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High quality genome sequence and description
of Enterobacter mori strain 5–4, isolated from a
mixture of formation water and crude-oil
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Abstract

Enterobacter mori strain 5–4 is a Gram-negative, motile, rod shaped, and facultatively anaerobic bacterium, which
was isolated from a mixture of formation water (also known as oil-reservior water) and crude-oil in Karamay oilfield,
China. To date, there is only one E. mori genome has been sequenced and very little knowledge about the mechanism
of E. mori adapted to the petroleum reservoir. Here, we report the second E. mori genome sequence and annotation,
together with the description of features for this organism. The 4,621,281 bp assembly genome exhibits a G + C content
of 56.24% and contains 4,317 protein-coding and 65 RNA genes, including 5 rRNA genes.
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Introduction
The genus Enterobacter was created by Hormaeche and
Edwards in 1960 [1]. Members of the genus were isolated
mostly from the environment, in particular from plants
and recognized as notorious plant pathogens, but were
also frequently isolated from hospitals, notably in health-
care associated infections and recognized as opportunistic
pathogens [2,3]. Twenty-nine validly published species
and 2 subspecies have previously been recorded in the
genus Enterobacter. However, 17 of the validly named spe-
cies have been subsequently reclassified as members of 11
other genera. As of Oct 2014, this genus contains only 10
species and two subspecies [4]. As of Oct, 2014, a total of
116 Enterobacter strains have been sequenced and 29
genome sequences were published [5-12], however, only
one genome of E. mori isolated from diseased mulberry
roots has been sequenced [13]. E. mori strain 5–4 is a
Gram-negative, motile, rod shaped, and facultatively
anaerobic bacterium, isolated from a crude-oil well. It
is worthy of note that E. mori strain 5–4 is capable of
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degrading petroleum (Additional file 1). In order to elu-
cidate comprehensive alkane degradation pathways and
adaption mechanism in E. mori strain 5–4, whole-genome
sequence analysis was thus conducted. Here, we present a
summary classification and a set of features for E. mori
strain 5–4, together with the description of the genomic
sequencing and annotation.
Classification and features
A formation water sample was collected from Karamay
Oilfield, Xinjiang, China, in 2012. The water sample was
preserved at −80°C immediately after collection and sent
to the lab. E. mori strain 5–4 was isolated after cultivation
on LB agar medium at 37°C. The optimum temperature for
growth is 35°C, with a temperature range of 4-45°C
(Table 1). Growth occurs under aerobic condition. Grows
at pH 5.5-10.0, and optimally at pH 7.0. Cell morphology
was examined by using scanning electron microscopy
(Quanta 200, FEI Co., USA). Colonies are light yellow,
smooth, circular with entire margins, with a diameter
ranging 0.3-0.8 μm, and from 0.6 to 1.8 μm long (Figure 1).
Themethyl red test is negative. H2S and indole are not
produced. Casein and starch are not hydrolysed; gelatin
is hydrolysed. Sorbitol, glycerol, tetradecane and hexa-
decane are utilized as the carbon source, while lactose,
rhamnose, glucose, maltose, cellobiose, galactose, raffinose
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Table 1 Classification and general features of Enterobacter mori strain 5–4 according to the MIGS recommendations [14]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [15]

Phylum Proteobacteria TAS [16]

Class Gammaproteobacteria TAS [17,18]

Order Enterobacteriales TAS [19]

Family Enterobacteriaceae TAS [20-22]

Genus Enterobacter TAS [20,23,24]

Species Enterobacter mori

Strain: Strain 5-4 IDA

Gram stain Negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation Non-sporulating IDA

Temperature range 4-45°C IDA

Optimum temperature 35°C IDA

pH range; Optimum Unknown IDA

Carbon source Sorbitol, glycerol, tetradecane and hexadecane IDA

MIGS-6 Habitat Environment IDA

MIGS-6.3 Salinity Growth in 0% ~ 7% NaCl IDA

MIGS-22 Oxygen requirement Aerobic IDA

MIGS-15 Biotic relationship Free living IDA

MIGS-14 Pathogenicity Unknown IDA

MIGS-4 Geographic location Karamay, China IDA

MIGS-5 Sample collection 2012 IDA

MIGS-4.1 Latitude 45°62’N IDA

MIGS-4.2 Longitude 85°02’E

MIGS-4.4 Altitude 460 m IDA
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [25].
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and sucrose are not utilized. Nitrite sodium and am-
monium chloride are utilized, while nitrate sodium is
not reduced. Antimicrobial susceptibility test showed
that this strain is susceptible to ampicillin, tetracyc-
line, erythromycin and gentamicin, and resistant to
kanamycin.
A comparative taxonomic analysis was conducted

based on the 16S rRNA nucleotide sequence. The rep-
resentative 16S rRNA nucleotide sequence of Entero-
bacter mori strain 5–4 was compared against the most
recent release of the EzTaxon-e database [26]. CLUSTAL
W was used to generate alignments with comparative
sequences collected from EzTaxon-e database [27].
The alignments were trimmed and converted to the
MEGA 6.06 format before phylogenetic analysis.
Phylogenetic inferences were made using Neighbor-
joining method based on Tamura-Nei model within
the MEGA 6.06 [28]. Phylogenetic tree indicated the
taxonomic status of strain 5–2, clearly classified into
the same branch with species E. mori type strain LMG
25706T (Figure 2).
Genome sequencing information
Genome project history
E. mori strain 5–4 was selected for whole genome sequen-
cing on the consideration of its potential relevance to
microbial enhanced oil recovery (MEOR). The genome
project is deposited in the Genome On Line Database
and the draft genome sequence is deposited in GenBank
under the accession JFHW00000000 and consists of 36
contigs. A summary of the project information and its



Figure 1 Scanning electron micrograph of cells of Enterobacter
mori strain 5–4 bar: 2.0 μm.

Zhang et al. Standards in Genomic Sciences 2015, 10:9 Page 3 of 7
http://www.standardsingenomics.com/content/10/1/9
association with MIGS version 2.0 compliance are shown
in Table 2 [14].
Growth conditions and DNA isolation
E. mori strain 5–4 was grown aerobically in Luria-Bertani
Broth. Cells in late-log-phase growth were harvested and
lysed by EDTA, lysozyme, and detergent treatment,
followed by proteinase K and RNase digestion. Genomic
DNA was extracted using the DNeasy blood and tissue kit
(Qiagen, Germany), according to the manufacturer’s rec-
ommended protocol. The quantity of DNA was measured
by the NanoDrop Spectrophotometer and Cubit. Then
10 μg of DNA was sent to BGI (Shenzhen, China) for se-
quencing on a Hiseq2000 (Illumina, CA) sequencer.
Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality High-quality draft

MIGS-28 Libraries used One pair-end 450 bp library

MIGS-29 Sequencing platforms Illumina HiSeq 2000

MIGS-31.2 Fold coverage 358.0 × (based on 450 bp library)

MIGS-30 Assemblers Velvet 1.2.07

MIGS-32 Gene calling method Glimmer 3.0

Locus Tag AA74

Genbank ID JFHW00000000

Genbank Date of Release April 2, 2014

GOLD ID Gi0064796

BIOPROJECT PRJNA224116

Project relevance Industrial

MIGS-13 Source Material Identifier CGMCC9982
Genome sequencing and assembly
Genomic DNA sequencing of E. mori strain 5–4 was
performed using Solexa paired-end sequencing technology
(HiSeq2000 system, Illumina). One DNA library was
generated (450 bp insert size, with Illumina adapter at
both end, detected by Agilent DNA analyzer 2100), then
sequencing was performed with a 2 x 100 bp pair end
sequencing strategy. Finally, a total of 6,652.30 M bp data
was produced and quality control was performed with the
following criteria: 1) Reads linkaged to adapters at both
end were considered as sequencing artifacts then removed.
2) Bases with quality index lower than Q20 at both end
was trimmed. 3) Reads with ambiguous bases (N) were
removed. 4) Single qualified reads were discarded (In this
situation, one read is qualified but its mate is not). Filtered
687.39 M clean reads were assembled into scaffolds using
the Velvet version 1.2.07 with parameters “-scaffolds no”
[29], then we use a PAGIT flow [30] to prolong the initial
contigs and correct sequencing errors to arrive at a set of
improved scaffolds.

Genome annotation
Predict genes were identified using Glimmer version 3.0
[31], tRNAscan-SE version 1.21 [32] was used to find tRNA
genes, whereas ribosomal RNAs were found by using
RNAmmer version 1.2 [33]. To annotate predict genes,
we used HMMER version 3.0 [34] to align genes against
Pfam version 27.0 [35] (only pfam-A was used) to find
genes with conserved domains. KAAS server [36] was used
to assign translated amino acids into KEGG Orthology [37]
with SBH (single-directional best hit) method. Translated
genes were aligned with COG database [38,39] using NCBI
blastp (hits should have scores no less than 60, e value is no
more than 1e-6). To find genes with hypothetical or pu-
tative function, we aligned genes against NCBI nucleotide
sequence database database (nt database was downloaded
at Sep 20, 2013 ) by using NCBI blastn, only if hits have
identity no less than 0.95, coverage no less than 0.9 , and
reference gene had annotation of putative or hypothetical.
To define genes with singnal peptide, we use SignaIP
version 4.1 [40] to identify genes with signal peptide with
default parameters. TMHMM 2.0 [41] was used to identify
genes with transmembrane helices.

Genome properties
The draft genome sequence of E. mori strain 5–4 was
assembled into 36 scaffolds with a assembly genome size
of 4,621,281 bp and a G + C content of 56.2% (N50 is
358,174 bp). These scaffolds contain 4317 coding sequences
(CDSs), 60 tRNAs (excluding 0 Pseudo tRNAs) and incom-
plete rRNA operons (3 small subunit rRNA and 2 large
subunit rRNAs). A total of 980 protein-coding genes
were assigned as putative function or hypothetical pro-
teins. 3625 genes were categorized into COGs functional



Table 4 Number of genes associated with the general COG fu

Code Value % age

J 202 4.68

A 1 0.02

K 400 9.27

L 149 3.45

B 1 0.02

D 59 1.37

V 146 3.38

T 228 5.28

M 266 6.16

N 136 3.15

U 130 3.01

O 176 4.08

C 295 6.83

G 499 11.56

E 604 13.99

F 94 2.18

H 230 5.33

I 120 2.78

P 421 9.75

Q 134 3.10

R 720 16.68

S 361 8.36

- 333 7.71

The total is based on the total number of protein coding genes in the annotated g

Table 3 Genome statistics

Attribute Value % of totala

Genome size (bp) 4,621,281 100.00

DNA Coding region (bp) 4,117,467 89.10

DNA G + C content (bp) 2,599,117 56.24

DNA scaffolds 36

Total genes 4,322 100.00

Protein-coding genes 4,317 99.88

RNA genes 65 1.51

Pseudo genes 17 0.39

Genes with function prediction 980 22.67

Genes assigned to COGs 3,625 83.87

Genes assigned to Pfam domains 3,995 92.43

Genes with signal peptides 420 9.72

Genes with transmembrane helices 1,085 25.10

CRISPR repeats 1 0.023
aThe total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome.
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groups (including putative or hypothetical genes). The
properties and the statistics of the genome are summa-
rized in Table 3 and Table 4.

Genome comparison
Genome alignment between E. mori 5–4 (JFHW00000000)
and E. mori type strain LMG 25706 T (AEXB00000000)
was performed by using Mauve [42]. Orthology identi-
fication was carried out by a modified method intro-
duced by Lerat [43]. Genome alignment showed that
some functional regions are highly homologous between
these two assemblies. The alignment also reveals some
discrepancies between them, some short stretches of
LMG 25706 T genome absent from the contigs in 5–4
(Figure 3A). However, two alkane 1-monooxygenase,
one alkanesulfonate monooxygenase, one putative alka-
nesulfonate transporter, one putative sulfate permease
and one alkanesulfonate transporter permease subunit
were identified in the genome. Alkane 1-monooxygenase
was found as one of the key enzymes responsible for
the aerobic transformation of n-alkanes [44]. Moreover,
nctional categories

Description

Translation, ribosomal structure and biogenesis

RNA processing and modification

Transcription

Replication, recombination and repair

Chromatin structure and dynamics

Cell cycle control, mitosis and meiosis

Defense mechanisms

Signal transduction mechanisms

Cell wall/membrane biogenesis

Cell motility

Intracellular trafficking and secretion

Posttranslational modification, protein turnover, chaperones

Energy production and conversion

Carbohydrate transport and metabolism

Amino acid transport and metabolism

Nucleotide transport and metabolism

Coenzyme transport and metabolism

Lipid transport and metabolism

Inorganic ion transport and metabolism

Secondary metabolites biosynthesis, transport and catabolism

General function prediction only

Function unknown

Not in COGs

enome.



Figure 2 Phylogenetic tree highlighting the position of E. mori 5–4 relative to other type strains within the genus Enterobacter. The
strains and their corresponding GenBank accession numbers for 16S rRNA genes are shown following the organism names. Bootstrap consensus
trees were inferred from 100 replicates, only bootstrap values > 50% were indicated. Xenorhabdus poinarii DSM 4768T was used as anoutgroup.
The scale bar, 0.0005 substitutions per nucleotide position.
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alkanesulfonate monooxygenase and alkanesulfonate trans-
porter may be responsible for organosulfur compound deg-
radation [45]. Comparison of these two strains revealed the
presence of a large core-genome (Figure 3B). They shared
3555 CDS in the genome. In addition, 759 CDS from the
Figure 3 Genome comparison between E. mori 5–4 and E. mori LMG 2
filled with a similarity plot. Height of the similarity plot indicates nucleotide
indicate the number of genes found to be shared among the indicated ge
5–4 genome were classified as unique, while 1097 CDS
from the LMG 25706 T genome were classified as unique.
Our genomic data will provide an excellent platform for
further improvement of this organism for potential appli-
cation in bioremediation.
5706T. (A). Alignment is represented as local colinear blocks (colored)
identity of both assemblies; (B). Numbers inside the Venn diagrams
nomes.
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Conclusions
Here, we report the second draft genome sequence and
description of E. mori, which was isolated from a mixture
of formation water and crude-oil. The genome revealed
two alkane 1-monooxygenase, one alkanesulfonate mono-
oxygenase, one putative alkanesulfonate transporter, one
putative sulfate permease and one alkanesulfonate trans-
porter permease subunit. Our genomic data of strain 5-4
provide a vast pool of genes involved in hydrocarbon
degradation and an excellent platform for further im-
provement of this organism for potential application in
bioremediation of oil-contaminated environments. And
further comparative genomic study between stain 5-4 and
other Enterobacter strains will give us a better understand-
ing of the evolution of environmental bacteria towards in-
dustrial application.

Additional file

Additional file 1: Figure S1. Crude-oil and liquid paraffin degradation
of E. mori 5–4. (A) Bio-degradation of crude-oil by E. mori 5–4 after 4-days
incubation; (B) Negative control of crude-oil degradation; (C) Bio-degradation
of liquid paraffin by E. mori 5–4 after 4-days incubation; (D) Negative control
of liquid paraffin degradation.
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