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1  |  INTRODUC TION

Age- related diseases are the main causes of death and disabil-
ity (Austad, 2016; Gladyshev & Gladyshev, 2016; Olshansky 
et al., 2007). These diseases include cardiovascular disease, cancer, 
Alzheimer's disease, diabetes, kidney failure, and osteoarthritis. 
They affect different organ systems and have different origins, in-
cluding mutations, dysregulated homeostasis, fibrosis, and degen-
erative processes.

Despite the differences between these pathologies, they have 
certain universal features in terms of their incidence rate. The inci-
dence rate of a disease is defined as the number of new cases per 
year divided by the size of the population (Rothman, 2012). The in-
cidence rate of each age- related disease rises roughly exponentially 
with age (Belikov, 2019; Zenin et al., 2019). For many of the diseases, 
the incidence rate then drops at very old ages. Interestingly, the 
slope of the rising part of the incidence curve is similar for many age- 
related diseases, in the range of 6– 8% per year (Belikov, 2019; Zenin 

Received:	20	July	2020  | Revised:	2	January	2021  | Accepted:	9	January	2021
DOI: 10.1111/acel.13314  

O R I G I N A L  A R T I C L E

Senescent cells and the incidence of age- related diseases

Itay Katzir1  |   Miri Adler1,2 |   Omer Karin1 |   Netta Mendelsohn- Cohen3 |   Avi Mayo1 |   
Uri Alon1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

1Department of Molecular Cell Biology, 
Weizmann Institute of Science, Rehovot, 
Israel
2Broad Institute of Massachusetts 
Institute of Technology and Harvard, 
Cambridge, MA, USA
3Department of Computer Science, 
Weizmann Institute of Science, Rehovot, 
Israel

Correspondence
Uri Alon, Department of Molecular Cell 
Biology, Weizmann Institute of Science, 
Rehovot 76100, Israel.
Email: uri.alon@weizmann.ac.il

Funding information
European Research Council, Grant/Award 
Number: ERC- Syg 713649

Abstract
Age- related diseases such as cancer, cardiovascular disease, kidney failure, and osteo-
arthritis have universal features: Their incidence rises exponentially with age with a 
slope of 6– 8% per year and decreases at very old ages. There is no conceptual model 
which explains these features in so many diverse diseases in terms of a single shared 
biological factor. Here, we develop such a model, and test it using a nationwide medi-
cal record dataset on the incidence of nearly 1000 diseases over 50 million life- years, 
which we provide as a resource. The model explains incidence using the accumulation 
of senescent cells, damaged cells that cause inflammation and reduce regeneration, 
whose level rise stochastically with age. The exponential rise and late drop in inci-
dence are captured by two parameters for each disease: the susceptible fraction of 
the population and the threshold concentration of senescent cells that causes disease 
onset. We propose a physiological mechanism for the threshold concentration for 
several disease classes, including an etiology for diseases of unknown origin such as 
idiopathic pulmonary fibrosis and osteoarthritis. The model can be used to design 
optimal treatments that remove senescent cells, suggeting that treatment starting at 
old age can sharply reduce the incidence of all age- related diseases, and thus increase 
the healthspan.
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et al., 2019) (Figure 1a). This similarity hints at a common biological 
process of aging that governs the onset of these different diseases 
(Finch & Kirkwood, 2000; Franceschi et al., 2018; Justice et al., 2018; 
Kaeberlein, 2017; Kennedy et al., 2014; Kirkland, 2016; Kirkwood, 
2005; Kritchevsky & Justice, 2020; Olshansky et al., 2007). It is thus 
of interest to develop theories for the origin of the incidence of age- 
related diseases, in order to detect such a common process.

To explain the incidence curves, theoretical work has focused 
on specific classes of diseases, primarily on cancer. An early the-
ory called the multiple- hit theory (Armitage & Doll, 1954; Nordling, 
1953), noted that cancer often depends on several mutations in the 
same cell. The probability that a cell acquires all these mutations 
rises with age as a power law. Thus, according to this model, the 
incidence of cancer I(t) goes as I ∼ At�. The multiple- hit model has 
two parameters, an amplitude A and an effective mutation number �
. It provides reasonable fits to the incidence curves of many cancers 
(Armitage & Doll, 1954; Nordling, 1953). However, it cannot explain 
cancers based on a single mutational event, such as chronic my-
eloid leukemia (CML) that depends on a single translocation (Druker 
et al., 2001), which also show an exponentially rising incidence with 
age (Palmer et al., 2018). It also does not explain the slowdown or 
drop in incidence at very old ages. This drop is usually explained in 

epidemiology as due to population heterogeneity (e.g., certain peo-
ple are at a lower risk to begin with) or cohort effects (Burch, 1965; 
Hanson et al., 2015; Hawkes et al., 2012; Horiuchi & Wilmoth, 1998). 
Other theories suggest that the drop may arise from a slowdown in 
stem cell divisions leading to fewer mutational events at very old 
ages and thus lower cancer incidence (Tomasetti et al., 2019).

A more recent theory for the age- related incidence of cancer and 
infectious diseases is based on the hypothesis that impairment of 
the adaptive immune system with age causes the observed expo-
nential increase of incidence rate (Palmer et al., 2018). Palmer et al. 
assume that the rate of decline of the thymus with age is the main 
temporal process that drives incidence. The thymus is the source of 
T- cells that remove cancer cells and infected cells and is thought to 
decline exponentially with age. Palmer et al. model the growth and 
removal of cancer cells and estimate the probability to reach a criti-
cal number of cancer cells, in which the cancer can build a microen-
vironment that avoids further removal. The incidence rate of cancer 
in this model has three parameters, I ∼ A∕ (ee

− �(t − �)

− 1), where the 
thymus decay rate is � = 0.044[year− 1 ] , the amplitude is A, and � is 
the “pivot age” which marks a transition from lower to higher risk. 
This model, called IMII, describes the incidence curves of many can-
cers and infection reasonably well. Like the multiple- hit model, this 

F I G U R E  1 Diseases	caused	by	threshold-	crossing	of	a	parameter	affected	by	senescent	cells	are	predicted	to	have	an	exponential	
incidence curve with a decline at old ages. (a) Incidence curves for several age- related diseases, from (Public Health Agency of Canada, 
2011; National Cancer Institute et al., 2018; Navaratnam et al., 2011; Oliveria et al., 1995). (b) We assume that disease onset occurs when 
a physiological parameter ϕ exceeds a threshold, ϕc. (c) ϕ is a rising function of senescent- cell level, X, so that ϕc is crossed when X exceed 
a disease threshold Xc. (d) The senescent- cell levels of three susceptible individuals simulated by the SR model. The disease arises as a first- 
passage- time process when X crosses Xc. (e) In the three- parameter model, the threshold Xc for each person in the susceptible fraction of the 
population is drawn from a Gaussian distribution with mean Xc and standard deviation �. (f) Effect of the model parameters on the incidence 
curve. The parameters are Xc = 14, s = 0.05 (black), Xc = 14, s = 0.15 (dashed red), Xc = 16, s = 0.05 (dashed black), Xc = 14, s = 0.05, � = 3 
(dashed green)
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model does not attempt to explain the drop in incidence at very old 
ages.

The existing explanations for the incidence of age- related dis-
eases seem to focus primarily on cancer. They do not apply to other 
classes of diseases such as fibrotic and metabolic diseases, in which 
the role of adaptive immunity or mutational hits are thought to be 
less central. Some age- related diseases do not currently have a clear 
mechanism for their origin, such as idiopathic pulmonary fibro-
sis (IPF). Thus, it is of interest to develop a theory that can explain 
the incidence of diverse classes of age- related diseases based on a 
shared biological process (Santra et al., 2019).

Here, we develop such a theory, based on a process which has 
been shown in recent years to be causal for a wide range of age- 
related pathologies: the accumulation of senescent cells (Baker et al., 
2016; Kirkland, 2016; Xu et al., 2018). Senescent cells are damaged 
cells that stop dividing and accumulate in the body with age. They 
secrete factors, collectively known as SASP (Senescence Associated 
Secretion Profile) (Basisty et al., 2020; Coppé et al., 2010; Tchkonia 
et al., 2013), which cause inflammation and reduce progenitor cell 
division. Removing senescent cells from mice extends life span and 
ameliorates many age- related diseases (McHugh & Gil, 2018; Short 
et al., 2019) including cancer (Short et al., 2019), Alzheimer's disease 
(Zhang et al., 2019), osteoporosis (Kim et al., 2017), renal dysfunc-
tion (Baker et al., 2016), cardiovascular disease (Childs et al., 2016; 
McHugh & Gil, 2018), metabolic diseases (Palmer et al., 2015), idio-
pathic pulmonary fibrosis (Schafer et al., 2017a), and osteoarthritis 
(Jeon et al., 2017).

Recent work by Karin et al. (Karin et al., 2019; Karin & Alon, 
2020) studied senescent- cell dynamics with age, and used these 
dynamics to explain the distribution of death times in mice and hu-
mans. Karin et al. showed that senescent cells are produced and re-
moved with a half- life of days in young mice, but their removal rate 
slows down in old mice to a half- life of weeks. These data, together 
with longitudinal measurement of senescent cells in mice (Burd et al., 
2013), were used to develop a stochastic model for senescent- cell 
production and removal, called the saturated- removal (SR) model. 
The SR model shows that senescent cells slow their own removal 
rate, which leads to wide variations between individuals in the num-
ber of senescent cells at old ages. Assuming that death occurs when 
senescent cells exceed a threshold (following Sacher (Sacher, 1956)), 
Karin et al showed that the SR model explains the distribution of 
times of death. To do so, they computed the distribution of the first- 
passage- time of senescent cells across the threshold. This provides 
the well- known Gompertz law (Olshansky et al., 2007), in which risk 
of death rises exponentially with age and slows at very old ages.

Since senescent cells are implicated in many age- related dis-
eases, and since a threshold- crossing event of senescent cells in 
the SR model has an exponentially rising probability with age, we 
asked whether age- related diseases can be modeled as a threshold- 
crossing phenomenon in which senescent cells exceed a disease- 
specific threshold (Belikov, 2019). To explain the drop in incidence 
at very old ages, we add to this model the epidemiological notion 
of heterogeneity (Burch, 1965; Hanson et al., 2015; Hawkes et al., 

2012; Horiuchi & Wilmoth, 1998), in which some people are more 
susceptible to the disease than others. We show that the SR model 
with differential susceptibility provides a model with 2 or 3 free 
parameters that can explain a wide range of age- related incidence 
curves. This includes the incidence of many types of cancer, major 
fibrotic diseases, and hundreds of other age- related disease states 
obtained from a large- scale medical record database with 50 million 
person- years (Balicer & Afek, 2017), as well as from UKbiobank. We 
provide specific biological interpretations for the threshold mecha-
nism for classes of disease, providing putative etiologies for diseases 
with unknown origin, such as IPF and osteoarthritis.

This conceptual picture explains why different diseases have 
similar exponential rise in incidence and a drop at very old ages, 
based on a shared biological process, the accumulation of senes-
cent cells. It also can be used to optimize the frequency of treat-
ments that eliminate senescent cells, showing that even infrequent 
treatment starting at old age can reduce the incidence of a wide 
range of diseases.

2  |  RESULTS

2.1  |  Diseases caused by threshold- crossing of a 
parameter affected by senescent cells are predicted 
to have an exponential incidence curve with a decline 
at old ages

In this section, we present a general mechanism that can lead to 
the observed incidence curves. The next sections provide exam-
ples of classes of diseases, which show the hallmarks of this general 
mechanism.

For clarity, we begin by spelling out the model and then de-
scribe the reasoning behind it. The model has two versions, a two- 
parameter and a three- parameter version. In the two- parameter 
model, each disease has two parameters: the fraction of the popula-
tion that is susceptible to the disease s, and the disease threshold Xc.  
For each individual, one simulates senescent- cell abundance using 
the	SR	model.	If	the	individual	is	not	susceptible	(probability	1	−	s), 
the disease does not occur. If the individual is susceptible (probabil-
ity s), disease onset occurs when the senescent- cell abundance first 
crosses the threshold, X (t)>Xc. Thus, each disease is characterized 
by two parameters, s and Xc.

The three- parameter version posits a distribution of disease 
thresholds instead of a single threshold Xc. The disease threshold for 
each susceptible individual is drawn from a normal distribution with 
mean Xc and standard division �. Thus, each disease is characterized 
by three parameters: Xc, s, and �.

The reasoning for the model is as follows. We will show that a 
disease has an approximately exponential incidence curve with age, 
which declines at very old ages, in the following situation:

(i)  Onset of the disease occurs when a physiological parameter ϕ 
exceeds a threshold, ϕc (Figure 1b).
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(ii) Senescent cells are a causal factor for the disease: The param-
eter ϕ increases due to the total body senescent- cell level X. 
Increasing levels of X can thus cause ϕ to exceed its threshold 
ϕc. The threshold is crossed when X reaches a level Xc, called the 
disease threshold (Figure 1c).

(iii) The disease threshold Xc varies between people due to genetics 
and environment.

Total body senescent- cell level X can affect ϕ in several ways 
(point ii above). They secrete SASP into the circulation which sends 
inflammatory signals and negatively impacts stem- cell proliferation 
(Chang et al., 2016; Yosef et al., 2016). High senescent- cell levels 
may also saturate or exhaust the immune cells that remove them, 
reducing total body immune capacity. Senescent cells also have local 
effects in each organ. We discuss specific mechanisms below for se-
lected diseases.

When the above conditions are met, the disease arises in a 
given person when senescent- cell level X crosses the threshold Xc 
(Figure 1d). Thus, incidence (onset event) of the disease can be de-
scribed as a first- passage- time problem, asking when the stochastic 
process of senescent- cell accumulation first crosses the threshold 
Xc. It is likely that X must exceed the threshold for sufficient time 
for the disease to be expressed symptomatically. In practice, once 
X crosses the threshold, it tends to remain above the threshold for 
extended periods of time (SI section 1). Thus, a first- passage- time 
problem is a reasonable approximation for disease onset.

We assume that the SR model of Karin et al gives the dynamics 
ofX. In this model, X is governed by a stochastic differential equa-
tion: dX∕dt = �t −

�X

� +X
+
√
2��, with a production rate that rises with 

age �t, a saturating removal rate �X

� +X
, and noise modeled as a white- 

noise term 
√
2��. Model parameters for humans were provided in 

Karin et al (parameters given in SI section 2, we assume that all indi-
viduals have the same parameters). Simulations show stochastically 
rising trajectories of senescent cells, X (Figure 1d).

Karin et al also solved the first- passage- time problem, the dis-
tribution of times in which Xfirst crosses a threshold. The solution 
is an exponential incidence curve that slows at very old ages. The 
probability of crossing the threshold Xc rises exponentially with 
age, e�t, with a slope of approximately � ≈

�Xc

�
, where � and � are the 

senescent- cell production and noise parameters. This explains the 
exponential rise of incidence. Each threshold Xc provides a different 
exponential slope. The threshold for death in Karin et al was esti-
mated to be Xc = Xdeath = 17 (the units are such that X in young in-
dividuals is X = 1, see (Karin et al., 2019)). Here, we model different 
disease thresholds as values of Xc which do not exceed Xdeath.

The disease threshold explains the exponential rise of incidence 
but does not provide the decline at very old ages. To explain the 
decline of incidence at old ages, we add the notion of population 
heterogeneity from epidemiology (Burch, 1965; Hanson et al., 2015; 
Hawkes et al., 2012; Horiuchi & Wilmoth, 1998). The idea is that 
people differ in their risk for a given disease. To model this, we 
assume that only a fraction s of the population has a low disease 
threshold, due to genetic and environmental factors. We call this 

the susceptible fraction (Figure 1d,e). The remaining population has 
high values of the disease threshold that are not reached during nor-
mal aging. We call these the non- susceptible fraction of the popula-
tion. Thus, at very old ages, most of those that are susceptible have 
already succumbed to the disease. At these ages, the population is 
dominated by the non- susceptible fraction. This results in a decline 
in incidence rate (Figure 1f).

The simplest version of the model therefore has two free pa-
rameters for each disease: the susceptible fraction s and the disease 
threshold Xc (Figure 1d). The parameters of the SR model for the 
senescent cells stochastic process are considered to be fixed and 
are taken from ref (Karin et al., 2019). Analytical formula for the inci-
dence as a function of Xc and s are provided in Methods (Equation 1). 
Software for determining these parameters from incidence data is 
also provided (Methods).

A slightly more elaborate model assumes that the threshold Xc
varies from person to person within the susceptible population. We 
use a simple three- parameter version that assumes a Gaussian dis-
tribution of disease thresholds with mean Xc and standard deviation 
� (Figure 1e). Thus, the three parameters are s, Xc and � (incidence is 
given by Equation 2 in Methods).

The effects of the parameters on the incidence curve are shown 
in Figure 1f. Increasing susceptibility s raises the incidence curve, 
because more people get the disease. Increasing Xc shifts incidence 
to older ages because it takes longer for senescent cells level to cross 
the disease threshold. It also shifts the age of maximal incidence to 
older ages. In the three- parameter model, increasing � decreases the 
slope of the incidence curve since it allows low threshold values Xc 
that can be reached at younger ages.

2.2  |  The model describes well the 
incidence of age- related diseases from a nationwide 
medical database

To test the model requires comprehensive incidence data. To ob-
tain such a global view of age- related diseases, we provide and 
analyze incidence data from a large medical record database from 
Clalit health services (Balicer & Afek, 2017). This dataset includes 
about half of the Israeli population over a period of 14 years 
(2005– 2018) totaling about 50 million life- years, with broad so-
cioeconomic and ethnic representation. We analyzed disease cat-
egory codes (ICD9, level two codes) found in the records of at least 
104 people, totaling 877 disease category codes (See SI section 3). 
To define age- related diseases, we computed the average slope of 
the incidence curve in the age range of 30– 80 years. We find 375 
codes for female and 444 codes for male that are at least mildly 
age- related, defined by an average incidence slope of more than 
3% per year. These include 165 codes for female and 232 codes for 
male that are strongly age- related, defined by incidence slope of 
more than 7% per year.

The two- parameter model describes well the strongly age- 
related ICD9 codes: 90% of the codes show R2 > 0.9 (<R2> = 0.95, 
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median R2 = 0.97, Figure 2d,e). The typical disease threshold values 
Xc range between 12 and 16 (compared with X levels of about 1 in 
young individuals). These diseases include some of the most com-
mon age- related conditions such as Parkinson's disease, glaucoma, 
congestive heart failure, end- stage renal disease, liver cirrhosis, cat-
aract, hypertension, and osteoarthritis (Figure 2a, Figure S2). The R2 
values as function of the slope of the incidence curve for both males 
and females are shown in Figure 2d,e.

The three- parameter model improves on the two- parameter 
model by also describing the mildly age- related disease code in-
cidence: 94% of the codes show R2 > 0.9 (<R2> = 0.96, median 
R2 = 0.98). The typical width of the Xc distribution in these cases is 
about � = 1– 2. Examples include type- 2 diabetes, acute pancreatitis, 
and obstructive chronic bronchitis (Figure 2b). Many of these dis-
eases have strong risk factors (nutrition, smoking, and so on) which 
may contribute to the variance of Xc in the population. The best- fit 

parameters and R2 values for all disease codes are provided in sup-
plementary files S1– S2.

The model does not describe well the incidence of a few com-
mon age- related diseases. A notable example is osteoporosis in 
women (Figure 2c). The incidence curve rises sharply after age 50, 
in a way that the model cannot capture. Interestingly, osteoporosis 
in men is well described by the model (Figure 2c). This suggests that 
effects such as menopause- related changes go beyond the current 
framework.

Another case in which the model does not capture the inci-
dence curve is Alzheimer's disease and dementia. These diseases 
have an exceptionally large slope of about 20% per year. The model 
can only explain this large slope with a disease threshold Xc that 
exceeds the threshold for mortality. Figure 2c shows the best fit 
with the maximal Xc values equal to that of mortality (Xdeath = 17),  
showing an underestimate of the slope. This suggests that the 

F I G U R E  2 The	model	describes	the	incidence	curves	of	a	wide	range	of	age-	related	diseases.	(a)	The	two-	parameter	(2p)	and	three-	
parameter (3p) models fit the incidence curves of many age- related diseases. Data from Clalit ICD9 codes for females (similar results for 
males in Figure S2). (b) Examples where the three- parameter model provides an excellent fit, but not the two- parameter model. (c) The 
model does not describe well the incidence of osteoporosis in women (left panel). It cannot capture the incidence curve of Alzheimer disease 
and dementia using the maximal value of Xc = Xdeath = 17; the fit is improved with Xc ≈ 20 for dementia and Xc ≈ 23 for Alzheimer's disease 
(black line). (d) Coefficient of determination R2 for fits of the two- parameter (2p) and three- parameter (3p) models to incidence of ICD9 
codes as a function of mean slope of incidence between ages 30 and 80. (e) Percent of ICD9 codes with R2 > 0.9 as a function of slope. Inset: 
number of ICD9 codes as a function of slope. Error bars are 95% CI
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age- related factor X in these brain diseases might be distinct from 
total body senescent- cell level (Bussian et al., 2018; Zhang et al., 
2019). A better fit is achieved when allowing Xc to exceed 17 (black 
lines in Figure 2c).

2.3  |  The model also captures disease incidence 
from UKBiobank

As an independent test, we considered incidence curves from a sec-
ond large dataset, UKBiobank (Sudlow et al., 2015). Here, 202,333 
men and 240,260 women reported the age of incidence of 445 
diseases. We considered the 79 (female) and 61 (male) diseases re-
ported by more than 1000 people. Of these, 43 (male) and 54 (fe-
male) are at least mildly age- related and 25 (male) and 28 (female) are 
strongly age- related, as defined above.

In UKBiobank data, as in the Clalit data, the two- parameter 
model describes well the strongly age- related ICD9 codes: 92% of 
the codes show R2 > 0.9 (<R2> = 0.97, median R2 = 0.97). The three- 
parameter model also describes the mildly age- related diseases: 96% 
of the codes show R2 > 0.9 (<R2> = 0.98, median R2 = 0.98). The 
model parameters, R2 values, and the incidence curves provided in 
supplementary files S3– S4.

2.4  |  Incidence of idiopathic pulmonary 
fibrosis and osteoarthritis can be explained by 
threshold- crossing of the ratio of progenitor cell 
removal to proliferation rates

We next focus on several classes of pathologies and provide, for 
each case, a specific mechanism for the threshold- crossing assumed 
in the model. We begin with two well- known age- related diseases, 
idiopathic pulmonary fibrosis (IPF) and osteoarthritis (OA). Both are 
progressive diseases whose origin is currently debated. We will sug-
gest a physiological parameter ϕ for these diseases and show how 
senescent- cell level can affect this parameter.

Both diseases occur in tissues, which, for structural reasons, are 
constrained to have progenitor cells that are exposed to damage 
(Figure 3a). We call this situation a “frontline” tissue. IPF occurs in the 
lung alveoli, which are one cell- layer thick, to allow for efficient gas 
exchange. The progenitor cells, called AT2 cells, lie within the same 
layer as the differentiated cells, called AT1 cells (Desai et al., 2014; 
Logan & Desai, 2015; Nabhan et al., 2018) (Figure 3b). Thus, progen-
itors are as exposed to damage as their differentiated progeny.

Another frontline tissue relates to osteoarthritis (OA), which 
occurs in chondrocytes in joints such as knees and hips. Here, pro-
genitors are at the synovial surface of the joint (superficial zone) 
(Dowthwaite et al., 2004; Jiang & Tuan, 2015) and face the same 
amount of mechanical damage as the differentiated chondrocytes 
(Figure 3c).

Frontline tissues can be contrasted with tissues in which stem 
cells are protected from damage, such as bone marrow in which 

hematopoietic stem cells are protected inside bones, skin in which 
stem cells lie below several layers of epithelial cells, or the intestine, 
where stem cells reside at the bottom of the crypt, protected from 
luminal contents.

In IPF, lung alveolar cell populations decline, and lung function 
drops to lethal levels within few years of onset (Raghu et al., 2002). 
Similarly, in OA, cartilage is progressively lost over many years in 
certain regions of the joint (Vincent et al., 2012). In this section, we 
provide a general mechanism that can intrinsically cause a collapse 
of such frontline tissues with age and explain the incidence curves 
of these diseases.

In frontline tissues, as in other tissues, the progenitor cells 
must proliferate to renew their own numbers as well as to pro-
vide differentiated cells (Figure 3d). They must maintain homeo-
stasis, namely, proper amounts of progenitor and differentiated 
cells. Homeostasis is maintained by feedback signals secreted 
from the cells that act on the proliferation and differentiation rates 
(Figure 3d). For example, differentiated cells often signal with 
TGF- β to affect the differentiation rate (Chen et al., 2018; Zhao 
et al., 2013).

In frontline tissues, homeostasis is harder to achieve than in tis-
sues in which progenitor cells are protected, because of the higher 
rate of removal of progenitor cells. No matter what the feedback 
circuits for homeostasis are, a catastrophe happens when progen-
itor removal rate r1 exceeds the maximal progenitor proliferation 
rate p (for proof see SI section 5). In this case, there are not enough 
progenitor cell divisions to populate the tissue and the tissue col-
lapses (Figure 3e). The rate of this collapse depends on the removal 
rates of the cells, and thus can be different in different tissues. 
After the collapse, tissue repair cannot proceed by regeneration 
and instead must rely on processes such as fibrosis, migration, and 
metaplasia, but this repair reduces tissue function and pathology 
occurs.

The relevant physiological parameter is thus ϕ = r1/p, the ratio of 
removal and proliferation rate of the progenitor cells. Disease onset 
occurs when ϕ exceeds ϕc = 1 (Figure 3e). This is criterion (i) of the 
model.

Senescent cells affect proliferation and removal in a way that 
tends to increase ϕ (Figure 3f). Senescent cells slow down progeni-
tor proliferation due to the factors in the SASP (Coppé et al., 2010) 
from both local and systemic senescent cells. Senescent cells can, 
in some tissues, also disrupt the extracellular matrix and increase 
removal rate r1 (Jeon et al., 2018). Thus, when senescent cells cross 
a threshold Xc, tissue collapse is predicted to occur in the susceptible 
population (Figure 3g). Such a collapse occurs in simulations of tissue 
homeostasis circuits coupled with stochastic senescent cell dynam-
ics (Figure 3h). This is criterion (ii) for the model, providing a basis for 
disease onset when X > Xc.

Indeed, the incidence of IPF (Navaratnam et al., 2011) and OA 
(Reyes et al., 2016) is well described by the two- parameter model 
(Figure 3i, Figure 2a, R2 > 0.95). The model also describes well in-
cidence curves for OA in different joints (Figure S3, <R2> = 0.96, 
R2 > 0.93).
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The present frontline scenario may explain how IPF and osteoarthri-
tis begin. It makes two main predictions: That diseases should start in 
the part of the tissue with largest removal rate, and that environmental 
and genetic risk factors should increase the removal rate of progenitors.

The first prediction is met by both IPF and OA. Both diseases 
occur in the part of the tissue with largest mechanical stress, and 
hence highest removal rate r1. OA occurs in the part of the joint that 
bears the most weight (Vincent et al., 2012), and IPF begins at the 
outside of the lung (Raghu et al., 2011) which has highest alveolar 
expansion. This agrees with the theory, because at these locations ϕ 
is highest and most likely to exceed ϕc.

The second prediction is also met in OA and IPF: The susceptible 
population includes those bearing genetic or environmental factors that 
increase removal rate of progenitor cells in the specific tissue. In IPF, 
genetic factors include genes needed for AT2 function such as surfac-
tant and telomerase (Kropski et al., 2015), and mucin genes that, when 
mutated, impair particle removal by the bronchi and increase damage to 
alveolar cells (Yang et al., 2015). These factors increase r1, and thus in-
crease ϕ. Environmental factors include smoking and damaging agents, 
which increase cell removal in the alveoli. In OA, high BMI and asym-
metry in weight distribution of the joints are risk factors. These factors 
increase the stress on the joints and increase r1, increasing ϕ.

F I G U R E  3 Threshold-	crossing	of	the	ratio	of	progenitor	removal	to	proliferation	can	explain	the	incidence	of	idiopathic	pulmonary	
fibrosis and osteoarthritis. (a) General scheme of “frontline” tissues, in which stem or progenitor cells, S, are as exposed to damage as their 
differentiated progeny, D. (b) The lung alveoli progenitor AT2 cells lie within the same layer as the differentiated AT1 cells. (c) In joints, 
cartilage- derived stem/progenitor cells (CSPC) are at the superficial zone and face the same amount of damage as the differentiated 
chondrocytes (CH). (d) Homeostasis is maintained by signals secreted from the cells that act on the proliferation and differentiation rates. 
(e) When the physiological parameter ϕ = r1/p, the ratio of progenitor removal and proliferation rates, exceeds ϕc = 1, the number of cells in 
the tissue, S + D, crashes. (f) Senescent cells slow progenitor proliferation due to SASP from both local and systemic senescent cells (SnC). 
Senescent cells can also disrupt the extracellular matrix and increase removal rate r1. (g) When senescent cells cross a threshold Xc, tissue 
collapse is predicted to occur. (h) Simulated tissue dynamics show that when senescent cells cross a threshold, the number of differentiated 
cells collapse, triggering the onset of the disease. (i) The model fits the incidence curves of IPF (Navaratnam et al., 2011) and OA (knee and 
hip) well. (j) Incidence of knee OA stratified by BMI, see Figure S4 for hip OA. (k) Effect of BMI on best- fit parameters for knee OA incidence, 
with s in percent. OA data from (Reyes et al., 2016)

(a) (d) (f) (h)

(g)(e)

(b)

(c)

(i) (j) (k)
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Indeed, the present model can describe incidence curves of sub-
populations with different risk factors. We analyzed the incidence 
of OA in knee and hip in populations with different BMI from (Reyes 
et al., 2016). We find that the incidence curves are well described by 
the two- parameter model and that the main effect of BMI is on the 
susceptibility parameter s, which varies about 3- fold between BMI 
below 25 and above 35 (Figure 3k, for hip OA see Figure S4). The 
threshold Xc did not vary appreciably with BMI. Similar results are 
obtained from Clalit data (Figure S5).

Notably, this picture is independent of the precise feedback 
loops that maintain homeostasis (SI section 7). To demonstrate this, 
we simulated a wide range of feedback mechanisms that can pro-
vide homeostasis to a tissue with a progenitor cell S and a differ-
entiated cell D (Kunche et al., 2016; Lander et al., 2009; Yang et al., 
2015b, 2017). We scanned all possible combinations of feedback 
loops (the dashed arrows in Figure 3d, each can be positive, nega-
tive, or zero, leading to 81 possible mechanisms) and found a class 

of 17 homeostatic mechanisms that provide stable cell populations 
(Figure S7). We next simulated senescent- cell stochastic trajecto-
ries, and modeled the effects of senescent cells as a reduction in 
S proliferation rate (SI section 7, Figure S8). The incidence of tissue 
crash events, in which D cells populations collapse (Figure 3h, see 
also Figure S8,9), is well described by the two- parameter model, in 
excellent agreement with the observed incidence.

2.5  |  Cancer incidence can be explained by 
threshold- crossing of the ratio of cancer growth rate 
to removal rate

We next consider the case of cancer and analyze what physiological 
parameter ϕ might provide the incidence curves for different can-
cers. Cancer cells arise continuously in the body due to accumula-
tion of mutations (Omenn, 2016). These mutant cells are removed by 

F I G U R E  4 Cancer	incidence	can	be	explained	by	threshold-	crossing	of	the	ratio	of	cancer	growth	rate	to	removal	rate.	(a)	Cancer	cells	
C proliferate at rate p, and are removed at rate r. With age, rising senescent- cell (SnC) levels cause immune saturation by taking up some of 
the removal capacity of NK cells and macrophages (Karin et al., 2019). Inflammation driven by senescent cells increases proliferation p for 
some cancer types. (b) Both effects, raising p and lowering removal r, cause the parameter ϕ to increase, ϕ(X) = p(X)/r(X). Thus, there exists a 
threshold Xc where ϕ exceeds the critical value of 1 and cancer cells proliferate more than they are removed, reaching a clinically detectable 
disease. (c) The models fit various types of cancer very well. (d) Example of cancer types in which the three- parameter model provides 
an excellent fit but the two- parameter model does not. (e) Example of cancer types not described by the models. In the case of Hodgkin 
Lymphoma, the model describes well the incidence curve above age 50 (black line)

(a)

(b)

(c)

(d)

(e)

xC

immune 
satura�on

SnC

prolifera�on, p

removal, r 
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immune surveillance, primarily by NK cells and macrophages, and at 
later stages by T cells. If the cancer cells manage to grow to a critical 
amount of roughly 106 cells, they organize a local microenvironment 
that downregulates further immune clearance (McBride & Howie, 
1986; Palmer et al., 2018).

Consider cancer cells that proliferate at rate p and are removed 
at rate r (Figure 4a). The rate of change of the number of cancer cells 
C is as follows:

Cancer grows if proliferation exceeds removal, p > r. We can thus 
define the relevant physiological parameter as the ratio between 
growth and removal rates: ϕ = p/r. The critical threshold for cancer 
onset thus occurs at ϕc = 1. At this threshold, growth equals removal.

The parameter ϕ is affected by senescent cells, which affect 
both p and r (Figure 4a). Interestingly, the main effects are oppo-
site to the case of frontline tissues discussed above. With age, the 
rising senescent- cell level takes up some of the immune removal 
capacity of cancer. For example, NK cells remove senescent cells, 
and thus are occupied with or exhausted by senescent cells and can 
presumably do less of their cancer- removing roles. Note that NK 
cell numbers do not significantly change with age in humans (Alpert 
et al., 2019; Valiathan et al., 2016). Thus, removal rate r drops with 
senescent- cell level X, r = r(X). We term this proposed effect “im-
mune saturation,” where there are so many senescent cells that they 
occupy the parts of the immune system that remove them, and thus 
overwhelm the capacity of the same immune cells to remove spo-
radic cancer cells.

Other effects of senescent cells, such as chronic inflammation, 
raise mutation rates and proliferation rate p for some cancer types 
(Bavik et al., 2006; Coussens & Werb, 2002; Davalos et al., 2010; 
Krtolica et al., 2001; Liu & Hornsby, 2007). Both effects, raising 
p and lowering removal r, cause the parameter ϕ to increase with 
senescent cell load, ϕ(X) = p(x)/r(x). Thus, there exists a threshold 
Xc where ϕ exceeds the critical value of 1 and cancer cell prolifer-
ation exceeds removal, reaching a clinically detectable pathology 
(Figure 4b). Thus, we have criteria (i) and (ii) for the model, with can-
cer onset when X > Xc.

Individuals susceptible to a given type of cancer have a low 
threshold Xc. This low threshold can arise from genetic factors (e.g., 
BRCA mutations for breast and ovarian cancer) and environmental 
factors (such as smoking for lung cancer and UV exposure for skin 
cancer) that generate more occurrences of the cancer cells in the 
tissue. The low threshold can also be due to bad luck, a rare muta-
tion or combination of mutations that arises by chance. Each pre- 
cancerous site has a different proliferation rate p and removal rate 
r depending on the local niche and the mutational and epigenetic 
background of the cell. Hence, the more occurrences of cancer in the 
tissue, the higher the maximal ϕ among all occurrences. This lowers 
the threshold of senescent cell level needed for cancer onset.

We compared the model to data on the incidence of 100 can-
cer types from the SiteSEER database (National Cancer Institute 

et al., 2018). Of these cancers, 87 are at least mildly age- related as 
defined above. Of these, we find that 66 are well described by the 
two- parameter model (R2 > 0.9) (Figure 4c). This agreement is similar 
to that of the previously proposed IMII model for cancer, with the 
added benefit that the present model captures the decline at very 
old ages. The typical values of Xc are 13– 15, and the susceptibili-
ties, s, range from 10−4 to 0.1. All cancer incidence curves from the 
SiteSEER database are shown in Figure S10. The best- fit parameters 
and R2 values are provided in supplementary file S5.

The three- parameter model improves significantly on the two- 
parameter model in 15 types of cancer and describes well 81 cancer 
types (R2 > 0.9). In these 15 cancers, the slope of incidence with age 
is relatively low (mean 3%, only mildly age- related). The width of the 
Xc distribution is about � = 3 for these cancers. Examples of incidence 
curves are shown in Figure 4d. Interestingly, skin cancers including 
melanoma are among the cancers predicted to have a broad distibu-
tion of Xc. One explanation is the relatively wide range of UV expo-
sure in the US population included in the database due to a variety 
of climates, which potentially creates different thresholds in different 
individuals.

Other cancers described better by the three- parameter model 
include those with sizable incidence at young ages. This includes 
cancers of bone and nervous system. This young- onset contribution 
effectively decreases the slope of incidence with age, which is cap-
tured by the model as a wide range of Xc.

There are several types of cancer that are not fit well by either the 
two-  or three- parameter models (12 cancer types with R2 < 0.9, 5 cancer 
types with R2 < 0.8, Figure 4e). These include cancers which are most 
common at young ages, such as testicular cancer whose occurrence 
drops with age, and cervical cancer, which has a viral origin. The rest 
of the cancers that are poorly fit have a bimodal age distribution, with 
a peak at young ages and then an age- related rise above middle age. 
These include lymphomas such as Hodgkin's lymphoma. The model in 
this case does not capture the early peak but describes incidence well 
if the fit is done only at ages above 50 (R2 > 0.9, Figure 4e black line).

2.6  |  Disease incidence can be reduced by 
infrequent and partial removal of senescent cells 
starting at old age

The present model provides an opportunity to predict the effects 
of treatments that remove senescent cells. Such treatments have 
been demonstrated in mice, including senolytic drugs that kill se-
nescent cells (Hickson et al., 2019; Jeon et al., 2017; Justice et al., 
2019; Palmer et al., 2019; Pignolo et al., 2020; Schafer et al., 2017b; 
Short et al., 2019; Xu et al., 2018), and immune therapy that causes T 
cells to target senescent cells (Amor et al., 2020). Since these treat-
ments are likely to have side effects, it is desirable to give them in-
frequently. The present model has the advantage of accounting for 
the senescent- cell re- accumulation process, and thus, the frequency 
of the treatment can be optimized to minimize re- accumulation and 
maximize the interval between treatments.

dC

dt
= pC − rC
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We simulated the effects of removing senescent cells on the 
incidence of a representative age- related disease (Xc = 14, s = 0.1). 
Similar conclusions are found for all age- related diseases. We used a 
conservative approach, by assuming that only 25% of the senescent 
cells are vulnerable to the treatment (Karin et al., 2019). Another 
way of viewing this is that the treatment can remove only 25% of the 
damaged cells associated with the disease incidence.

Treatment beginning at age 60, and given every 30 days, reduces 
disease incidence by about tenfold within a year (Figure 5a). The in-
cidence curve is shifted to lower values corresponding to an age that 
is about 25 years younger (Figure 5a). Prevalence of the disease until 
age 90 is reduced by about 80%.

We used the model to scan the effectiveness of treatment reg-
imens with different time intervals between treatments, ranging 
from 2 weeks to 2 months. We also scanned the treatment effect, 
defined as the percent of senescent cells killed with each treatment 
(out of the drug- sensitive cells). Figure 5b shows the number of years 
by which the incidence curve is shifted to younger ages. Treatment 
as infrequent as once per 2 months, that kills only 40% of the drug- 
sensitive senescent cells, shifts the incidence curve back by 10 years 
(light blue contour in Figure 5b). We also studied how the age at 
which treatment begins affects the incidence curves in the model. 
At all ages, the treatment shifts incidence to values found at younger 
ages (Figure 5c), with a larger shift the later the treatment starts 

F I G U R E  5 Infrequent	treatment	that	removes	senescent	cells	starting	at	old	age	can	reduce	disease	incidence	in	the	model.	(a)	Treatment	
with senolytics shifts the incidence rate in the model by 25 years. We assumed a conservative case in which only 25% of the senescent 
cells are drug- sensitive (Karin et al., 2019). In this example, the treatment is given every 30 days, and starts at the age of 60 years. We 
used typical disease parameters (Xc = 14, s = 0.1 ) to calculate the incidence curves. (b) Shift of the incidence curve to younger ages (years) 
as function of the time interval between treatments and the effectiveness of the treatment defined as the percentage of drug- sensitive 
senescent cells that it removes. (c) The incidence curves for different choices of the age in which the senolytic treatment starts. (d) The shift 
of the incidence curve is larger the later the treatment starts. Panels c and d use the same treatment and disease parameters as panel a.

(a) (b)

(c) (d)
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(Figure 5d). We conclude that the model predicts that treatment 
starting at old age can prolong the healthspan by a decade or more.

3  |  DISCUSSION

We presented a mechanism to explain a nearly universal property of 
age- related diseases: exponentially rising incidence that decreases at 
very old ages. The mechanism assumes that each pathology occurs 
when a physiological parameter exceeds a threshold. The senescent 
cells increase this parameter, leading to disease onset when the se-
nescent cell level cross a disease threshold. Susceptible individuals 
have low disease thresholds. A stochastic model for senescent cell 
accumulation provides the observed incidence curves, calculated as 
a first- passage time distribution of senescent cells across the disease 
threshold. We provide a specific interpretation of the physiological 
parameter affected by senescent cells for the cases of cancer, IPF 
and osteoarthritis. The model provides excellent fits to a new da-
tabase of disease incidence with 50 million life- years, as well as to 
UKBiobank. It predicts that removal of senescent cells starting in old 
age can significantly reduce disease incidence.

For idiopathic pulmonary fibrosis (IPF), we provide a new expla-
nation for the origin of this disease of unknown etiology. Senescent 
cells slow down the proliferation of alveolar progenitor cells, and 
when this proliferation drops below their removal rate, the tissue 
collapses. This explains the sudden collapse of the alveoli at the 
outer parts of the lung, a location in which removal rate is largest. 
It also explains genetic risk factors such as germline variations that 
increase progenitor death in the alveoli.

With this approach, one can make connections between previously 
unrelated diseases. Thus, osteoarthritis, a disease of the joints, is sug-
gested to be in the same class as IPF, a disease of the lungs. Both tissues 
have progenitors at the front line, where they are exposed to damage, 
in contrast to tissues in which progenitors are protected such as bone 
marrow and skin. Thus, the origin of OA is also suggested to result 
when progenitor proliferation rate drops below removal rate, caused by 
rising senescent cell level with age and their attendant systemic SASP. 
Risk factors for OA such as high BMI are suggested to increase removal 
rate and thereby increase the susceptibility to the disease.

Additional age- related disease classes may be analyzed using the 
present approach. Important diseases with high prevalence includ-
ing atherosclerosis and type- 2 diabetes are thought to be mediated, 
in part, by inflammation. SASP includes many inflammatory factors. 
Therefore, the theory might be extended to describe the evolution 
of atherosclerosis and metabolic syndrome. For example, late- stage 
type 2 diabetes is associated with collapse of beta- cell function. This 
collapse has been modeled as a threshold- crossing event in which 
rising glucose causes glucotoxicity, making the removal of beta cells 
exceed their renewal (Karin & Alon, 2017; Topp et al., 2000). Since 
senescent cells reduce beta- cell proliferation, and increase insulin 
resistance through inflammation and impact on adipocytes (Palmer 
et al., 2019), they can instigate this collapse and explain part of the 
age- related incidence. Another class of diseases includes age- related 

mortality from infectious disease (Palmer et al., 2018). Infections 
can be analyzed in a similar way to cancer, where the physiologi-
cal parameter is the ratio of pathogen growth and removal rates. 
Finally, fibrotic diseases such as liver cirrhosis and focal glomerular 
sclerosis (a cause of end- stage kidney disease) may also correspond 
to a threshold- crossing phenomenon. The threshold- crossing was 
described by a recent theoretical analysis (Adler et al., 2019) of the 
dynamics of myofibroblasts and macrophages. Above a threshold, 
the dynamics flow to a fibrosis state in which myofibroblasts and 
macrophages support each other at high cell concentrations (Figure 
S11). Senescent cells can induce such threshold- crossing by means 
of pro- inflammatory SASP (See SI section 9), increasing the range of 
micro- injuries which result in fibrosis.

The current model is simplistic in assuming that a single factor, 
senescent cells level X, accounts for the incidence of all age- related 
pathology. Obviously reality is more complex, and additional forms 
of age- related damage and decline contribute (De Bourcy et al., 
2017). There may be different populations of senescent cells at play, 
with differential importance of local versus systemic senescent cells 
in different pathologies. The lack of fit to brain degenerative dis-
eases in this study may indicate that the brain has its own primary 
form(s) of damage, perhaps senescent glia, which is distinct from 
whole body senescent- cell level.

We hypothesize that the present framework might apply beyond 
senescent cells also to other forms of age- related damage causal for 
diseases. The variable X can be interpreted more broadly as dam-
aged cells which incite inflammatory signals. The requirements are 
that, as in the SR model, damage production rises linearly with age 
and damage saturates its own removal. For example, DNA muta-
tions accumulate with age and can cause cellular damage, which is 
removed by repair systems which have a finite capacity. A similar 
situation may apply to protein aggregate accumulation and for some 
lipid metabolic waste products (lipofuscins), which are known to ac-
cumulate with age. Thus, even if senescent cells are removed, aging 
and age- related pathology will still occur albeit with a delay due to 
such additional factors.

The model makes several experimentally testable predictions. 
The first prediction is a tight relationship between senescent cells 
in an individual and the onset of pathology in the same individual. 
Future experiments in which both pathology and senescent cell level 
are evaluated in the same organism can shed light on the strength 
of the relation between senescent cells and disease onset. Another 
prediction concerns the geroscience hypothesis, which asserts that 
any intervention that retards the aging process will simultaneously 
delay the onset of multiple diseases (Barzilai et al., 2016; Franceschi 
et al., 2018; Kaeberlein, 2017; Kennedy et al., 2014; Kritchevsky & 
Justice, 2020). The model predicts that interventions that remove 
senescent cells, slow senescent- cell production or attenuate SASP 
will have a specific and predictable global effect on the incidence of 
all age- related diseases. Such treatments are predicted to affect dis-
ease incidence even when treatment is started at old age (Figure 5). 
Human clinical trials with senolytics are at early stages, but may in 
the long term allow estimation of the effect of removing senescent 
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cells on incidence curves. Other drugs proposed to slow aging such 
as metformin (Barzilai et al., 2016) may attenuate senescent- cell pro-
duction (Jadhav et al., 2013) or SASP (Moiseeva et al., 2013; Saisho, 
2015) and have similar effects. The wide range of mouse disease 
models that show improvement upon senolytic treatment tends to 
qualitatively support such a prediction.

4  |  METHODS

4.1  |  Incidence from Clalit database

We used Clalit health- service electronic health records (EHR) data-
set (Balicer & Afek, 2017). All incidence curves and ICD9 codes are 
provided in https://doi.org/10.7910/DVN/LS3WYI. For more de-
tails, see SI Section 3.

4.2  |  Analytical formula for two- parameter model

An approximate formula for the incidence of the disease is (see SI 
section 2 for details):

with hazard function h = A
eat

1+ beat
 and parameters a, b and A that de-

pend on Xc as follows:

The death hazard hd (t) has Xc = Xdeath = 17, giving the death 
parameters: Ad = 2.22 ⋅ 10− 6 ; bd = 9.774 ⋅ 10− 6 ; ad = 0.132. Since 
A, b, and a depend on Xc, the model depends on only two free pa-
rameters Xc and s. Note that when s ≪ 1, incidence is approximately 
proportional to s. In this limit, the age of maximal incidence rises 
approximately linearly with Xc (Figure S12).

4.3  |  Analytical formula for three- parameter model

The three- parameter model includes a normal distribution of disease 
thresholds P

(
Xc
)
 with mean Xc and standard deviation �. The result-

ing formula for the incidence is as follows:

where Cs = s
(
beat + 1

b+ 1

)−
A

ab

;C = (1 − s)
(
beadt + 1

bd + 1

)−
Ad

adbd. We used 
Equations (1– 2) for all results.

4.4  |  Software availability

Software that fits incidence data to the two-  and three- parameter 
models is provided in https://github.com/itayk atzir/ Matla bCode 
ForFi tting Incid ence.

4.5  |  Simulation of treatment that removes 
senescent cells

We used the formulae developed by Karin et al. (Karin et al., 2019, sup-
plementary note 6), and used stochastic simulations of intermittent 
treatment as described. We assumed that senescent cells are produced 
in two types: treatment sensitive and non- sensitive. This is a con-
servative model, and assuming that all senescent cells are treatment- 
sensitive leads to larger shifts in incidence curves to young ages.
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