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Simple Summary: Cardiovascular disease is common in patients with small cell lung cancer, partly
reflecting its high correlation with smoking. Cardiovascular comorbidities may limit patient tolerance
to cytotoxic drugs, thereby influencing the choice and intensity of treatment and, ultimately, patient
survival. In light of the challenges relating to assessing cardiovascular status clinically in newly
diagnosed lung cancer, objective biomarkers of cardiovascular vulnerability are warranted. Here, we
show that circulating levels of ST2, an established biomarker in heart failure, and adrenomedullin, a
vasodilator peptide known to reflect several aspects of cardiovascular status, strongly correlate with
survival in small cell lung cancer. Our data, which are based on a large, randomized trial cohort,
suggest the potential use of cardiovascular biomarkers in guiding clinicians in making individualized
treatment decisions.

Abstract: Cardiovascular comorbidity is common in small cell lung cancer (SCLC) and may signif-
icantly affect treatment tolerability and patient outcome. Still, there are no established biomark-
ers for objective and dynamic assessment as a tool for improved treatment decisions. We have
investigated circulating levels of midregional-pro-adrenomedullin (MR-proADM), midregional-pro-
atrial-natriuretic peptide (MR-proANP), copeptin (surrogate for vasopressin) and suppression-of-
tumorigenicity-2 (5T2), all known to correlate with various aspects of cardiovascular function, in a
SCLC cohort (N = 252) from a randomized, controlled trial (RASTEN). For all measured biomarkers,
protein levels were inversely associated with survival, particularly with ST2 and MR-proADM, where
the top versus bottom quartile was associated with an adjusted hazard ratio of 2.40 (95% CI 1.44-3.98;
p =0.001) and 2.18 (95% CI 1.35-3.51; p = 0.001), respectively, in the entire cohort, and 3.43 (95% CI
1.73-6.79; p < 0.001) and 3.49 (95% CI 1.84-6.60; p < 0.001), respectively, in extensive disease patients.
A high combined score of MR-proADM and ST2 was associated with a significantly reduced median
OS of 7.0 months vs. 14.9 months for patients with a low combined score. We conclude that the
cardiovascular biomarkers MR-proADM and ST2 strongly correlate with survival in SCLC, warrant-
ing prospective studies on the clinical utility of MR-proADM and ST2 for improved, individualized
treatment decisions.
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1. Introduction

Lung cancer is the worldwide leading cause of death from cancer [1]. Small cell lung
cancer (SCLC), an aggressive subtype accounting for ~15% of all lung cancer cases [2],
is associated with a particularly poor prognosis, with 5-year survival rates of ~5% [3,4].
Despite recent therapeutic advances, including the emergence of immunotherapy in the
care of SCLC, the overall effects are yet to be seen. Comorbidity is common in patients
with SCLC and the trend is increasing. The presence of one or more comorbidity was
reported in 76% of SCLC patients in 2011-2012, compared to 55% in 1995-1998 [5], with
cardiovascular (CV) and pulmonary disease being among the most prevalent. In this large
cohort (N = 4142), CV disease (CVD) was observed in 36% and 24% in male and female
patients, respectively [5]. This is consistent with other studies, reporting CVD in 42%—48%
of SCLC patients [6,7].

CV comorbidity in cancer patients may limit chemotherapy tolerability and patient
outcome [8]. In lung cancer, the association between comorbidity and survival remains
unclear. Some evidence indicates that a Simplified Comorbidity Score, developed by
Colinet et al. [9], of >9 correlates with poor outcome [7], whereas others have suggested
that CV comorbidity rather has an indirect effect on survival through predicting treatment
choice [5,6]. However, it is important to consider that CVD encompasses a wide spectrum
of conditions, with varying degrees of clinical manifestation, and its systemic impact
during anti-tumoral treatment may be challenging to assess. In fact, current CV status
and vulnerability may be difficult to monitor, particularly in the light of an aggressive
malignancy, and the additional CV stress imposed by toxic treatment. Together, this poses
a significant clinical challenge. Hence, biomarkers that can objectively and dynamically
monitor CV status are called for as an additional tool for guidance in individualized
treatment decisions in SCLC.

Notably, whereas cancer patients undergoing systemic treatment are routinely moni-
tored for renal, hepatic and bone marrow function using established laboratory parameters,
biomarkers that may reflect CV status remain unexplored and are rarely assessed. Among
the interesting candidates, suppression of tumorigenicity 2 (ST2, also called IL-1 receptor-
like 1) and the vasoactive peptides adrenomedullin (ADM), atrial natriuretic peptide (ANP),
and arginine vasopressin (AVP) have been described to reflect various aspects of CV pathol-
ogy [10]. Soluble ST2 isoform (sST2), which is measurable in plasma, predicts mortality and
morbidity in several CV conditions, and is now an FDA-approved biomarker in heart fail-
ure [10,11]. The functional ligand IL-33, that upon binding to membrane-bound ST2 (ST2L)
promotes an inflammatory response mainly through Th2 effector cells, has been shown to
exert a cardioprotective effect [12,13]. On the contrary, sST2 may act as a decoy receptor and
thus attenuate the inflammatory and cardioprotective effects of IL-33. ADM, ANP and AVP,
commonly defined as vasoactive peptides, are involved in maintaining CV homeostasis and
electrolyte balance [14-16]. ADM and AVP both reflect neurohumoral activation, a hallmark
of heart failure, whereas ANP is a biomarker of myocardial stretching, closely resembling
brain natriuretic peptide, a well-established marker of congestive heart failure. All three
peptides correlate independently with mortality in heart failure [10]. Due to their short
half-lives in plasma, measurement of the stable peptide precursors midregional pro-ADM
(MR-proADM), midregional pro-ANP (MR-proANP) and C-terminal pre-provasopressin
(copeptin) is preferred [17-19].

In the present study, we were interested in elucidating whether circulating levels
of candidate biomarkers of CV stress may predict the outcome of SCLC patients. In a
clinically well-annotated cohort of SCLC patients within a randomized controlled trial [20],
we demonstrate that high levels of MR-proADM and ST2 strongly correlate with worse
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patient outcome, suggesting their potential use in clinical risk stratification and monitoring
of SCLC.

2. Materials and Methods
2.1. RASTEN Clinical Trial

A full description of the clinical trial design has previously been reported [20]. In
brief, RASTEN is an international, randomized phase-3 trial of standard treatment with or
without the addition of the low-molecular-weight heparin enoxaparin in SCLC (Clinical-
Trials.gov: NCT00717938), with the primary aim to test for improved survival. Standard
therapy in both arms included a platinum compound and topoisomerase inhibitor, and
radiotherapy was given according to local protocol. In the intervention arm, enoxaparin
was administered at 1 mg/kg as daily subcutaneous injections for the duration of the
chemotherapy regimen. The study was carried out in agreement with the Declaration of
Helsinki with approval from the Regional Ethics Committee at Lund University, Sweden.

2.2. Patient Selection and Plasma Sampling

Blood samples were collected continuously during the clinical trial, and for the present
sub-study baseline samples (prior to start of chemotherapy) were used. Plasma was
collected in EDTA-tubes and stored in a —80 °C freezer at the Clinical Research Unit, Skane
University Hospital, Lund, Sweden. The present biomarker cohort was established at the
cut-off date of 1 November 2013, consisting of the first consecutive 292 patients.

2.3. Clinical Outcome

The primary endpoint, overall survival (OS), was defined as the date of randomization
to the date of death from any cause. For patients not reported dead, information regarding
vital status was confirmed from each study center before data collection cut-off on 4 April
2017. Progression-free survival (PFS) was measured from the date of randomization to the
date of objective or clinical progression or death from any cause, whichever came first.

2.4. Immunoassay Analysis of Vasoactive Peptides

Absolute levels of stable fragments of the peptide precursors MR-proADM, MR-
proANP and copeptin were measured in EDTA-plasma using a standardized, commercial
immunoluminometric sandwich assay, as previously described (KRYPTOR, Thermo Fisher
Scientific, Hennigsdorf/Berlin, Germany) [17-19].

2.5. Proximity Extension Assay

Total ADM and ST2 were determined in EDTA-plasma at baseline using the Proseek
Multiplex Oncology 1-v276*% and CVD 196*% panels (Olink Bioscience, Uppsala, Sweden),
as previously described [21]. The proximity extension assay (PEA) provides high sensitivity
and specificity based on oligonucleotide-labelled antibody probe pairs binding to their
specific target protein, generating a PCR-amplified DNA template, which is proportional to
the initial antigen concentration as quantified by real-time qPCR. The values are reported
as normalized protein expression (NPX) in arbitrary units. Four internal and three negative
controls were used to calculate the lower limit of detection (LOD) for each protein. All
assays were performed by collaborators blinded to the study endpoint.

2.6. Statistical Analysis

The statistics packages SPSS v27 and STATA v16 were used for statistical analysis.
Biomarkers were categorized into quartiles to allow for non-linear effects on survival.
Survival was estimated using the Kaplan—-Meier method, and evidence for difference in
survival between groups of patients was evaluated using the log rank test. Cox regression
was used to calculate hazard ratios (HRs). Proportional hazards assumptions were checked
graphically, and deviations were handled by restricting the follow-up to 12 months in some
analyses. Stepwise backward logistic regression, with survival at 12 months yes/no as the
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outcome, was used to find a set of variables with jointly strong association to survival. Due
to missing data for some of the candidate variables, 10 complete datasets were constructed
using multiple imputation with chained equations. Linear regression imputation models
were used for all variables with missing data, and the complete set of predictors evaluated
in the study were used as predictors in these models. Missingness should be non-random
and conditional on the other predictors and, hence, the missing at random assumption
was reasonably well met. All the three possible dichotomizations of the quartiles of the
experimental biomarkers were evaluated in the stepwise modelling procedure. Three
variables were highly significant (p < 0.01) in the final averaged multiple imputation model
as well as in each of the 10 individual imputed datasets: MR-proADM, ST2 and tumor stage.
Note the exploratory nature of this modelling procedure. A combined biomarker score,
ranging between 2 and 8 points, was generated by adding the scores 1 to 4 representing the
quartiles of MR-proADM and ST2. A high combined score was defined as 6-8 points and a
low combined score as 2-5 points. Multivariable Cox models were used to calculate HRs
adjusted for the well-recognized prognostic factors age, gender, performance status (WHO
0-1vs. 2-3) and disease stage (limited vs. extensive disease). Leukocytosis (leukocyte count
<9.0 vs. >9 x 10?/L) and hyponatremia (plasma sodium levels <136 vs. >136 mmol/L)
were also included in the multivariate models as these variables were found to correlate
with survival in univariate analysis, which is consistent with the existing literature [22,23].
Spearman rank correlation was used for correlations between different assays.

3. Results
3.1. Study Population

MR-proADM, MR-proANP, copeptin, and ST2 were determined at baseline in treatment-
naive SCLC patients to exclude potential interaction effects of prior cytotoxic therapy. Of
the first 292 consecutively enrolled patients in the RASTEN trial, 40 patients were excluded
from the biochemical analysis due to poor sample quality (N = 11), unavailable sample
(N =15) or inclusion criteria not being fulfilled (N = 14) (Supplementary Figure S1). A total
of 252 patients were included in the present cohort, of which 104 (41%) had limited disease
(LD) and 148 (59%) had extensive disease (ED) at presentation. Baseline demographics are
displayed in Table 1.

Table 1. Baseline characteristics and treatment summary of the study population.

Limited Disease Extensive Disease
N =104 N =148
Age, years
Mean + SD 67£79 66 £ 8.6
Gender, N (%)
Female 61 (59) 85 (57)
Male 43 (41) 63 (43)
Performance status, N (%)
0-1 88 (85) 92 (62)
2-3 16 (15) 56 (38)
Study arm
LMWH 50 (48) 74 (50)

Control 54 (52) 74 (50)
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Table 1. Cont.

Limited Disease Extensive Disease
N =104 N =148
Biochemistry, median (IQR)
Hemoglobin, g/L 135 (123-143) 133 (121-142)
Leukocyte count, x10? /L 9.1 (7.2-12.3) 10.2 (7.3-12.8)
Platelet count, x10°/L 314 (261-412) 325 (265-443)
Sodium, mmol/L 139 (135-141) 138 (135-140)
Potassium, mmol /L 4.1 (3.9-4.5) 4.2 (4.04.5)
Serum creatinine, umol/L 65 (57-74) 64 (54-80)
aPTT, s 32 (30-36) 32 (28-35)
Chemotherapy cycles, N (%)
<4 cycles 14 (13) 26 (18)
>4 cycles 90 (87) 122 (82)
Additional chemotherapy, N
(%)
Second line 31 (30) 55 (37)
Third line 9(9) 6 (4)
No additional chemotherapy 73 (70) 93 (63)
Radiotherapy, N (%) @
Prophylactic cranial 71 (68) 44 (30)
Thoracic 71 (68) 41 (28)
Metastatic lesion 15 (14) 46 (31)
No radiotherapy 11 (11) 41 (30)
Missing 5 12
VTE events, N (%) 10 (10) 5(3)

2 Patients may have received radiotherapy towards more than one site; SD = standard deviation; LMWH = low
molecular weight heparin; IQR = interquartile range; aPTT = activated partial thromboplastin time; VTE = venous
thromboembolism.

3.2. Cardiovascular Biomarkers at Baseline

Using a standardized, immunoluminometric assay, MR-proADM was measured in
all 252 samples, whereas MR-proANP and copeptin were analyzed in 251 and 194 sam-
ples, respectively. Using the proximity extension assay, ADM and ST2 were determined
in 242 samples. Baseline levels of the peptides are shown in Supplementary Table S1.
For MR-proADM, MR-proANP and copeptin, the median protein concentrations were
0.76 nmol/L, 75.6 pmol/L and 7.7 pmol/L, respectively. In comparison, the concentrations
of MR-proADM, MR-proANP and copeptin were previously reported as 0.75 nmol/L,
125.5 pmol/L and 9.6 pmol/L, respectively, in an age-matched, prospective, population-
based cohort (N = 5415) [24].

3.3. Cardiovascular Biomarkers and Clinical Outcome

In unadjusted Cox regression analyses, all biomarkers correlated with survival when
comparing the top vs. bottom quartiles, and the effect was most prominent in patients
with ED (Table 2). Strong prognostic evidence was seen for all of the biomarkers except
MR-proANP, when adjusting for tumor stage, performance status, age, gender, leukocytosis
and hyponatremia (Table 3).
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Table 2. Unadjusted effects of circulating biomarker levels on overall survival for all patients and by
disease stage.

Quartile 1 Quartile 2 Quartile 3 Quartile 4
All Patients HR (95% CI)  p-Value HR (95% CI) p-Value HR(95%CI) p-Value HR (95% CI) p-Value
MR-proADM 1.0 (ref)  <0.001 (0.7%,'_017. 56 0730 (1.0}3'_529.33) 0018 23 3 <0001
MR-proANP  1.00 (ref.) 0.090 (0.7%9,916.55) 0.753 (0.911'_312. o 0142 (1.016%.2 y 0024
Copeptin 1.00 (ref.) 0.007 (0.9}3':1;31) 0.083 (0.911'%22‘ ) 0.124 @ 2 35) 0.001
ADM 1.00 (ref.) 0.001 (0.8%}5.76) 0.384 (1_0&’;36) 0016 ey 5 <0001
ST2 1.00 (ref)  <0.001 (0.9%)%.02) 0153 a5 2) <0001 (2.11146. 6o <0001
Limited disease
MR-proADM  1.00 (ref.) 0089 o8 ) 0416 (0.8172 go) 0135 (0.7“;'?390) 0.231
MR-proANP  1.00 (ref.) 0.425 (0.3%_7%37) 0.312 (0.516'9{*.9 o 0898 (0.710;2252 g 04
Copeptin 1.00 (ref.) 0.052 (0.715'_538.32) 0.226 (0.3‘;% oy 0677 (1.0%211.77) 0.036
ADM 1.00 (ref.) 0.339 (0.5%_9?83) 0.939 (0.716'%26. 79 0253 (0.8%0;_527_ og) 0169
ST2 1.00 (ref.) 0.028 (0.5%—912.6 y 077 (0.81721.%) 0.127 (1.2%%7. w0 0013
Extensive disease

MR-proADM  1.00 (ref)  <0.001 (0.9521. w6 009 (1.0})'_6;72) 0.051 (1.939'_2;26) <0.001
MR-proANP  1.00 (ref.) 0.050 (0'719;2;07) 0.322 (0'8183127) 0.156 (1'212'_93?'26) 0.006
Copeptin 1.00 (ref.) 0.009 (0'915'_626'91) 0.077 (1.229'_25’. g3 0004 (1'326%'01) 0.002
ADM 1.00 (ref)  <0.001 (0.911-3558) 0.088 (1.031'_73 75 0033 (1.8%0;’.95) <0.001
ST2 1.00 (ref.) 0.001 (1.2%)'_2;02) 0.007 “ 4%5_41.31) 0.001 (1.%_959.03) <0.001

HR = hazard ratio; CI = confidence interval; MR-proADM = midregional pro-adrenomedullin; MR-proANP = midre-
gional pro-atrial natriuretic peptide; ADM = adrenomedullin; ST2 = suppression of tumorigenicity 2.

Table 3. Adjusted effects of circulating biomarker levels on overall survival for all patients and by
disease stage.

Quartile 1 Quartile 2 Quartile 3 Quartile 4
All Patients ? (‘;‘g,}ol_é% p-Value (‘3;10]/0%11{) p-Value (ég"}ol-gl{) p-Value (‘gg,]/o}é% p-Value
MR-proADM  1.00 (ref.) 0.007 (0.7}1'_112. 60) 0603 (0.819'_329.1 o 014 (1.3%'_1;51) 0.001
MR-proANP  1.00 (ref.) 0.295 (0.5%_8{"29) 0403 (g, ot qy 0680 (0'7%)'_2;00) 0.392
Copeptin 1.00 (ref.) 0.036 (1'0})'_% 60)  0.049 (0.912'_55’. 56 0103 (1.2%5'—22.78) 0.004
ADM 1.00 (ref.) 0.041 (0.8%-_2;*.90) 0.317 (0.911@1.18) 0.126 (1.2%_02.2 y 0005
ST2 1.00 (ref.) 0.004 (o.9§fz7. 5 0101 15s s 0001 ﬁfg%) 0.001
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Table 3. Cont.

Quartile 1 Quartile 2 Quartile 3 Quartile 4
. Adj HR g Adj HR g Adj HR g Adj HR _
All Patients ? (95% CI) p-Value (95% CI) p-Value (95% CI) p-Value (95% CI) p-Value
Limited disease ?
0.69 1.27 1.01
MR-proADM 1.00 (ref.) 0.405 (0.36-1.32) 0.261 (0.65-2.48) 0.487 (0.46-2.24) 0.974
0.42 0.70 0.54
MR-proANP 1.00 (ref.) 0.160 (0.20-0.90) 0.025 (0.35-1.40) 0.312 (0.23-1.26) 0.153
. 1.56 0.85 1.69
Copeptin 1.00 (ref.) 0.331 (0.65-3.77) 0.320 (0.33-2.19) 0.728 (0.624.62) 0.308
0.79 1.34 0.95
ADM 1.00 (ref.) 0.521 (0.40-1.54) 0.486 (0.67-2.69) 0.403 (0.42-2.13) 0.893
0.86 145 2.39
ST2 1.00 (ref.) 0.128 (0.45-1.64) 0.641 (0.70-3.00) 0.318 (0.96-5.98) 0.063
Extensive disease
MR-proADM  1.00 (ref.) 0001 Soas y 0115 (0_816'_527 so) 015 o 60) <0001
1.16 1.09 1.69
MR-proANP 1.00 (ref.) 0.313 (0.65-2.05) 0.622 (0.61-1.93) 0.775 (0.89-3.21) 0.110
. 1.73 2.08 2.42
Copeptin 1.00 (ref.) 0.054 (0.92-3.23) 0.088 (1.11-3.87) 0.022 (1.23-4.77) 0.010
1.68 1.53 2.88
ADM 1.00 (ref.) 0.012 (0.94-2.99) 0.080 (0.86-2.70) 0.145 (1.52-5.47) 0.001
3.05 3.03 3.43
ST2 1.00 (ref.) 0.002 (1.54-6.02) 0.001 (1.56-5.91) 0.001 (1.73-6.79) <0.001

2 Adjusted for disease stage, age, gender, performance status (0-1 vs. 2-3), leukocyte count (<9.0 vs. >9 x 10° /L)
and sodium levels (<136 vs. >136 mmol/L). Adjusted for age, gender, performance status (0-1 vs. 2-3),
leukocyte count (<9.0 vs. >9 x 109/ L) and sodium levels (<136 vs. >136 mmol/L). Adj HR = adjusted hazard
ratio; CI = confidence interval; MR-proADM = midregional pro-adrenomedullin; MR-proANP = midregional
pro-atrial natriuretic peptide; ADM = adrenomedullin; ST2 = suppression of tumorigenicity 2.

Based on MR-proADM, the median overall survival (OS) was 6.7 and 17.1 months
in patients with the highest and lowest MR-proADM levels, respectively (adjusted HR:
2.18; 95% CI 1.35-3.51; p = 0.001) (Figure 1). Subgroup analysis by disease extent gave an
adjusted HR for overall survival of 3.49 (95% CI 1.84-6.60; p < 0.001) in patients with ED
(Figure 1D). To corroborate these findings, ADM was further assessed by a commercially
available proximity extension assay (OLINK), showing a strong correlation with the MR-
proADM assay (Spearman’s coefficient of 0.879) (Supplementary Figure 52). Accordingly,
OLINK-ADM levels showed a comparable association with patient OS (Tables 2 and 3, and
Supplementary Figure S3). For ST2, median OS was 6.4 and 17.4 months when comparing
the top versus bottom quartiles, corresponding to an adjusted HR of 2.40 (95% CI 1.44-3.98;
p = 0.001) for the entire cohort (Figure 2), and 3.43 (95% CI 1.73-6.79; p < 0.001) in ED
(Figure 2D). Survival graphs by distribution of MR-proANP and copeptin are illustrated in
Supplementary Figures S4 and S5.
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Figure 1. Kaplan-Meier analysis of survival by MR-proADM levels. One-year survival (A) and
overall survival for all patients (B) and by stage; limited (C) and extensive (D) disease.

3.4. Prediction Models and Combined Biomarker Score

Prediction modelling incorporating the CV biomarkers as well as clinical predictive
factors and routine laboratory parameters identified MR-proADM, ST2, and tumor stage as
the main prognostic factors with respect to 1-year survival. Hence, MR-proADM and ST2
were further considered for a combined biomarker score. Combining the quartile scores for
ST2 and MR-proADM revealed that a high score of 6-8 was associated with a significantly
reduced median OS of 7.0 months, compared to 14.9 months for patients in the lower
quartiles (Figure 3). In ED patients, median OS was 11.3 and 6.7 months in patients with
a combined score of 2-5 versus 6-8, respectively (unadjusted HR: 2.04; 95% CI 1.44-2.89;
p < 0.001). Notably, in LD, a low quartile score corresponded to a median OS of 22.9 months
(N =75) compared to 9.8 months in patients with a high score (N = 24) (unadjusted HR:
2.43;95% CI1.46-4.04; p = 0.001). Accordingly, at two years of follow-up, 41% were alive in
the LD low-score subgroup, compared to 8% in the LD high-score subgroup. Estimations of
PES based on MR-proADM, ST2 and combined score showed strong correlations between
each of the biomarkers and PFS, particularly for ST2 (p < 0.001). For patients with a high vs.
low combined score, median PFS was 5.2 months and 8.1 months, respectively (p < 0.001)
(Supplementary Figure S6).
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Figure 3. Kaplan—-Meier analysis of survival by combined biomarker score of MR-proADM and ST2.
One-year survival (A) and overall survival for all patients (B) and by stage; limited (C) and extensive
(D) disease.

4. Discussion

Although cardio-oncology has received increasing attention in the management of
cancer patients, there are still no established lab assays that link CV biomarkers to pa-
tient outcome. Here, we show that baseline levels of ADM and ST2 are significantly and
independently associated with SCLC-patient survival in a dose-dependent manner. Sub-
group analysis by tumor stage identified LD patients with a low ADM-ST2 biomarker
score to have a particularly favorable prognosis, showing a median OS of 22.9 months.
Moreover, LD patients with a high score had a shorter survival than ED patients with a
low score (median OS of 9.8 and 11.3 months, respectively), suggesting that ADM and ST2
add prognostic value to established, clinical parameters. This may have potential clinical
utility, i.e., low-scoring patients, regardless of tumor stage, should be managed ambitiously
with chemo- and radiotherapy, and potentially in combination with immune checkpoint
inhibitors. On the contrary, patients with a high biomarker score may be considered for
more conservative, dose-limiting treatment, and dynamically monitored by ADM-ST2
biomarkers to assess potential CV toxicity. In addition, the combined score correlated
significantly to PFS, further supporting its prognostic value. This may also suggest that
tolerance to chemotherapy and, hence, response to treatment, was reduced in patients with
CV comorbidity, but this interpretation must be viewed with caution and addressed in
follow-up studies. Another aspect of our findings is the potential use of biomarkers to
identify SCLC patients with subclinical CVD who may benefit from interventions aimed at
optimizing CV function prior to or during anti-tumoral treatment. The incorporation of
treatment with enoxaparin, i.e., the study arm of the RASTEN trial, as an interaction term
in multivariable regression models did not yield any differential treatment effect based
on biomarker levels (p = 0.44 and 0.29 for ADM and ST2, respectively). Hence, biomarker
levels did not predict response to low-molecular-weight heparin.

It should be noted that ST2 may correlate with systemic conditions other than CV
stress. In addition to its implications in CVD, sST2 has been shown to correlate with short
and long-term survival in acute exacerbations of chronic obstructive pulmonary disease
(COPD) [25]. The anti-ST2 antibody MSTT1041A (astegolimab; Genentech) is currently
being explored in several phase II trials, including in COPD (NCT03615040), uncontrolled
asthma (NCT02918019) and severe coronavirus disease 2019 pneumonia (NCT04386616),
highlighting its importance also in respiratory pathology. Despite its name, evidence is
conflicting regarding the role of ST2 in tumor disease. Interestingly, Jeught et al. [26]
suggested an active role of ST2 in the immunosuppressive tumor microenvironment of
colorectal cancer (CRC), and elevated ST2 was found to be associated with poor survival
and deficient CD8+ T-cell cytotoxicity. Combined targeting of programmed cell death
protein 1 (PD-1) and ST2 significantly reduced tumor growth in mice, pointing to ST2 as a
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potential target for immunotherapy. However, another study [27] demonstrated an inverse
relationship between sST2 levels and CRC tumor growth, implying a tumor-inhibiting
effect of sST2. In breast cancer, increased levels of serum sST2 were found in patients
with estrogen receptor-positive tumors compared to healthy controls. This correlated with
known prognostic factors, but not with survival [28]. To the best of our knowledge, ST2
has not previously been investigated in SCLC.

In an unselected cancer population, including non-SCLC patients (N = 61), NT-proBNP,
MR-proANP, MR-proADM and copeptin were increased as compared with healthy controls,
and related to pro-inflammatory cytokines and long-term mortality [29]. Apart from
being a CV biomarker, substantial evidence indicates that ADM is actively involved in
malignant processes, such as angiogenesis [30-33]. ADM is strongly induced by hypoxia,
and overexpression of ADM has been reported in several malignant conditions, including
pancreatic, colorectal, and renal cancer [30,34-37]. Plasma ADM has not previously been
linked to disease progression in SCLC, and immunohistochemical studies found no or
weak expression of ADM in SCLC tissue [38,39]. However, in line with our results, plasma
ADM has been correlated with tumor progression in neuroendocrine carcinomas of various
origin [40]. With regard to copeptin, a surrogate marker for AVP, our findings are consistent
with Umemura et al. [41], investigating mature serum AVP in 34 patients with SCLC
where increased levels were associated with reduced survival. It is unclear whether AVP
is actively involved in carcinogenesis, although an indirect effect on angiogenesis by
stimulated secretion of VEGF and endothelin-1 was suggested in vitro [42,43]. However,
the synthetic AVP analogue [V4Q®] dDAVP showed inhibitory effects on metastasis, tumor
growth and angiogenesis in animal models of CRC [44]. Together, our and previous results
motivate future mechanistic studies that unravel the expression and functional role of
especially ADM and ST2 in SCLC and other cancers to understand how these peptides
may locally influence the tumor microenvironment and represent tractable targets for
anti-tumoral therapies.

Our study has some limitations, and based on the present findings, a follow-up,
prospective trial that includes, e.g., cardiac ultrasound should investigate whether the
increased mortality in patients with high biomarker levels solely can be explained by CV
failure, acknowledging that these markers may be raised in other systemic stress conditions.
On the other hand, based on the inclusion and exclusion criteria of the RASTEN trial, it is un-
likely that patients affected by overt, systemic illness were enrolled. Notably, baseline levels
of MR-proADM were comparable to an age-matched, large, population-based cohort [24],
indicating that our results are not affected by a disproportional prevalence of manifest CVD
prior to start of chemotherapy. Secondly, smoking is a major risk factor in CVD as well as
in SCLC; indeed, less than 2% of SCLC patients are never-smokers [45]. An early study
did not demonstrate any effects on survival in SCLC patients who continued smoking
during treatment compared to patients who stopped smoking [46], whereas others have
reported improved prognosis with smoking cessation specifically in LD patients [47,48].
Experimental models have suggested that aryl hydrocarbons can upregulate ADM [49] and
affect the expression of ST2 [50], therefore representing a potential confounder. Meanwhile,
the proximity ligation assay (OLINK) used for ST2 measurement does not provide absolute
concentrations, which makes it difficult to directly compare with data obtained by ELISA
or the FDA-approved assay (Presage® ST2 Assay). However, assessment of ST2 using
the OLINK platform and a commercially available ELISA has previously shown excellent
correlation [25]. Moreover, in the present study, ADM determined by the proximity ex-
tension assay strongly correlates with the MR-proADM immunoluminometric sandwich
assay (KRYPTOR).

To our knowledge, this combination of biomarkers has not been analyzed previously
in other malignant conditions. It would be reasonable to expect the biomarkers to predict
outcome in other types of cancer as well, especially if there is a strong correlation with
smoking, such as cancer of the esophagus or head and neck, and subsequently, a high
risk of CVD. However, before such conclusions can be drawn, further prospective studies
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are needed to confirm the findings and enhance our understandings of ST2 and ADM
in malignancy.

5. Conclusions

In summary, our results show that high levels of MR-proADM and ST2 strongly
correlate with a worse patient outcome. These data suggest their potential use in clinical
risk stratification and monitoring of SCLC. Although it is unclear to what extent the
respective biomarkers contribute to malignant disease, we propose that the predictive
values of ADM and ST2 rely on their ability to reveal the subclinical vulnerability of the
CV system prior to detectable changes in routine clinical examinations. Future studies
are warranted to further elucidate the role of ADM and ST2 as well as other candidate
CV biomarkers as guidance for cardiotoxic anti-tumoral therapy in patients with SCLC,
perhaps even more importantly with regard to the emergence of immunotherapy.
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