Researchers 
often impose constraints to simplify the integration; such constraints might limit how much dynamic integra-
tion is possible. Although various cognitive architectures have thus far been proposed by cognitive science, it is 
difficult for robotics researchers to utilize such cognitive models to simultaneously achieve adaptability and opti-
mality in real dynamic environments because they mostly only explain the information flow of human cognitive 
behaviors at the conceptual level, with any methodology for implementing such functions not described in detail.

Nonetheless, some researchers have developed methods for integrating the perceptual system and the behav-
ioral system. Some have generated appropriate robot behavior using a vision sensor combined with a control 
system to detect  obstacles4. However, most locomotion and perceptional systems have been developed separately, 
building a perception model for obstacle avoidance and using its output (movement plan) as the input for the 
locomotion model; nonetheless, the approach has been implemented in a legged  robot5,6. For example, Barron 
et al.7 implemented perception-based locomotion in a hexapod robot, using visual information from the percep-
tion model to provide feedback on obstacle avoidance and target tracking behaviors.
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The perceptual model may enable motion planning by generating footstep locations, leading to trajectory-
based locomotion that can generate stepping movements in specific  legs8,9. It could also be used for affordance-
based  perception10. In our previous research, we developed a bio-inspired model of locomotion to achieve 
dynamic  locomotion11,12. However, bio-inspired locomotion does not currently include motion controllers 
capable of short-term adaptation, instead, controlling the movement plan through cognitive  processes13–15. For 
example, Xiong et al.16 proposed a short-term adaptation model for a legged robot that considered only internal 
sensory feedback. However, neither human nor animal movement requires exact planning; instead, natural 
locomotion could be generated online through elementary steering and obstacle avoidance  behaviors17. In cur-
rent models, perceptual information is used to control higher-level motion planning, including path planning 
or walking plan generation.

Importantly, dynamic locomotion requires the generated movement to have an objective. Cognition, embodi-
ment structure, and the locomotion generator should be integrated into the development of a reliable neuro-
biological locomotion model. This requires “a model”, which this study defines as a representation of the com-
plex relationship between inputs and outputs, with its cognitive model comprising cognitive architecture and 
 knowledge18. Cognitive architecture is described through functional elements, including perception, decision 
making, prediction, and learning to respond to the intelligent outputs of humans and other animals. Using a 
cognitive model for robot locomotion connects the ideas of biologists and physiologists with those of roboticists.

From the ecological approach, behavior generation demands an understanding of perception, action, and 
cognition; this requires first identifying properties of the environment that define what is perceived, actionable, 
and known and indicates that individual behavior is inseparable from the environment. In ecological psychol-
ogy, this integration is not represented by physical science; instead, integration behavior and environment are 
represented distinctly in different individuals. Behavior follows how an individual’s sense organs perceive the 
environment rather than detecting physical information directly. However, perception systems can still recognize 
a certain range of events, tending to perceive changes, processes, events, and event sequences rather than time. 
This implies scale-based perception at the individual level; that is, for example, humans can both recognize the 
trajectory of an animal’s movement in a large-scale area and detect small-scale changes in the movement trajec-
tory of an  animal19.

Behavior-related descriptions defined at the ecological scale begin with substances, surfaces, places, objects, 
and  events19. The substance concerns the characteristic properties of surfaces, critically dictating where the leg 
should be placed. Object and place are extensions of the surface, and events concern temporality. At the macro-
scopic scale, intention and situation decide the behavior represented by movement planning. At the microscopic 
scale, there is a focus on managing the movement of a muscle or actuator. Finally, mesoscopic systems integrate 
microscopic and macroscopic  phenomena20, with behavior provision—including speed and movement direc-
tion—defined at the mesoscopic scale in this case. This mesoscopic approach can also conceptualize an organism’s 
 functionality21. Although integrating embodiment and environment, as defined at an ecological scale, could 
provide an alternative strategy for decreasing the complexity of assimilating robot behavior and environmental 
properties, realizing such a project remains a challenge.

This led to the proposal of a neuro-cognitive model for multi-legged locomotion that offers robust integration 
of both external and internal sensory information (SI). Through considering interdisciplinary studies, we have 
developed a cognitive model useful for lower-level to higher-level control and short-term to long-term adapta-
tion. This model seamlessly integrates multi-modal sensing, ecological perception, and cognition through the 
coordination of interoceptive and exteroceptive SI.

A cognitive model can be discussed as micro-, meso-, and macroscopic; these concepts correspond to sens-
ing, perception, and cognition (in terms of neuroscience) and short-, medium-, and long-term adaptation (in 
terms of ecological psychology). This suggests that multi-legged locomotion requires five intelligent functions, 
which manifest as (1) an attention module, (2) an adaptive locomotion control module, (3) an object recognition 
module, (4) an environmental map building module, and (5) an optimal motion planning module. The proposed 
neuro-cognitive model integrates these intelligent functions from a multi-scopic point of view. A flow diagram 
representing this methodology’s problem statement can be observed in Fig. 1.

Issue in fast adaptability toward external input. To deal with fast adaptation toward the change of 
external input, some researchers build a hierarchical system with a CNN model for ground surface condition 
 recognition22–24. However, the recognition process requires a high computational cost. Furthermore, the current 
legged robot locomotion, especially in the foothold control mechanism, has a limitation on a sudden obstacle 
that requires changing of swinging motion of the leg.

Results
The proposed model has been evaluated through a series of experiments. In preliminary experiments, we conduct 
the experiments on locomotive learning and control based on sensorimotor coordination at the microscopic level. 
Next, we tested the topological-based environmental reconstruction. Next, we tested the proposed module on 
environmental knowledge building and global path planning at the macroscopic level. In this paper, we conducted 
experiments on real-time re-planning and behavior coordination in rough terrain and dynamic environments 
at the mesoscopic level. These experiments demonstrated that adaptability and optimality of multi-legged loco-
motion could be achieved using the proposed multi-scale neuro-cognitive model. Informed consent has been 
obtained from the participant to support the real experiments and to be shown in some video demonstrations 
in an online open-access publication.

To show the effectiveness of multi-scopic performance, we performed the robot to explore an unknown 
building and asked to move in certain goal positions. We use a simulation open, dynamic engine to conduct 
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the performance. The robot performance can be seen in  Movie  S1. At first, the robot explored the whole envi-
ronmental condition. In this case, the system builds the cognitive map. After that, the robot was asked to move 
from the initial position to explore the second floor. The PP module generates path planning based on the goal 
position (initial position) and cognitive map information. During the movement, we put the first sudden obstacle 
obstructing the robot way (see SM Video  1 at 2:49). The PP module regenerates the path planning again. Dur-
ing the movement, we put a second obstacle obstructing the robot’s way (see SM Video  1 at 3:11). Then the PP 
module regenerates the pat planning again. This path planning forced the robot to move farther. However, the 
CM module keeps building the cognitive map, and if the robot fine the faster way, then the PP module changes 
the movement planning (see SM Video  1 at 3:33 to 3:40). Once it arrives at the target position, the robot starts to 
explore the second floor and perform affordance ladder detection and climbing behavior (see SM Video  1 5:10 
to 5:59). After arriving on the second floor, the robot starts to explore the second floor. The system can generate 
multiple floors for cognitive map building.

To shows the effectiveness of memory usage, we analyze the real-time data size at the micro, meso, and 
macroscopic level. The system integration sustains the environmental reconstruction information as temporal 
memory and maintains the cognitive map information as long-term memory. Environmental reconstruction 
information, which has huge memory usage, can be reduced. From Fig. 2, we can see there is no significant change 
in computational cost and memory usage in different performance of the robot, climbing behavior, obstacle 
avoidance, surface feature extraction, ladder recognition, and obstacle recognition. The temporal characteristic 
of the LER module affects the stability of memory usage. It, therefore, does not increase exponentially (only 
8–18 kB). In addition, we have conducted quantitative experiments to show the effectiveness of the integration 
in Supplementary Material Note S9.

Result on microscopic level. At the microscopic level, we show the result of the robot, which required a 
fast response. The performance is processed as follows: (1) an attention mechanism module controls the topo-
logical structure of 3-D point cloud information using Dynamic Density Growing Neural Gas, which can control 
the density of topological structures in a specific area based on attention; (2) an object affordance detection mod-
ule uses direct perception to generally identify environmental conditions based on physical embodiment; (3) a 
neural-based locomotion module generates dynamic gait patterns by integrating with sensorimotor coordina-
tion. The legged robot in simulation was given by sudden obstacle that can be seen in SM Video  2 for flat terrain 
and SM Video  3 for rough terrain. The response of the leg avoiding the sudden obstacle (short-term adaptation) 
prove the effectiveness of the proposed module. The effectiveness of the model can also be analyze in real robot 
performance by given sudden obstacle (see SM Video  4). In the computational analysis shown in Fig. 3. The AEF 
and CPG module do not require another process to perform short-term adaptation. It uses information provided 
by the AD module to be processed in the AEF module. The cost in flat terrain requires a lower computational 
cost than in rough terrain. The cost in flat terrain increases when receiving sudden obstacles only. It is similar to 
the process in human perception. Humans require higher perception activity in uneven or rough terrain.

Result on mesoscopic level. There are two processes at the mesoscopic level, which is the localization 
and environmental reconstruction (LER) and behavior coordination (BC). They are updated every 600 ms. We 

Figure 1.  Methodology of the proposed model.

https://www.dropbox.com/s/nrp509wyc4f86ca/multiscopic%20performance.mp4?dl=0
https://www.dropbox.com/s/nrp509wyc4f86ca/multiscopic%20performance.mp4?dl=0
http://www.dropbox.com/s/nrp509wyc4f86ca/multiscopic/performance.mp4?dl=0
https://www.dropbox.com/s/nrp509wyc4f86ca/multiscopic%20performance.mp4?dl=0
https://www.dropbox.com/s/nrp509wyc4f86ca/multiscopic%20performance.mp4?dl=0
https://www.dropbox.com/s/xc4smtj2i6omhif/video%20affordance%20AEF%20test%20flat%20terrain.mp4?dl=0
https://www.dropbox.com/s/06lvw7yccajgab2/video%20affordance%20AEF%20test%20rough%20terrain.mp4?dl=0
https://www.dropbox.com/s/horda0zxsu8qops/real%20experiment%20on%20sudden%20obstacle.mp4?dl=0
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tested the LER module for map reconstruction in corridors (see SM Video  6) and in underground pipe environ-
ment (see SM Video  7). The LER module requires around 0.05 s for each process. Furthermore, the BC module 
updates the walking provision module to the CPG module based on the input from the PP module and LER 
module. The BC module requires 0.0005 s. The proposed integration between perception and action is shown 
in real experiments shown in SM Video  5. When we put a sudden obstacle at a certain distance in front of the 
robot, the AEF module gives the signal to the BC module to change the movement provision of the robot at the 
mesoscopic level. In addition, quantitative experiments shown in SM Video  8 prove the effectiveness of the flow 
in the proposed model.

Result on macroscopic level. The robot can conduct optimal motion planning using the cognitive map 
built from environmental knowledge. We proposed building the cognitive map using topological structure-
based map reconstruction. We follow this with an optimal path planning method based on the map built. Exper-
imental results show that the proposed method can extract environmental features for multi-legged robots and 
build environmental knowledge for optimal path planning. The detailed experimental result can be seen in 
Supplementary Material (Note S6).

Figure 2.  Processing analysis shows the effectiveness of data flow. (A) Diagram of memory usage of DA, LER, 
and CM module. The DA and LER module has stable memory usage in 8–10 kB and 8–18 kB, respectively. 
The memory of the cognitive map gradually increases in line with the coverage area (during the exploration 
performance). The CM memory cost increase during the climbing behavior, exploring the new environment 
upstairs. It has around 14 kB in the final performance. (B) Diagram of time cost of DA, AD, LER, and CM 
modules. The processing time of DA is stable at around 0.03 s. CM and LER modules have a time cost of around 
0.05 s. Affordance detection has a low computational cost, which is only 0.001 s. It increases significantly during 
ladder affordance detection in climbing performance. It has a peak cost of around 0.006 s. During the climbing 
behavior, the processing of the LER and DA module decreased because the coverage of gaze was focused on the 
ladder. (B) The visualization of data flow from external input in the lower level to higher-level information at the 
macroscopic level. First, the 3D point cloud is used as the sensory data. Then process to topological structure 
in DA module. Then, the magnitude vector is added to define the affordance and strength of the node. This 
information is processed to higher levels in the LER module and in the AEF module. The LER module shows 
the PINK node as the safe area reconstruction. CM module shows the connection of node representing the 
certain position in the map.

https://www.dropbox.com/s/ide6ea29xc4ew6b/SLAM%20in%20corridor.mp4?dl=0
https://www.dropbox.com/s/fpvpdmwl8t2vp8f/SLAM%20in%20pipe.mp4?dl=0
https://www.dropbox.com/s/f0y87fu8wnp07i7/real%20experiments%20on%20sudden%20obstacle%20with%20long%20distance%20placement.mp4?dl=0
https://www.dropbox.com/s/l6s9kw8afdamtrq/Quantitative_experiments.mp4?dl=0
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Discussion
This research has realized adaptability and optimality in multi-legged locomotion robots. Dynamic locomotion 
was realized through simultaneous integration based on adaptability and optimality, with adaptability consid-
ering real-time perception as a bottom-up learning-based approach at the microscopic scale and optimality 
considered as cognition as a top-down knowledge-based approach at the macroscopic scale. Although various 
cognitive architectures have thus far been proposed by cognitive science, it is difficult for robotic researchers 
to apply cognitive models that can simultaneously engage adaptability and optimality in real dynamic environ-
ments. Most have only explained the information flow of human cognitive behavior at the conceptual level, with 
the methodology for implementing functions like human cognitive behaviors not described in detail. As such, 
this research proposed a cognitive model encompassing and integrating mobility from microscopic control to 
macroscopic planning and from short-term adaptation to long-term optimization.

Ultimately, this paper proposes a neuro-cognitive model for multi-legged locomotion, realizing seamless inte-
gration of multi-modal sensing, ecological perception, behavior generation, and cognition through the coordina-
tion of interoceptive and exteroceptive SI. The proposed cognitive model was conceptualized as micro-, meso-, 
and macroscopic, terms which correspond to sensing, perception, and cognition (in terms of neuroscience) 
and short-, medium-, and long-term adaptation (in terms of ecological psychology). Intelligent functions were 
built for multi-legged locomotion, which include (1) an attention module, (2) an adaptive locomotion control 
module, (3) an object recognition module, (4) an environmental map building module, and (5) an optimal 
motion planning module. The proposed neuro-cognitive model integrates these intelligent functions from a 
multi-scopic perspective. In addition, the summary of the proposed model and overall experimental result can 
be seen in the Supplementary Materials http:// www. dropb ox. com/s/ hc74a jqwqn tv5b0/ Summa ryofM ultis copic 
Locom otion Model_ mp4? dl=0.

Microscopic level. The microscopic models propose an attention mechanism for exteroceptive SI according 
to the current interoceptive SI, with adaptive locomotion control conducted through (lower-level ) sensorimotor 
coordination based on interoceptive and exteroceptive SI as a short-term adaptation. Additionally, online loco-
motion generation is processed at this level, with the sensorimotor coordination concept proposed according to 
the perceiving-acting cycle at the microscopic level, a lower-level control system that interacts directly with the 
environment. The microscopic system comprises three modules: (1) dynamic attention module, (2) affordance 
detection module, and (3) Central Pattern Generation module.

The DA module controls the topological structure of 3-D point cloud information ( P ) using DD-GNG. Inte-
grated with the AD module, the granularity of nodes in an area with rich texture increases automatically. The 
performance of the perception part at the microscopic level has been tested for object grasping detection, vertical 
ladder detection, and sudden object detection. Then the CPG module in this level generates efficient dynamic 
gait patterns. From the results, the module can generate gait transition when receiving sudden leg disabled (see 
Supplementary material SM Video  2, SM Video  3,  http:// www. dropb ox. com/s/ 41hm1 c6wdf 5mgul/ Atten tionm 
odel. mp4? dl=0). By integrating perception information from the AD and DA module, the Affordance Effectivity 
fit module enables direct perception to generally identify the environmental conditions based on the physical 
embodiment. This module integrates exteroceptive SI with the locomotion generator module for short-term 

Figure 3.  The computational cost analysis of affordance effectivity fit for short-term adaptation performance. 
There are two analysis performance, in flat terrain with sudden obstacles (see SM Video  2) and in rough terrain 
with sudden obstacle (see SM Video  3). The average cost in flat terrain: DA:0.01 s, AD:0.002 s, AEF: 0.00001 
s. The cost increase after given by sudden obstacle. The average cost in rough terrain: DA: 0.02 s, AD: 0.003 s, 
AEF: 0.00001 s. The AEF is activated only when the AD module detects any obstacle obstruct the next foothold 
position. The captured figure, yellow sphere represents the touched foothold position (left/right), green sphere 
represents the next foothold position of swinging leg (left/right). The cost of CPG requires average 0.00021 s. It 
is quite small to effect the perception cost.

https://www.dropbox.com/s/hc74ajqwqntv5b0/Summary%20of%20Multiscopic%20Locomotion%20Model%20_.mp4?dl=0
https://www.dropbox.com/s/hc74ajqwqntv5b0/Summary%20of%20Multiscopic%20Locomotion%20Model%20_.mp4?dl=0
https://www.dropbox.com/s/xc4smtj2i6omhif/video%20affordance%20AEF%20test%20flat%20terrain.mp4?dl=0
https://www.dropbox.com/s/06lvw7yccajgab2/video%20affordance%20AEF%20test%20rough%20terrain.mp4?dl=0
https://www.dropbox.com/s/41hm1c6wdf5mgul/Attention%20model.mp4?dl=0
https://www.dropbox.com/s/41hm1c6wdf5mgul/Attention%20model.mp4?dl=0
https://www.dropbox.com/s/xc4smtj2i6omhif/video%20affordance%20AEF%20test%20flat%20terrain.mp4?dl=0
https://www.dropbox.com/s/06lvw7yccajgab2/video%20affordance%20AEF%20test%20rough%20terrain.mp4?dl=0
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adaptation. This module represents the model from the perspective of human or animal biological processes. 
From the experiments, the robot is able to respond to sudden upcoming obstacles. This mechanism is efficient 
for cognitive processing because only important information is processed. In contrast to existing  methods25,26, 
this solution’s affordance detection is up to ten times faster; consider, for example, its performance in comparison 
with the 1.36 ms required  by26.

Similar systems, such as self-organizing maps, growing cell structures, and neural gases, cannot increase 
node granularity in localized areas. Therefore, they need to increase node density over the entire map to clarify 
even localized  objects27–29. Compared with other multi-density topological maps, such as multi-layer  GNG30, 
the improved system developed by this research could decrease processing time by as much as 70% (multi-layer 
GNG = 3.1567× 10−4 s compared to DA module = 1.0255× 10−4 ). The localized attention-focusing process 
has also been demonstrated to decrease the computational cost.

Macroscopic level. Macroscopically, we focused on designing higher-level processing that can enable 
motion planning, behavior generation, and knowledge building. This led to the development of two modules: 
(1) cognitive map (CM) module using topological-structure-based map reconstruction and (2) neural based 
path planning (PP) (see previous  research40) module based on the map constructed. The CM module was devel-
oped through higher-level behavior planning based on the collection or memory of large-scale SI. The robot 
can optimize motion planning using constructed environmental knowledge based on a method for building 
environmental knowledge that uses topological structure-based map reconstruction. Experimental results dem-
onstrated the capacity of the proposed method to extract environmental features for multi-legged robots and 
build environmental knowledge for optimal path planning. From the experimental result shown in Supplemen-
tary material SM Video  1 and Note S7, the PP module can generate dynamic path planning for legged robots 
depending on the cognitive map information. The PP module changed to the most efficient path after the CM 
module enlarged its information.

Mesoscopic level toward multiscopic integration. Mesoscopically, the proposed neuro-cognitive 
model, integrates the microscopic and macroscopic approaches, with the proposed neuro-cognitive model 
building a localization and Environmental Reconstruction (LER) module using bottom-up facial environmental 
information and top-down map information and generating intention towards the final goal at the macroscopic 
level. We develop the LER module to recognize a current situation using lower-level topological structure infor-
mation. The robot generates intention towards the final goal at the macroscopic level. There are two steps for 
building localization and mapping: confidence node collection and surface matching. The map nodes comprise 
3-D position, 3-D surface vector, label, and magnitude of the surface vector. The GNG nodes comprise 3-D 
position, 3-D surface vector, label, and magnitude of the surface vector. To demonstrate the module’s effective-
ness, we tested the module in a computer simulation, showing that it could simultaneously reconstruct the map 
and localize the robot’s position. From the result shown in Supplementary material SM Video  6 and SM Video  
7 show that the proposed system has efficient data flow without redundancy process. The data output from the 
microscopic level can be efficiently processed toward the macroscopic level.

Meanwhile, we also developed a behavior coordination module—comprising a behavior learning strategy for 
omnidirectional movement—to integrate the relationship between macroscopic behavior commands and loco-
motion performance. We also built a tree-structured learning model to manage the complex neural structure of 
the CPG. The proposed model was tested for omnidirectional movement in  biped31 and quadruped  robots32. The 
learning strategy for generating omnidirectional movement behavior processes information at the macroscopic 
level and generates neural structures for locomotion generation at the microscopic level. In the experimental 
result, we show the efficient data flow from the output of the PP module at the macroscopic level to the CPG 
module at the microscopic level.

In multiscopic performance, the robot is able to detect the surface feature, environmental reconstruction, and 
cognitive map building simultaneously. It is efficiently shown in the implementation of robot climbing behavior in 
the context of a horizontal-vertical-horizontal movement. During this performance, the robot can detect the lad-
der affordance while processing higher-level modules (LER and CM module) with less redundancy of data flow.

Methods
The proposed model involves multilateral interdisciplinary collaboration based on mechanical model integration, 
a neuro-musculoskeletal approach to modeling the flow of data information, and ecological psychology approach 
to building systems, and the multi-scale systems approach of computer scientists for classifying complex systems. 
Developing a heavily integrated system increases complexity exponentially, with scaling segregation being one 
way to realize such a model. Therefore, this work classifies the system based on a multi-scopic approach (see 
Fig. 4).

Optimality comprises knowledge building and behavior planning at the macroscopic level. Adaptability com-
prises sense and control at the microscopic level. However, there is a gap between data processing at the micro-
scopic and macroscopic levels. Accordingly, the mesoscopic level must be added. At the mesoscopic level, envi-
ronmental recognition integrates attention and knowledge building, with behavior coordination integrating path 
planning and short-term control. Thus, ultimately, the system is classified into the microscopic, mesoscopic, and 
macroscopic scope, which respectively manage short-, medium-, and long-term adaptation. The whole-system 
model, presented in Fig. 5, represents a neuro-cognitive locomotion system that considers not only internal SI 
but also external SI. The diagrammed system integrates the cognitive model with behavior generation for short-, 
medium-, and long-term adaptation. Figure 5 shows the flow of data processed through a multiscopic level.

https://www.dropbox.com/s/nrp509wyc4f86ca/multiscopic%20performance.mp4?dl=0
https://www.dropbox.com/s/ide6ea29xc4ew6b/SLAM%20in%20corridor.mp4?dl=0
https://www.dropbox.com/s/fpvpdmwl8t2vp8f/SLAM%20in%20pipe.mp4?dl=0
https://www.dropbox.com/s/fpvpdmwl8t2vp8f/SLAM%20in%20pipe.mp4?dl=0
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The microscopic scale implies short-term adaptation involving responding to environmental changes by 
controlling low-level signals. For example, leg swings are controlled directly using both internal SI and also 
external perceptual information. The mesoscopic scale implies medium-term adaptation involving responding 
to environmental changes at each footstep by changing the locomotion generator’s neural structure. The neural 
structure controls the motion pattern depending on the walking provision (sagittal speed, coronal speed, and 
direction of motion) from a higher-level model (path planning). Medium-term adaptation entails an intention-
situation cycle; that is, the intention behind the behavior depends on the situation. Furthermore, map recon-
struction and localization based on topological structure are developed to support cognitive mapping input at 
the macroscopic level. The macroscopic scale describes long-term adaptations involving the model adapting by 
adjusting its intentions (movement planning) in response to environmental conditions. Building cognitive maps 
provide information for the robot’s possible coverage area, allowing input from the motion planning model.

Microscopic adaptation in locomotion behavior. This part focuses on the novel contribution of the 
microscopic level implications of the short-term adaptation system. This involves integrating biological and 
ecological approaches to the microscopic-level data-flow mechanism through integrating cognitive information 
and actions in real-time from a neurobiological perspective. As such, the following integrated systems are uti-
lized: (1) a visual-attention regulation for filtering important external information (Dynamic Density module), 
(2) Object feature extraction represents the role of the main motor cortex (Affordance Detection module), (3) 
a motor control model that specifies motor instructions (Affordance Effectivity Fit module), (4) a CPG model 
that reflects the spinal cord’s gait pattern generator (CPG module), and (5) movement generation at the actuator 
level (joint signal generator module). The flow between these systems describes active short-term adaptation at 
the microscopic level (see Fig. 5).

Microscopic processes comprise attention, action, and their integration. Attention can decrease the amount 
of data processing and control focus areas. This research only uses time-of-flight sensors for external SI and a 
topological map model for optimal data representation. However, the existing topological map-building process 
offers no way of controlling node density in localized areas. For action, we have to achieve dynamic locomo-
tion with sensorimotor coordination, which integrates both internal and external SI in the short-term adapta-
tion context. The current model for trajectory-based locomotion does not consider short-term actions such as 
responding to sudden obstacles. Additionally, neural-based locomotion models cannot yet contend with external 
SI. Integration of locomotion generation and external SI is necessary to integrate attention and affordance. We 
will consider this problem in this chapter.

The system diagram for the microscopic level is presented in Figure S3-A. Short-term adaptation requires a 
direct response to detected changes at every time cycle. My approach uses point cloud data from external sen-
sors to achieve this.

Dynamic attention module. First, to reduce data representation (3D point cloud as external input notated by 
P ) overheads, we use dynamic density topological structure (see Note S1 in SM) to generate a topological map 
model in a neural gas network with dynamic node density. The network’s node density represents the attention 
paid to corresponding regions, with the dynamic attention model outputting topological based attention notated 
as A composed as 3D nodes position hNA×3 and edges cNA×NA , where NA is the number of nodes. The output 
will be generated to the AD module (see Fig. 5). The granularity of the node is controlled by the AD module’s 
strength node feedback ( δ ), which controls the likelihood of finding raw data from external sensory information 
( P ). Detail explanation can be seen in the supplementary material (Note S1).

Affordances detection module. Affordance, an ecological, psychological viewpoint, is what the environment 
offers to individuals. Affordance does not depend on the ability of the individual to recognize or use  it19,33. Affor-
dance is also defined by Turvey as the environmental relational  characteristics34, integrated by the effectivity of 

Figure 4.  Concept of multi-scopic neuro-cognitive locomotion.
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the actor. Affordance is hence not inherent to the environment: it also depends on particular actions and the 
actor’s capabilities. Differences in individuals’ bodies may lead to a different perception of affordance.

Animal locomotion is controlled by perceiving  affordances35. In other words, prospective action is generated 
depending on the affordance information that the locomotion generator  receives36. In free space, animal step-
ping movements are governed according to the body’s inertial condition. The adaptation process compares the 
estimated next stepping point, accounting for current inertial conditions, with the affordances of the surface.

The proposed AD module received output information of the DA module ( A ). To find the important area 
required to increase the granularity of the node, we analyze the strength of the node by calculating the direc-
tion of the normal vector and the magnitude of the normal vector as feature extraction. Some researchers use 
the eigenvector of the 3D covariance matrix from the assigned point and its neighborhood to describe 3D 
local properties. The value of curvature is indicated by the minimum eigenvalue in the eigenvector of covari-
ance  matrix37,38. The change of curvature also can be calculated by generated eigenvalue �3/(�1 + �2 + �3)

39. 
This method is efficient if the facet or triangulation information is undefined. Then, it composes less informa-
tion which is only composed of geometrical characteristics. Here, the facet or triangulation of the topological 

Figure 5.  Overall design of multiscopic neuro-cognitive model. The system is integrated from micro-, meso-, 
and macro-scopic level. The data transfer in Microscopic level updated every time cycle ( ̃20ms ), Mesoscopic 
level updated every time step ( ̃500ms ), Macroscopic level updated if there is different intention. We use 3D 
point cloud only as external input notated by P , composed as px , py , pz , and use leg force f(LEG) , joint position 
θ(LEG) , and body tilt θ(LEG) , as the internal input. P is processed in Dynamic Attention (DA) module then 
generates topological based attention notated as A composed as 3D nodes position hNA×3 and edges cNA×NA , 
where NA is the number of nodes. Those information are transferred to Affordance Detection (AD) module 
and send strength node feedback δ to the DA module. AD generate topological structure A with vector of 
curvature in each node w and strength of node δ to Affordance Effectivity fit (AIf) module and Localization and 
Environmental Reconstruction (LER) module. AIf module received internal input and information from AD 
and behavior coordination (BC) module to generate action interrupt (siSAG , s

i
COR , s

i
DIR) to BC and joint interrupt 

(�(i)) to CPG module. LER module generate topological based map reconstruction notated by Q , composed 
as node position ( h ), vector direction ( h ), strength of node ( δ ), and node label ( L ) to cognitive map building 
(CMB) module. LER also send robot position ( R ) to behavior coordination (BC) module, where h composed 
as 3D position ( h ) and 3D vectorheading ( θ ). CMB module generates cognitive map information ( CM ), 
composed as a cognitive map node ( h ) and costs ( C ) to the path planning (PP) module. Based on the goal 
position, PP module generate movement provision in sagital, coronal, turning movement (sdSAG , s

d
COR , s

d
DIR) to 

BC. BC module send CPG based action parameter ( CPG , composed as CPG synaptic weights ( W,X ), degree of 
adaptation (b), time constants τa and τb . CPG generates output in joint angle level ( �).
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structure is defined. We calculate the properties based on vector projection. Therefore, a normal vector of facet 
and strength of node can be acquired. A detailed explanation of strength’s node calculation can be seen in Sup-
plementary Materials Note S2.

The AD module generates output to the DA module and AEF module. If there is a nonhomogeneous nor-
mal vector for any area, the AD module asks the DA module to increase the area’s node density by sending the 
strength of node δ . For movement related commanding in microscopic level, AD module will send the object 
affordance information composed as centroid posision ( Ca ) calculated as Ca = 1/NA

∑i=NA
i=1 hi(for δi > �) , 

and object boundary size calculated as Ra = max(hi − Ca) . Furthermore, the DA module also provides topo-
logical structure A with a vector of curvature in each node w and strength of node δ to the LER module at the 
mesoscopic level.

Affordances effectivity fit. To generate appropriate action and integrate the affordance detector with the loco-
motion generator, We built an Affordance Effectivity Fit (AEF) process, which can determine whether an object 
affects the robot’s immediate needs.

The ANN process integrates the affordance perception and the robot’s effectivity to generate appropriate 
action. This novel approach can interrupt the motion pattern to avoid an immediate obstacle or control the walk-
ing gait. The model applies perceptual information generated by the affordance detection model (as described 
in section).

In our model, we used both kinematic and kinetic parameters as input and used the posture and movement 
generated from the somatosensory cortex as feedback. Since the joints are built around angle-based actuators, 
the sensors measure angular velocity, the direction of motion, and the joints’ angular displacements. From all 
this information, the processor generates the angular velocity of joints and moving gain as its output. Our model 
is implemented in an artificial neural network in order to decrease computational complexity.

The AEF is represented by an artificial neural network, which is explained in Supplementary Materials Note 
S4. There are input parameters from the output of the AD module ( Ca and Ra ) and internal sensory informa-
tion, which are four 3D vectors ( vlx , vly , vlz ) representing the vectors of motion interrupt of the four legs; twelve 
parameters represent the joint angles ( θ1, θ2, θ3, . . . , θ12 ), and four parameters represent the touch sensor signals 
from the four feet ( T1,T2,T3,T4).

The output layer comprises two groups, activated alternately. The first group contains twelve parameters 
representing all of the joints’ angular accelerations ( �̈1, �̈2, �̈3, . . . , �̈12 ). The output is generated when an inter-
rupt command transfers to the CPG module in short-term adaptation. The output layer’s second group conveys 
walking provision information ( sSAG , sCOR , sDIR ), generated when there is behavior interruption transferred to 
the BC module in medium-term adaptation. To show the role of the Affordance effectivity fit can be seen in the 
Supplementary Materials Note S8.

Central pattern generation module. The CPG module generate the angular velocity in each leg’s joint based on 
the input from AEF module (joint interrupt (�(i)) ) and BC module (synaptic weights ( W,X ), degree of adapta-
tion (b), time constants τa and τb ). There are two-layer CPG, rhythm generators, and pattern formation layer. The 
detailed CPG modeling can be seen in Supplementary Notes S3. The output of the CPG neuron will be generated 
by the joint signal generator.

Macroscopic neuro‑cognitive adaptation. The macroscopic level focuses on system development 
related to long-term adaptation. The macroscopic process comprises cognitive map building and higher-level 
path planning. The chapter centrally considers representing a robot’s cognitive map and generating efficient 
path planning to contend with unpredictable travel costs and obstacles. The system diagram for macroscopic 
adaptation is presented in Fig. 5, emphasizing that macroscopic adaptation involves higher-level control. This 
level considers integration between microscopic and macroscopic behaviors, integrating top-down and bottom-
up processes. For bottom-up processes, this means attention information being processed to provide cognitive 
mapping information. For top-down processes, this means higher-level planning is transferred to lower-level 
control. This chapter describes the processes of integrating attention and cognitive mapping and bridging lower-
level control (MiSc) and higher-level planning (MaSc).

At this level, a cognitive map is built using the topological structure-based map reconstruction generated 
at the microscopic level (See Supplementary Materials Note S7). However, cognitive maps require integration 
with robot embodiment, and different embodiments can require different cognitive maps in terms of motion 
coverage; accordingly, the cognitive map is transferred to the path-planning model. Then, motion planning is 
completed according to the robot’s intentions (based on physical embodiment in the environmental condition) 
using a spiking-neuron-based path planner. This model can find the best pathway and facilitate the robot’s safe 
movement. When the robot encounters an unpredictable collision, the path planner dynamically changes the 
pathway. The PP module has been explained in our previous  publication40.

Mesoscopic to multiscopic adaptation. This part considers integration between microscopic and 
macroscopic behaviors, integrating top-down and bottom-up processes. For bottom-up processes, this means 
attention information being processed to provide cognitive mapping information. For top-down processes, 
this means higher-level planning is transferred to lower-level control. This chapter describes the processes of 
integrating attention and cognitive mapping and bridging lower-level control (MiSc) and higher-level plan-
ning (MaSc). First, we conceptualize the mesoscopic level, which acts as an intermediary for the microscopic to 
macroscopic orders; this conceptualization is provided in Fig. 5. This system importantly integrates neural and 
information processing smoothly and strongly between MiSc and MaSc.
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We present the localization model built using a topological map generated by DD-GNG in MiSc, demon-
strating continuous real-time cognitive map building using lower-level topological structure information, which 
comprises 3-D vector positions of nodes, edges, and 3-D surface vectors of nodes. The model also classifies 
obstacles, walls, terrain types, and certain objects, such as rungs of a ladder. This information is transferred to 
MaSc. Additionally, the motion planning generated by MaSc is processed for neuro-locomotion in MiSc using 
behavior generation and its localization.

The model has been tested for omnidirectional movement in biped and quadruped robots. The proposed 
omnidirectional movement of biped robot can be seen in our previous  publication41. Furthermore, we have tested 
the quadruped robot with the proposed multi-scopic adaptation evaluated through a climbing implementation. 
This involved performing a horizontal–vertical–horizontal movement. Such climbing behavior does not require 
a vast environment but does require rich behavior. Finally, the chapter considers the challenge of transitional 
movement in the vertical ladder context.

Environmental reconstruction and localization. To support the cognitive map model, SLAM provides localiza-
tion information mesoscopically; such localization is continuously generated. The localization algorithm inte-
grates many sensors, including LRF, rotary encoder, inertial measurement unit (IMU), GPS, and  cameras42,43. 
Currently, SLAM using 3-D point cloud information provided by LiDAR or depth sensors is a preferred  model44, 
one which is also used for underwater  localization45.

There are many methods for localization and map building using a 3-D point cloud. For example, the itera-
tive closest point algorithm is an efficient model for registering the point cloud from different  perspective46 and 
has been successfully combined with a heuristic for closed-loop detection and a global relaxation method for 
6D  SLAM47. Elsewhere, Ohno et al. used a similar model for real-time 3-D map reconstruction and trajectory 
 estimation48.

However, 3-D localization and map building technologies currently require substantial computational costs 
and are sensitive to the noise of 3-D point cloud data, especially when applied to continuous localization. To 
reduce memory consumption, OctoMap presents probabilistic occupancy estimations for the generation of 
a volumetric 3-D environmental  model49. However, it is difficult to achieve high-resolution maps with this 
 approach50 and, as such, the size of the map memory must be previously defined. Nonetheless, Vespa et al. 
improved occupancy mapping and the accuracy of the map by integrating it with TSDF  mapping51. However, 
the volumetric strategy-based map representation features useless voxels in the flat areas of non-rough areas, and 
the diffusion of data representation results in limited dynamism, as well as an increase in computational cost.

Therefore, this section proposes a real-time and continuous map building algorithm using topological struc-
ture as an input. Bloesch et al. used triangular meshes as both compact and dense geometrical representations to 
propose the view-based formulation capable of predicting the in-plane vertex coordinates directly from images 
and then employing the remaining vertex depth components as free variables; this both simplifies and increases 
computational  speed52. This produces problems for the topological input in the form of the representation of a 
small object with intricate textures. Our model is supported by a proposed attention control mechanism powered 
by DD-GNG that can generate dynamic-density topological nodes capable of controlling the number of nodes 
represented according to the detected area’s texture.

However, building such a cognitive map requires integration with robot embodiment. Different types of 
embodiment may produce different cognitive maps in terms of motion coverage. Previous SLAM models have 
not considered such limitations, instead of providing map reconstruction and localization without considering 
the robot’s capabilities. The topological structure comprises 3-D vector positions of nodes, edges, and 3-D sur-
face vectors of nodes generated from GNG, and we only use 3-D point cloud data generated from time-of-flight 
sensors. The proposed LER model is summarized in Supplementary Material Note S5.

Behavior coordination module. Based on robot position information ( R ) from LER module, where h composed 
as 3D position ( h ) and 3D vector heading ( θ ) and movement provision in sagital, coronal, turning movement 
(sdSAG , s

d
COR , s

d
DIR) from PP module, BC module generates CPG based action parameter ( CPG , composed as CPG 

synaptic weights ( W,X ), degree of adaptation (b), time constants τa and τb . The structure of the module can be 
seen in our previous  research53.

Data availibility
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].

Received: 10 August 2021; Accepted: 31 August 2022

References
 1. Bruzzone, L. & Quaglia, G. Locomotion systems for ground mobile robots in unstructured environments. Mech. Sci. 3, 49–62 

(2012).
 2. Holmes, P., Full, R. J., Koditschek, D. & Guckenheimer, J. The dynamics of legged locomotion: Models, analyses, and challenges. 

SIAM Rev. 48, 207–304 (2006).
 3. Parker, G. A. & Smith, J. M. Optimality theory in evolutionary biology. Nature 348, 27–33 (1990).
 4. Hosoda, K. & Asada, M. Adaptive visual servoing for various kinds of robot systems. In Experimental Robotics V 546–558 (Springer, 

1998).
 5. Belter, D., Labecki, P. & Skrzypczynski, P. On-board perception and motion planning for legged locomotion over rough terrain. 

In ECMR, 195–200 (2011).



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16222  | https://doi.org/10.1038/s41598-022-19599-2

www.nature.com/scientificreports/

 6. Schmidt, A. & Kasiński, A. The visual SLAM system for a hexapod robot. In International Conference on Computer Vision and 
Graphics, 260–267 (Springer, 2010).

 7. Barron-Zambrano, J. H., Torres-Huitzil, C. & Girau, B. Perception-driven adaptive {CPG}-based locomotion for hexapod robots. 
Neurocomputing 170, 63–78 (2015).

 8. Kuindersma, S. et al. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. 
Auton. Robot. 40, 429–455 (2016).

 9. Yu, Z. et al. Gait planning of omnidirectional walk on inclined ground for biped robots. IEEE Trans. Syst. Man Cybern. Syst. 46, 
888–897 (2015).

 10. Fallon, M. et al. An architecture for online affordance-based perception and whole-body planning. J. Field Robot. 32, 229–254 
(2015).

 11. Saputra, A. A., Botzheim, J., Sulistijono, I. A. & Kubota, N. Biologically inspired control system for 3-D locomotion of a humanoid 
biped robot. IEEE Trans. Syst. Man Cybern. Syst. 46, 898–911 (2016).

 12. Saputra, A. A., et al. Bézier curve model for efficient bio-inspired locomotion of low cost four legged robot. In Proceedings of IEEE/
RSJ International Conference on Intelligent Robots and Systems, 4443–4448 (IEEE, 2016).

 13. Schilling, M., Hoinville, T., Schmitz, J. & Cruse, H. Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107, 
397–419 (2013).

 14. Schneider, A., et al.. Hector, a new hexapod robot platform with increased mobility-control approach, design and communication. 
In Advances in Autonomous Mini Robots, 249–264 (Springer, 2012).

 15. Grinke, E., Tetzlaff, C., Wörgötter, F. & Manoonpong, P. Synaptic plasticity in a recurrent neural network for versatile and adaptive 
behaviors of a walking robot. Front. Neurorobot. 9, 11 (2015).

 16. Xiong, X., Wörgötter, F. & Manoonpong, P. Neuromechanical control for hexapedal robot walking on challenging surfaces and 
surface classification. Robot. Auton. Syst. 62, 1777–1789 (2014).

 17. Fajen, B. R. & Warren, W. H. Behavioral dynamics of steering, obstable avoidance, and route selection. J. Exp. Psychol. Hum. Percept. 
Perform. 29, 343 (2003).

 18. Pfeifer, R. & Bongard, J. How the Body Shapes the Way We Think: A New View of Intelligence (MIT press, 2006).
 19. Gibson, J. J. The Ecological Approach to Visual Perception: Classic Edition (Psychology Press, 2014).
 20. Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A. & Turvey, M. T. Ecological psychology: Six principles for an embodied-

embedded approach to behavior. In Handbook of Cognitive Science 159–187 (Elsevier, 2008).
 21. Bizzarri, M., Giuliani, A., Pensotti, A., Ratti, E. & Bertolaso, M. Co-emergence and collapse: The mesoscopic approach for con-

ceptualizing and investigating the functional integration of organisms. Front. Physiol. 10, 924. https:// doi. org/ 10. 3389/ fphys. 2019. 
00924 (2019).

 22. Jenelten, F., Miki, T., Vijayan, A. E., Bjelonic, M. & Hutter, M. Perceptive locomotion in rough terrain-online foothold optimiza-
tion. IEEE Robot. Autom. Lett. 5, 5370–5376 (2020).

 23. Tsounis, V., Alge, M., Lee, J., Farshidian, F. & Hutter, M. Deepgait: Planning and control of quadrupedal gaits using deep reinforce-
ment learning. IEEE Robot. Autom. Lett. 5, 3699–3706 (2020).

 24. Magana, O. A. V. et al. Fast and continuous foothold adaptation for dynamic locomotion through cnns. IEEE Robot. Autom. Lett. 
4, 2140–2147 (2019).

 25. Karkowski, P. & Bennewitz, M. Prediction maps for real-time 3d footstep planning in dynamic environments. In 2019 International 
Conference on Robotics and Automatio (ICRA), 2517–2523 (IEEE, 2019).

 26. Geisert, M. et al. Contact planning for the anymal quadruped robot using an acyclic reachability-based planner. In Annual Confer-
ence Towards Autonomous Robotic Systems, 275–287 (Springer, 2019).

 27. Kohonen, T. & Maps, S.-O. Springer series in information sciences. Self-Organ. Maps 30, 25 (1995).
 28. Fritzke, B. A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. 25, 625–632 (1995).
 29. Fritzke, B. Unsupervised clustering with growing cell structures. In Proceedings of of International Joint Conference on Neural 

Networks, vol. 2, 531–536 (1991).
 30. Toda, Y. et al. Real-time 3d point cloud segmentation using growing neural gas with utility. In Human System Interactions (HSI), 

2016 9th International Conference on, 418–422 (IEEE, 2016).
 31. Saputra, A. A. et al. Evolving a sensory-motor interconnection structure for adaptive biped robot locomotion. IEEE Trans. Cogn. 

Dev. Syst. 11, 244–256 (2019).
 32. Saputra, A. A., et al. Evolving a sensory-motor interconnection for dynamic quadruped robot locomotion behavior. In 2018 IEEE/

RSJ International Conference on Intelligent Robots and Systems (IROS), 7089–7095 (IEEE, 2018).
 33. Gibson, J. J. The theory of affordances. Hilldale, USA 1, 2 (1977).
 34. Turvey, M. T. Affordances and prospective control: An outline of the ontology. Ecol. Psychol. 4, 173–187 (1992).
 35. Gibson, J. J. The theory of proprioception and its relation to volition: An attempt at clarification. In Reasons for Realism: Selected 

Essays of James J. Gibson 385–388 (1982).
 36. Turvey, M. T. & Shaw, R. E. Toward an ecological physics and a physical psychology. In The Science of the Mind: 2001 and Beyond 

144–169 (1995).
 37. Pauly, M., Gross, M. & Kobbelt, L. P. Efficient simplification of point-sampled surfaces. In Proceedings of the Conference on Visu-

alization’02, 163–170 (IEEE Computer Society, 2002).
 38. Weinmann, M., Jutzi, B. & Mallet, C. Feature relevance assessment for the semantic interpretation of 3d point cloud data. ISPRS 

Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 5, 1 (2013).
 39. Rusu, R. B. Semantic 3d object maps for everyday manipulation in human living environments. KI-Künstliche Intell. 24, 345–348 

(2010).
 40. Saputra, A. A., Toda, Y., Botzheim, J. & Kubota, N. Neuro-activity-based dynamic path planner for 3-d rough terrain. IEEE Trans. 

Cogn. Dev. Syst. 10, 138–150 (2018).
 41. Saputra, A. A. & Kubota, N. Centered learning model in omni-directional controller of neural oscillator based biped locomotion. 

In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8 (IEEE, 2017).
 42. Aulinas, J., Petillot, Y. R., Salvi, J. & Lladó, X. The slam problem: A survey. CCIA 184, 363–371 (2008).
 43. Cole, D. M. & Newman, P. M. Using laser range data for 3d slam in outdoor environments. In Proceedings 2006 IEEE International 

Conference on Robotics and Automation, 2006. ICRA 2006, 1556–1563 (IEEE, 2006).
 44. Deschaud, J.-E. Imls-slam: scan-to-model matching based on 3d data. In 2018 IEEE International Conference on Robotics and 

Automation (ICRA), 2480–2485 (IEEE, 2018).
 45. Palomer, A., Ridao, P. & Ribas, D. Inspection of an underwater structure using point-cloud slam with an auv and a laser scanner. 

J. Field Robot. 36, 1333–1344 (2019).
 46. Besl, P. J. & McKay, N. D. Method for registration of 3-d shapes. In Sensor fusion IV: Control Paradigms and Data Structures, vol. 

1611, 586–606 (International Society for Optics and Photonics, 1992).
 47. Nüchter, A., Lingemann, K., Hertzberg, J. & Surmann, H. 6d slam-3d mapping outdoor environments. J. Field Robot. 24, 699–722 

(2007).
 48. Ohno, K., Nomura, T. & Tadokoro, S. Real-time robot trajectory estimation and 3d map construction using 3d camera. In 2006 

IEEE/RSJ International Conference on Intelligent Robots and Systems, 5279–5285 (IEEE, 2006).

https://doi.org/10.3389/fphys.2019.00924
https://doi.org/10.3389/fphys.2019.00924


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16222  | https://doi.org/10.1038/s41598-022-19599-2

www.nature.com/scientificreports/

 49. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C. & Burgard, W. Octomap: An efficient probabilistic 3d mapping framework 
based on octrees. Auton. Robot. 34, 189–206 (2013).

 50. Zeng, M., Zhao, F., Zheng, J. & Liu, X. Octree-based fusion for realtime 3d reconstruction. Graph. Models 75, 126–136 (2013).
 51. Vespa, E. et al. Efficient octree-based volumetric slam supporting signed-distance and occupancy mapping. IEEE Robot. Autom. 

Lett. 3, 1144–1151 (2018).
 52. Bloesch, M., et al.. Learning meshes for dense visual slam. In Proceedings of the IEEE International Conference on Computer Vision, 

5855–5864 (2019).
 53. Saputra, A. A. & Kubota, N. Centered learning model in omni-directional controller of neural oscillator based biped locomotion. 

In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8. https:// doi. org/ 10. 1109/ SSCI. 2017. 82853 34 (2017).

Acknowledgements
This work was partially supported by JST [Moonshot RnD][Grant Number JP- MJMS2034].

Author contributions
A.S. and S.M. contributed to the design and development of mechanical and robot controllers. A.S., K.W., and 
N.K. contributed to cognitive model development. A.S. and N.K. contributed to the neural-based robot control-
ler. All authors contributed to writing and refining the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 19599-2.

Correspondence and requests for materials should be addressed to A.A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1109/SSCI.2017.8285334
https://doi.org/10.1038/s41598-022-19599-2
https://doi.org/10.1038/s41598-022-19599-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multi-scopic neuro-cognitive adaptation for legged locomotion robots
	Issue in fast adaptability toward external input. 
	Results
	Result on microscopic level. 
	Result on mesoscopic level. 
	Result on macroscopic level. 

	Discussion
	Microscopic level. 
	Macroscopic level. 
	Mesoscopic level toward multiscopic integration. 

	Methods
	Microscopic adaptation in locomotion behavior. 
	Dynamic attention module. 
	Affordances detection module. 
	Affordances effectivity fit. 
	Central pattern generation module. 

	Macroscopic neuro-cognitive adaptation. 
	Mesoscopic to multiscopic adaptation. 
	Environmental reconstruction and localization. 
	Behavior coordination module. 


	References
	Acknowledgements


