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Abstract: Perinereis aibuhitensis peptide (PAP) is a decapeptide (Ile-Glu-Pro-Gly-Thr-Val-Gly-Met-Met-Phe,
IEPGTVGMMF) with anticancer activity that was purified from an enzymatic hydrolysate of Perinereis
aibuhitensis. In the present study, the anticancer effect of PAP on H1299 cell proliferation was investigated.
Our results showed that PAP promoted apoptosis and inhibited the proliferation of H1299 cells in a
time- and dose-dependent manner. When the PAP concentration reached 0.92 mM, more than 95% of
treated cells died after 72 h of treatment. Changes in cell morphology were further analyzed using an
inverted microscope and AO/EB staining and flow cytometry was adopted for detecting apoptosis and
cell cycle phase. The results showed that the early and late apoptosis rates of H1299 cells increased
significantly after treatment with PAP and the total apoptosis rate was significantly higher than that
of the control group. Moreover, after treatment with PAP, the number of cells in the S phase of cells
was significantly reduced and the ability for the cells to proliferate was also reduced. H1299 cells were
arrested in the G2/M phase and cell cycle progression was inhibited. Furthermore, the results of western
blotting showed that nm23-H1 and vascular endothelial growth factor (VEGF) protein levels decreased in
a dose-dependent manner, while the pro-apoptotic protein and anti-apoptotic protein ratios and the level
of apoptosis-related caspase protein increased in a dose-dependent manner. In conclusion, our results
indicated that PAP, as a natural marine bioactive substance, inhibited proliferation and induced apoptosis
of human lung cancer H1299 cells. PAP is likely to be exploited as the functional food or adjuvant that
may be used for prevention or treatment of human non-small cell lung cancer in the future.
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1. Introduction

Primary bronchogenic carcinoma is referred to as lung cancer and can occur at various levels of
the bronchial epithelium or glands in the form of a malignant tumor [1]. The incidence and mortality
of lung cancer have increased year by year and lung cancer is a disease that seriously threatens human
health and life. According to statistics from the United Nations and the European Union, the lung
cancer is the most common cause of cancer death, with an estimated 388,000 lung cancer cases resulting
in death in Europe in 2018 [2]. In addition, according to the American Cancer Society’s 2018 report, the
numbers of new cancer diagnoses and cancer deaths in the United States in 2018 are estimated to be
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234,030 and 154,050, respectively, with lung cancer having the highest mortality rate in both sexes [3].
According to the pathological morphology, lung cancer generally can be classified into two categories:
small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). NSCLC represents 80% to 85%
of all lung cancers and the early diagnosis rate is low. About 85% of patients have distant metastases
or inoperable tumors at the time of diagnosis, leaving only comprehensive chemotherapy-based
treatment [4]. However, due to the poor sensitivity of NSCLC to chemotherapy and the lack of ideal
selective agents, toxicity and drug resistance to existing chemotherapy drugs, the dose of antitumor
drugs is limited, the efficacy is affected, and treatment can fail.

Peptides are important natural products in various organisms and their broad spectrum of
activities promotes the completion of various complex physiological functions in the body. The
requirements for life in the ocean cause marine organisms to produce and accumulate a large number
of peptides with unique structures and special biological activities. Extensive research has found that
some marine peptides or their derivatives have potential as nutrient supplements or have medicinal
value, such as antimicrobial peptides [5], antiviral peptides [6], antitumor/cytotoxic peptides [7],
angiotensin-I-converting enzyme (ACE) inhibitory peptides [8], and antioxidant peptides [9,10].
Many of these have been developed as pharmaceutical or dietary supplements. Recently, many
polypeptide fractions were isolated from marine organisms with potent anti-proliferative activity
against cancer cells. For example, Yu et al. [11] demonstrated that a pentapeptide (Ile-Leu-Tyr-Met-Pro,
ILYMP) isolated from Cyclina sinensis protein hydrolysate could induce apoptosis in DU-145 prostate
cancer cells, whereas Wu et al. [12] reported that an oligopeptide (Tyr-Val-Pro-Gly-Pro, YVPGP) from
Anthopleura anjunae showed anticancer activity against DU-145 prostate cancer cells. Additionally,
Wang and Zhang [13] found an anti-proliferative peptide isolated from the protein hydrolysate
of Spirulina platensis that exhibited strong inhibition on HT-29 cancer cells with the half maximal
inhibitory concentration (IC50) of 99.88 µg/mL. Similarly, Pan et al. [14] purified a hexapeptide
(Phe-Ile-Met-Gly-Pro-Tyr, FIMGPY) from the protein hydrolysate of skate (Raja porosa) cartilage, which
exhibited dose-dependent anti-proliferative activity with an IC50 of 4.81 mg/mL against the HeLa cells.

Perinereis aibuhitensis belongs to the Annelida, Polychaeta, Errantia, Nereidae, Nereis genus [15]. It
is very common in rocky shores, rocks, algal cones and coral reefs or soft sediments in intertidal
zones. In recent years, due to the economics of Perinereis aibuhitensis rearing, it has provided
abundant materials for pharmacological research. It has been reported that Nereis extract shows
good insecticidal [16], antithrombotic [17], antihypertensive [18] and antimicrobial [19] activities.
However, there are few reports on the inhibitory effects of functional peptides from Perinereis
aibuhitensis on human lung cancer H1299 cells. Perinereis aibuhitensis peptide (PAP) is a decapeptide
(Ile-Glu-Pro-Gly-Thr-Val-Gly-Met-Met-Phe, IEPGTVGMMF) with anti-cancer activity that is purified
from an enzymatic hydrolysate of Perinereis aibuhitensis in our previous study [20]. However, the
mechanism of its anticancer activity was not well illustrated. In this study, in vitro cultured human
lung cancer H1299 cells were used to observe the effect of PAP on tumor cell proliferation, apoptosis
and metastasis, which may lead to another alternative high value-added utilization of Perinereis
aibuhitensis.

2. Results and Discussion

2.1. Effects of PAP on the Proliferation of H1299 Cells

Normal human cells are tightly regulated, but excessive proliferation of cells and uncontrolled
regulation of apoptosis can lead to uncontrolled growth of tumors. The inhibitory effect of PAP on the
proliferation of H1299 cells was determined using the CCK-8 method. There was a dose-dependent
inhibition of H1299 cell proliferation following PAP treatment (Figure 1). After treatment with 0.23 mM
PAP for 24 h, the inhibition rate of H1299 cells was 11.79%. When the concentration of PAP increased
to 0.92 mM, the inhibition rate was 67.03% after 24 h treatment. In addition, the inhibition rate of PAP
on H1299 cells was also positively correlated with treatment time and the inhibition rate of H1299 cells
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reached 95% after treatment with 0.92 mM of PAP for 72 h. The inhibitory effect of PAP was significant
after 48 h. When the concentration of PAP was between 0.23 and 0.46 mg/mL, significant inhibition on
H1299 cells was achieved by increasing the treatment time. The IC50 of PAP on H1299 cell proliferation
at 24 h, 48 h and 72 h were 0.69 mM, 0.38 mM and 0.27 mM, respectively. Furthermore, PAP has almost
no cytotoxic effects on the fibroblast NIH-3T3 cells (data was not shown). Similarly, the marine active
peptides Hem and Dol were reported to be cytotoxic to H1299 cells after conjugation with universal
BB agonist in a dose-dependent manner (with IC50 values of 15 and 25 nM, respectively) [21]. Yu
et al. [11] reported that the pentapeptide CSP (ILYMP, with an IC50 of 11.25 mM at 72 h) isolated
from Cyclina sinensis had inhibitory activity against DU-145 cells in a dose-dependent manner. Wu
et al. [12] demonstrated that the pentapeptide AAP-H (YVPGP, with IC50 values of 9.605 mM, 7.910
mM, and 2.298 mM at 24 h, 48 h, and 72 h, respectively), purified from the sea anemone Anthopleura
anjunae, also induced apoptosis in a dose- and time-dependent manner. In conclusion, PAP inhibited
the proliferation of H1299 cells in a dose- and time-dependent manner, and PAP concentrations below
0.92 mM had no obvious cytotoxicity to the normal cells.
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Figure 1. The inhibitory effect of Perinereis aibuhitensis peptide (PAP) on the proliferation of H1299 
cells. H1299 cells were treated with different concentrations of PAP for 24, 48 and 72 h. All data are 
presented as the mean ± standard deviation (SD) of three experiments. (*) Results are significantly 
different from the control (p < 0.05). 

2.2. Morphological Observations 

2.2.1. Inverted Microscope Observations 

Viewing the treated cells with an inverted microscope revealed visible damage to H1299 cells 
caused by PAP, which was enhanced with increasing of PAP concentrations. As shown in Figure 2, 
the control cells (Figure 2A) adhered to the bottom of the cell culture flasks and the cells grew tightly. 
When the cells were treated with 0.23 mM PAP, the cells were mostly rounded and dispersed (Figure 
2B). When the PAP concentration reached 0.46 mM (Figure 2C), a small number of cells exhibited an 
irregular shape, while most cells appeared round and bright. When the PAP concentration reached 
0.92 mM (Figure 2D), the treated cells became smaller and were longer stuck to the bottle but floated. 

Figure 1. The inhibitory effect of Perinereis aibuhitensis peptide (PAP) on the proliferation of H1299
cells. H1299 cells were treated with different concentrations of PAP for 24, 48 and 72 h. All data are
presented as the mean ± standard deviation (SD) of three experiments. (*) Results are significantly
different from the control (p < 0.05).

2.2. Morphological Observations

2.2.1. Inverted Microscope Observations

Viewing the treated cells with an inverted microscope revealed visible damage to H1299 cells
caused by PAP, which was enhanced with increasing of PAP concentrations. As shown in Figure 2, the
control cells (Figure 2A) adhered to the bottom of the cell culture flasks and the cells grew tightly. When
the cells were treated with 0.23 mM PAP, the cells were mostly rounded and dispersed (Figure 2B).
When the PAP concentration reached 0.46 mM (Figure 2C), a small number of cells exhibited an
irregular shape, while most cells appeared round and bright. When the PAP concentration reached
0.92 mM (Figure 2D), the treated cells became smaller and were longer stuck to the bottle but floated.
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Figure 2. Morphological observation by inverted microscopy (× 200). H1299 cells were untreated (A) 
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drug treatment, which can help to determine the appropriate dose and timing of drug intervention. 
Nuclear chromatin was condensed and distributed along the nuclear membrane in early apoptotic 
cells. Subsequently, the chromatin further condensed to form apoptotic bodies and the cells entered 
late apoptosis. The cells in the control group had intact nuclei with uniform green fluorescence and 
clear cell boundaries observed (Figure 3A). Cells with early apoptotic cell nuclei exhibited yellow-
green fluorescence following treatment with 0.23 and 0.46 mM PAP for 24 h, while late-stage 
apoptotic cells with concentrated and asymmetrically localized nuclear and unclear cyto-membranes 
were also observed. As the PAP concentration increased to 0.92 mM, apoptotic bodies formed by 
chromatin condensation or cleavage and the number of late apoptotic cells increased, with necrotic 
cells showing uneven orange-red fluorescence also observed (Figure 3D). The AO/EB staining results 
also revealed that the apoptotic characteristics of H1299 cells caused by PAP treatment occurred in a 
dose-dependent manner. 

Figure 2. Morphological observation by inverted microscopy (× 200). H1299 cells were untreated
(A) or treated with 0.23 mM PAP (B), 0.46 mM PAP (C) and 0.92 mM PAP (D). Each experiment was
performed in triplicate and the cells exhibited similar morphological features.

2.2.2. AO/EB Fluorescence Staining Results

Acridine orange/ethidium bromide (AO/EB) staining is commonly used for cell morphology
and cell cycle analysis. Before the apoptotic rate was calculated by Annexin V-FITC/PI Apoptosis
Detection Kit, AO/EB fluorescence staining was used to provide an indication of apoptosis following
drug treatment, which can help to determine the appropriate dose and timing of drug intervention.
Nuclear chromatin was condensed and distributed along the nuclear membrane in early apoptotic
cells. Subsequently, the chromatin further condensed to form apoptotic bodies and the cells entered
late apoptosis. The cells in the control group had intact nuclei with uniform green fluorescence
and clear cell boundaries observed (Figure 3A). Cells with early apoptotic cell nuclei exhibited
yellow-green fluorescence following treatment with 0.23 and 0.46 mM PAP for 24 h, while late-stage
apoptotic cells with concentrated and asymmetrically localized nuclear and unclear cyto-membranes
were also observed. As the PAP concentration increased to 0.92 mM, apoptotic bodies formed by
chromatin condensation or cleavage and the number of late apoptotic cells increased, with necrotic
cells showing uneven orange-red fluorescence also observed (Figure 3D). The AO/EB staining results
also revealed that the apoptotic characteristics of H1299 cells caused by PAP treatment occurred in a
dose-dependent manner.
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Figure 3. Morphological observation by Acridine orange/ethidium bromide (AO/EB) staining (×
200). H1299 cells were treated with PAP at 0 Mm (A), 0.23 mM (B), 0.46 mM (C), and 0.92 mM (D)
for 24 h. The red circles in Figure 3B,C indicate early apoptotic cells, while the red circle in Figure 3D
indicates late apoptotic cells. Each experiment was performed in triplicate and the cells exhibited
similar morphological features.

2.3. Cell Apoptosis Analysis

In the early stages of apoptosis, phosphatidylserine (PS) flips to the surface of the cell membrane
and annexin-V is able to bind PS with high affinity. In addition, propidium iodide (PI) can penetrate
the incomplete cell membrane to stain the nucleus red, which distinguishes between late apoptotic cells
and necrotic cells. The Annexin V-FITC/PI Apoptosis Detection Kit can quantitatively measure the
early apoptotic status of cells. Flow cytometry was used to quantitatively detect the apoptosis rate of
PAP-treated H1299 cells, which is shown in Figure 4, where the upper left quadrant represents necrotic
cells, the lower left quadrant represents normal living cells, the upper right quadrant represents late
apoptotic cells, and the lower right quadrant represents early apoptotic cells. After 24 h of treatment
with PAP, Annexin V-FITC/PI staining showed that PAP increased apoptosis in H1299 cells in a
dose-dependent manner. As shown in Figure 4, the rates of early and late apoptotic stages in H1299
cells without PAP treatment were 4.18% and 3.65%, respectively, with 92.08% of the cells appearing
healthy. As the concentration of PAP increased, the number of late apoptotic cells increased from
2.83% to 10.42% and the percentage of cells in the early stages of apoptosis increased dramatically
from 13.11% to 39.95%.
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proliferation of tumor cells. Similarly, Huang [22] reported that the oligopeptide (Gln-Pro-Lys, SIO) 
from Sepia ink significantly inhibited the S phase of PC-3 cells and the number of cells in the G0/G1 
phase showed a similar increase. SIO arrested PC-3 cells in the G0/G1 phase in a dose-dependent 
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Figure 4. The apoptotic effect of PAP on H1299 cells as determined by flow cytometry. The percentages
of early apoptotic cells were 4.18% in the blank control cells (A); 13.11% in the 0.23 mM PAP-treated
cells (B); 19.24% in the 0.46 mM PAP-treated cells (C); and 39.95% in the 0.92 mM PAP-treated cells (D).
One representative apoptosis analysis of three independent experiments was presented.

2.4. Effects of PAP on the Cell Cycle Distribution of H1299 Cells

The cell cycle is the series of events that a cell undergoes from the completion of one division phase
to the end of the next. In general, the cell cycle can be divided into interphase (phase I) and mitosis
(M phase) and the DNA content of cells is different in different stages. PI, a DNA-binding fluorescent
dye, exhibits a fluorescence intensity proportional to the amount of DNA bound to intracellular DNA.
Therefore, the distribution of DNA in each phase of the cell cycle is directly reflected by flow cytometry
and the proportions of cells in the G0/G1 phase, S phase and G2/M phase can be accurately quantified.
In the present study, we determined the cell cycle distribution of H1299 cells treated with PAP. The first
peak in Figure 5A represents cells in the G0/G1 phase, the second peak represents cells in the G2/M
phase and the valley is cells in the S phase. The proportion of cells in each phase is shown in Figure 5B.
After treatment with PAP at 0.23, 0.46 and 0.92 mg/mL for 24 h, the proportion of cells in the S phase in
H1299 cells significantly increased from 12.28% to 21.79%. Moreover, there was a decreased proportion
of H1299 cells in the S phase (from 42.29% to 16.87%). This result indicated that PAP induced G2/M
phase arrest in a dose-dependent manner to arrest the proliferation of tumor cells. Similarly, Huang [22]
reported that the oligopeptide (Gln-Pro-Lys, SIO) from Sepia ink significantly inhibited the S phase of
PC-3 cells and the number of cells in the G0/G1 phase showed a similar increase. SIO arrested PC-3
cells in the G0/G1 phase in a dose-dependent manner. Meanwhile, Yang et al. [23] showed that DU-145
cells treated with a tetrapeptide (Asp-Trp-Pro-His, PROI-1) had a significantly reduced number of cells
in the S phase, leading to induction of G2/M phase arrest and apoptosis.
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Figure 5. (A) Effects of PAP on the cell cycle progression of H1299 cell lines. H1299 cells were treated
with PAP at 0, 0.23, 0.46, and 0.92 mM for 24 h. Flow cytometry was used to define the cell cycle
distribution in comparison with controls. (B) Percentages of H1299 cells in the G0/G1, S and G2/M
phases. All data are presented as the mean ± standard deviation (SD) of three experiments. (*) Results
are significantly different from the control (p < 0.05).

2.5. Western Blotting Results

Apoptosis is a process of programmed cell death that is induced by specific signals produced by
various physiological or pathological stimuli. Therefore, the analysis of signaling factors involved in
the regulation of apoptosis is useful for elucidating the mechanism of action of the anti-proliferative
effects of drugs. To further verify the effects of PAP on H1299 cells and explain the underlying
mechanisms, western blotting was used to investigate the expression of apoptosis-related proteins in
treated H1299 cells.

Apoptosis is regulated by key regulatory proteins of the Bcl-2 family. Most Bcl-2 family proteins
play a role at the mitochondrial level, and excessive apoptosis caused by abnormal changes in the levels
of Bcl-2 proteins is a key step in tumor progression [24,25]. Up-regulation of Bcl-2 gene expression
is conducive to the inhibition of apoptosis and anti-apoptotic effect [26]. The Bax gene also belongs
to the Bcl-2 gene family and Bax forms a heterodimer with Bcl-2, which inhibits Bcl-2 and promotes
apoptosis [27]. A previous study found that the proportional relationship between Bax/Bcl-2 proteins
is a key factor in determining the inhibition of apoptosis [24,25]. As shown in Figure 6, PAP showed
pro-apoptotic activity against H1299 cells with the Bax/Bcl-2 expression ratios of 1.47%, 2.52% and
6.67%, when the cells treated with 0.23, 0.69 and 0.92 mg/mL of PAP, respectively. Huang [22] reported
that SIO induced the death of prostate cancer cells (DU-145, PC-3, and LNCaP) and showed an increase
in the Bax/Bcl-2 ratio. Furthermore, Wan et al. [28] found that an oligopeptide (KIKAVLKVLTT)
derived from melittin induced the death of thyroid cancer TT cells via upregulation of Bax and
down-regulation of Bcl-2. Our results also indicated that PAP induced apoptosis of H1299 cells by
up-regulating the Bax/Bcl-2 ratio, which was consistent with previous studies.
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Caspase proteins are proteolytic enzymes that play important roles in programmed cell death.
They can be further subdivided into the following two types according to their function in apoptosis:
initiator (caspases-9) and effector (caspases-3) caspases [29]. Caspase-9 is activated upon cytochrome c
release and acts to activate effector caspase and the pro-apoptotic protein Bid, which ensures that cells
with an apoptosome will die without effector caspase. Furthermore, caspase-3 is a major executor of
apoptotic death, which makes cell death more effective. PAP significantly up-regulated the expression
of caspase-9 and caspase-3. When the PAP concentration ranged from 0 to 0.92 mg/mL, the relative
intensities with caspase-9 and caspase-3 increased from 0.58 to 0.78 and 0.15 to 0.30, respectively. This
indicated that PAP treatment causes a cascade of reactions in H1299 cells leading to apoptosis.

Nm23-H1 is widely used as an important indictor to determine tumor metastasis. The nm23-H1
protein is highly similar to the α-chain amino acid sequence of the nucleoside diphosphate kinase
(NDPK) and has the same activity. It plays a role in cell growth and tumor metastasis by catalyzing
the conversion of guanosine triphosphate GTP to guanosine diphosphate (GDP), participating in
the polymerization and disintegrating tubulin or by regulating GDP synthesis to participate in
G-protein-regulated transmembrane signaling [29]. For example, L9981 cells transfected with nm23-H1
cDNA showed lower expression of nm23-H1 than untransfected cells, and tumor proliferation and
invasiveness decreased at the same time [30]. The results of this experiment also showed that the
lower the expression of nm23-H1, the lower the degree of tumor differentiation, and the results of the
apoptosis experiment were consistent with the western blotting results [31].

VEGF is an essential angiogenic growth factor. High levels of VEGF were found in approximately
one-third of NSCLC [32]. VEGF promotes angiogenesis, regulates the apoptosis of vascular endothelial
cells and alveolar epithelial cells and increases the permeability of blood vessels, which leads to
sustained tumor growth. For example, Xu [33] studied the inhibitory effect of MUC1 on NSCLC cells
and the results of western blotting indicated that MUC1 significantly reduced the levels of VEGF and
VEGF-C proteins, indicating that MUC1 has an anti-angiogenic effect and can be used as a potential
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treatment for NSCLC. In the present study, the expression level of VEGF decreased significantly when
the PAP concentration increased, indicating that PAP could inhibit tumor angiogenesis and inhibit
tumor growth.

3. Materials and Methods

3.1. Materials and Reagents

In a previous study, the peptide PAP (IEPGTVGMMF) was prepared by our laboratory and
preserved at −20◦C until further use (Figure 7) [20]. The H1299 cell lines and NIH-3T3 cell lines
were stored in our laboratory. Cell Counting Kit-8 (CCK-8) and Cell Cycle and Annexin V-FITC/PI
Apoptosis Detection Kit were purchased from BestBio Biotechnology (Shanghai, China). The BCA
protein detection kit was purchased from Jiancheng Bio-Technology Co., Ltd. (Nanjing, China).
Antibodies against β-actin (cat. no. TA-09), Bax (cat. no. 2772S), Bcl-2 (cat. no. 2872S), nm23-H1 (cat.
no. bs-1066P), VEGF (cat. no. AF1309), Caspase-3 (cat. no. 9662S), and Caspase-9 (cat. no. 70R-11636)
were purchased from ZSGB Biotechnology (Beijing, China). All other reagents used in this study were
of analytical grade.
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3.2. Detection of Anti-Proliferation Activity Using CCK-8

The CCK-8 detection kit is a simple and accurate method that is widely used in cell proliferation
analysis [22]. The following steps were performed, according to the method of Huang et al. [22]
with slight modifications. H1299 cells were adjusted to approximately 1 × 104 cells/100 µL/well in
a 96-well tray and incubated overnight in a 5% CO2 incubator (Forma 3111 CO2 incubator, Thermo
Forma, Waltham, MA, USA) at 37 ◦C. The cells were then treated with PAP at final concentrations of 0,
0.23, 0.46, 0.69 and 0.92 mM for 24, 48 or 72 h. After the treatment was completed, the culture medium
was removed, and 90 µL of phosphate-buffered saline (PBS) and 10 µL CCK-8 were added to each well.
Incubation was carried out for 4 h under conventional conditions in a CO2 incubator and the optical
density (OD) value was measured with an automatic microplate reader (SpectraMax M2, Molecular
Devices, Sunnyvale, CA, USA) at a detection wavelength of 450 nm. The following equation was used
to calculate the relative inhibition rate of cell proliferation:

Relative inhibition rate (%) = (1 − (ODtreated/ODcontrol)) × 100%.
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3.3. Cell Morphology Observation Using an Inverted Microscope

H1299 cells (approximately 1 × 105 cells/well) were seeded in a 6-well flat-bottom plate and
incubated for 24 h in a 5% CO2 incubator at 37 ◦C. The culture medium was then removed and the
cells were treated with PAP at a final concentration of 0, 0.23, 0.46 and 0.92 mM. After incubation for
another 24 h, morphological changes in the cells were observed using a CKX4 inverted microscope
(OLYMPUS, Tokyo, Japan).

3.4. Cell Morphological Analysis by AO/EB Staining

To observe the morphological characteristics of H1299 cells at different stages of apoptosis,
cells were stained using AO/EB fluorescence staining as described by Huang et al. [34], with slight
modifications. Cleaned coverslips were placed in a 6-well plate (approximately 1 × 105 cells/well) and
H1299 cells were seeded as previously described. After the cells were attached, the cells were treated
with final concentrations of 0, 0.23, 0.46 and 0.92 mM PAP for 24 h. The coverslips were washed 2 to
3 times with PBS (pH 7.2) and fixed in 95% ethanol for 30 min. Drops containing 50 µL of PBS and
6 µL of AO/EB mixture (0.1 mg/mL AO and EB in PBS, pH = 7.2) were placed on microscope slides,
and the side of the coverslip to which the cells had adhered was placed in contact with the AO/EB
droplet. Cell morphology was observed by a BX41 fluorescence microscope (OLYMPUS, Tokyo, Japan)
and photographed.

3.5. Cell Apoptosis Analysis Using Annexin V FITC/PI

To confirm PAP-induced apoptosis of H1299 cells, flow cytometry was performed as described by
Yoon et al. [35]. H1299 cells were seeded in 25-mL culture bottles (approximately 1 × 105 cells/mL).
After 24 h incubation, cells were treated with different final concentrations (0, 0.23, 0.46 and 0.92 mM)
of PAP and cultured for 24 h. Cells were then harvested following treatment and digested with trypsin.
The suspended cells were then collected by centrifugation (1000 rpm, 5 min) and were stained with
Annexin V-FITC and PI using the Annexin V-FITC Apoptosis Detection Kit. Finally, apoptosis was
immediately detected by flow cytometry (Becton Dickinson, NJ, USA).

3.6. Cell Cycle Analysis by Propidium Iodide Staining

To investigate whether PAP controls the cell cycle to achieve apoptosis, flow cytometry was
used to measure the different cell cycle phases of H1299 cells, following the method described by Li
et al. [36]. H1299 cells in the logarithmic growth phase were inoculated into a 6-well plate and the
cells were cultured for 24 h until they had completely adhered to the bottom of the plate. Different
concentrations of PAP (0, 0.23, 0.46 and 0.92 mM) were added to the cells and they were incubated for
24 h. Then cells were trypsinized, harvested and washed twice with pre-cooled PBS. Briefly, RNase A
was added to the cells obtained by centrifugation and the mixture was incubated at 37 ◦C for 30 min.
Finally, 350 µL of PI was added, mixed and incubated at 4 ◦C for 5 min in the dark. The solution was
subsequently filtered with a 200 mesh sieve and a cell cycle curve was obtained using flow cytometry.

3.7. Detection of Protein Expression by Western Blotting

To confirm the apoptotic effects of PAP on H1299 cells, we performed western blotting according
to the method described by Peng et al. [37]. H1299 cells were seeded in a 6-well plate (approximately
1 × 105 cells/mL) and treated with different final concentrations of PAP (0, 0.23, 0.46 and 0.92 mM).
After treatment with PAP for 24 h, cells were harvested and lysed in RIPA lysis buffer. The extracted
proteins were quantified by the bicinchoninic acid (BCA) total protein assay kit. SDS-PAGE was used
to separate proteins, which were subsequently blotted onto PVDF membranes (Millipore, Billerica,
MA, USA). Five percentage of skim milk was used as a blocking solution for 1 h and incubated
overnight with the primary antibodies (Bcl-2, Bax, nm23-H1, VEGF, Caspase-3, and Caspase-9) at 4 ◦C.
After washing twice with TBST (10 mL Tris-buffered saline with 20% Tween-20) and once with TBS
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(10 mL Tris-Buffered saline), membranes were incubated with the secondary antibodies for 2 h. Finally,
membranes were washed as noted above and combined with enhanced chemiluminescence (ECL)
reagents and images were captured using an Alpha FluorChem FC3 imaging system (ProteinSimple,
San Jose, CA, USA). β-actin was used as an internal control. Image J 1.38 software (NIH, Bethesda,
MD, USA) was used to quantify and record the OD.

3.8. Statistical Analysis

All experimental data are expressed as the mean ± standard deviation (x ± s, n = 3), and were
analyzed using SPSS software version 24.0 (SPSS Inc., Chicago, IL, USA). Statistical significance of the
data was compared using one-way analysis of variance (ANOVA). The least significant difference (LSD)
was used for post hoc multiple comparisons, and p < 0.05 indicates a statistically significant difference.

4. Conclusions

In the present study, PAP (Ile-Glu-Pro-Gly-Thr-Val-Gly-Met-Met-Phe, IEPGTVGMMF) that was
purified from an enzymatic hydrolysate of Perinereis aibuhitensis showed anti-cancer activity toward
H1299 cells. The CCK-8 results showed that PAP inhibited the proliferation of H1299 cells in a time-
and dose-dependent manner. The apoptotic status of the cells was also observed with an inverted
microscope and AO/EB staining. The results of flow cytometry showed that PAP could induce
apoptosis of H1299 cells and the apoptosis rate increased with increasing drug dosage. Therefore,
PAP may inhibit the growth of malignant lung cancer cells by inducing G0/G1 phase arrest and
tumor cell apoptosis. Furthermore, the results of western blotting showed that the expression of
nm23-H1 and VEGF protein decreased in a dose-dependent manner, while the ratio of pro-apoptotic
proteins and anti-apoptotic proteins, apoptosis-related caspase proteins increased in a dose-dependent
manner. In conclusion, our results indicated that PAP has the potential to be used as the functional or
adjuvant food for the prevention or treatment of human NSCLC in the future. However, studies on
the structure–activity relationship of PAP and studies on the anticancer activity in vivo of this peptide
need to be performed.
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