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Abstract: Motif occupancy identification is a binary classification task predicting the binding of
DNA motif instances to transcription factors, for which several sequence-based methods have
been proposed. However, through direct training, these end-to-end methods are lack of biological
interpretability within their sequence representations. In this work, we propose a contrastive learning
method to pre-train interpretable and robust DNA encoding for motif occupancy identification. We
construct two alternative models to pre-train DNA sequential encoder, respectively: a self-supervised
model and a supervised model. We augment the original sequences for contrastive learning with
edit operations defined in edit distance. Specifically, we propose a sequence similarity criterion
based on the Needleman–Wunsch algorithm to discriminate positive and negative sample pairs in
self-supervised learning. Finally, a DNN classifier is fine-tuned along with the pre-trained encoder
to predict the results of motif occupancy identification. Both proposed contrastive learning models
outperform the baseline end-to-end CNN model and SimCLR method, reaching AUC of 0.811 and
0.823, respectively. Compared with the baseline method, our models show better robustness for small
samples. Specifically, the self-supervised model is proved to be practicable in transfer learning.

Keywords: contrastive learning; edit distance; data augmentation; sequence similarity; motif
occupancy identification; pre-training

1. Introduction

Transcription factor (TF) is a type of bio-functional proteins which can bind to a
specialized DNA sequence. When binding to a DNA sequence, a TF controls the rate
of transcription, where segments of the bound DNA containing genetic information is
transcribed to messenger RNA [1,2]. The motif occupancy identification task is a binary
classification task of predicting the binding of DNA motif instances to TF proteins [3].
Therefore, motif occupancy identification provides an important measure of binding affinity
between DNA sequences and TFs.

In the past few years, several sequence-based methods for motif occupancy identi-
fication have been proposed. Ghandi et al. [4] proposed a gapped k-mer support-vector
machine (gkm-SVM) based on SVM classifier and k-mer method, which combined conven-
tional biology approach and machine learning for biology sequence analysis and function
prediction. Zeng et al. [3] took advantage of the windowed kernel and deep learning char-
acters of the convolutional neural network (CNN) to encode DNA sequences and predicted
DNA-protein binding using a deep neural network (DNN). Based on the work of Zeng et al.,
Li et al. [5] introduced Bayesian method to the CNN model, preventing over-fitting prob-
lems of the original method. The methods above enhance the classification results benefiting
from improved model structures. However, these methods are all direct training methods
and their sequence encoders directly rely on the classification.

In this work, based on contrastive learning, we propose an interpretable and robust
pre-training method for sequence encoders from the perspective of sequence representation
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and encoding. Our method aims at mining the implicit information of DNA sequences
and acquiring helpful DNA representations for motif occupancy identification. Two main
techniques applied in our work are contrastive learning and sequence edit similarity.

Contrastive learning is a branch of self-supervised learning methods and has been
widely applied in computer vision field [6–8]. The pretext tasks developing from contrastive
learning has also been used to self-supervised label generation and sequence encoding
tasks in natural language processing, making it possible to process self-supervised data
with supervised methods [9].

The most common type of contrastive learning is self-supervised contrastive learning,
which defines similar pairs (positive samples) and dissimilar pairs (negative samples) from
unlabeled dataset. Self-supervised learning methods try to get similar pairs closer and
keep dissimilar pairs far away from each other in their representation space [10]. The
representations are expected to be clustered in a self-supervised way. To discriminate
similar samples from dissimilar samples, a variety of methods have been proposed, such as
dictionary query [7] and contrast between augmented samples [8].

Moreover, the idea of contrastive learning has also been adopted on supervised data
supporting classification, leading to supervised contrastive learning [11,12]. Compared
to self-supervised contrastive learning, supervised contrastive learning introduces real
label information about data and constructs correct positive and negative samples. Thus,
supervised contrastive learning is able to discriminate misleading similar samples from
different classes and vice versa.

Recently, contrastive learning has played a role in some biology sequence encoding
tasks. Zou et al. [13] adopted two Hidden Markov Models to encode DNA sequences and
applied contrastive analysis to DNA representations. Their results provide a powerful
exploratory tool for biology. Wang et al. [14] combined contrastive learning with adver-
sarial learning. They applied the auto-encoder to learn representations of single-cell RNA
sequences and matched local distribution using the contrastive loss function, aiming at
removing batch effects in single-cell RNA-seq data. Ciortan et al. [15] came up with a
contrastive learning method for scRNA sequence encoding and clustering. They randomly
masked each raw sequence to obtain two augmented sequences as a positive pair, and
assigned sequences from different pairs as negative samples. Wan et al. [16] proposed a
similar method which assigned the original sequence and the augmented one as a pair of
positive samples. The works above show that contrastive learning is capable of encoding
bio-macromolecular (especially genetic) sequences based on clustering and generating
sequence representations for downstream classification.

In our method, to research on possible pre-training strategies of contrastive learning,
two alternative models based, respectively, on self-supervised and supervised contrastive
learning are constructed, which are different in contrastive strategies and possess respec-
tive advantages.

Another technique applied in our work is the sequence similarity based on edit
distance. Raw DNA sequences are represented by character strings. We introduce a
sequence similarity criterion for positive or negative sample assignment in contrastive
learning. The similarity between character strings can be calculated based on edit distance.
Given a source string xi and a target string xj, edit distance quantifies the minimum
number of edit operations to transform xi to xj. The realization of edit distance is related
to the definition and weight assignment of edit operations [17]. Some parameterized
algorithms [18,19] and databases [20,21] for bio-sequence similarity based on edit distance
have been applied to sequence alignment problems in bioinformatics.

In our method, we introduce a sequence similarity criterion for positive and negative
DNA pair labeling in self-supervised contrastive learning based on the Needleman–Wunsch
algorithm [18]. The algorithm is applicable to the computation of minimum edit distance
as well as maximum similarity of two character strings such as a pair of DNA sequences.
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2. Materials and Methods
2.1. Dataset and DNA Sequences

Our dataset is sampled from the datasets (accessed on 1 August 2020) constructed
by Zeng et al. [3]. The full datasets are from Encyclopedia of DNA Elements (ENCODE)
database [22] and consist of ChiP-seq experiments [23] on 422 TFs. We use the full datasets
for some statistics about sequence similarity distribution searching for best threshold hyper-
parameter setting. We sample 40 out of 422 datasets for model training and evaluation as
contrastive learning requires much more time for training than end-to-end CNN model
proposed by Zeng et al. [3].

All DNA sequences in the dataset are of same length, containing L = 101 basic groups.
The sequences are central sub-sequences of DNA motif instances, in which only positive
samples overlap with ChIP-seq regions. In other words, the label of a DNA sequence
is determined by whether it bind with any TF. In our work, the basic groups of DNA
sequence are vectorized into 4-channel one-hot [24] encoding. Adenine (token A), thymine
(token T), cytosine (token C), guanine (token G) are, respectively, represented by [1, 0, 0, 0]T ,
[0, 1, 0, 0]T , [0, 0, 1, 0]T and [0, 0, 0, 1]T . The null token N (i.e., unknown basic group) is
represented by [0, 0, 0, 0]T . The input DNA sequences are encoded as L× 4 tensors.

2.2. Model Overview

To explore possible pre-training strategies with our method, we design two alterna-
tive contrastive learning for representation (CLR) models: self-supervised editCLR and
supervised supCLR, both with the same structure of DNA sequence encoder and feature
classification shown in Figure 1. The differences between the two models lie in their strategy
of contrastive sample labeling and loss function definition, and their unique characteristics
are, respectively, elaborated in Sections 2.5 and 2.6. The structures of the CNN encoder and
DNN classifier refer to the DeepSEA [25] and DeepBind [26] architecture.

DNN Classifier 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contrastive Learning 
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Figure 1. An overview of our (a) CNN encoder and contrastive learning procedure and (b) DNN
classifier. Sequences ’AG. . . CTA’ and ’TT. . . GCA’ are examples of a mini-batch input raw DNA
sequences. Conv denotes a convolution layer. FC denotes a full connection layer. The mark ’code’
represents encoded features and ’pred’ represents output prediction scores.

The encoder is composed of a convolutional layer and a global max pooling layer.
The convolutional layer extracts local sub-sequential information of input sequence x with
fixed-sized kernels. The stride of convolution is set to 1 to traverse the whole sub-sequential
space. Multiple convolutional kernels with different weights extract windowed features
from a variety of perspectives. Each channel of feature vector will be filtered into one most
important numerical value by global max pooling and concatenated with other channel
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digits into an encoded feature z. The DNN classifier consists of two full connection layers
and one Dropout layer between them [27].

For a single DNA sequence, our referred end-to-end methods encode it with a CNN
encoder and directly classify it by the encoded features. Although these methods are
straightforward, they are lack of biological interpretability. In this work, we apply the
thinking of contrastive learning and design a strategy for encoder pre-training with a
contrastive loss function. Pre-trained by our contrastive learning method, the CNN encoder
learns inherent and prior rules about motif occupancy identification and helps the classifier
with final inference.

We introduce our detailed methods in the following sections. Sections 2.3 and 2.4
are about sequence similarity computation and data pre-processing. Section 2.5 illustrates
our self-supervised model editCLR. Section 2.6 illustrates our supervised model supCLR.
Finally, Section 2.7 discusses about our hyper-parameter settings. For better readability, we
list the meanings of important symbols in Table 1.

Table 1. A glossary of important symbols in this section.

Type Symbol Meaning

Variables

x, xi, xj input sequences
yi, yj classification labels of input sequences
xp

i p-th character of xi
xi1, xi2 augmented sequences of xi
z, zi1, zi2 encodes features of augmented sequences
τ constant temperature hyper-parameter
α zoom ratio hyper-parameter of learning rate
Lsel f total self-supervised contrastive loss
Lsup total supervised contrastive loss
Lsel f

i1
sample self-supervised loss of xi1

Lsup
i1 sample supervised loss of xi1

Sets

I full augmented sample set
A(i1), A augmented sample set excluding xi1
P(i1), P positive sample set of xi1
N(i1), N negative sample set of xi1

Functions

Fpq

(
xi, xj

) Needleman–Wunsch score between first p characters of xi
and first q characters of xj

chsim
(

xp
i , xq

j

)
character matching score between characters xp

i and xq
j

xsim
(

xi, xj

)
similarity score between sequences xi and xj

zsim
(
zi1, zp

)
cosine similarity score between features zi1 and zp

labelsel f
(

xi1, xj2

)
self-supervised similarity label between sequences xi1 and xj2

labelsup
(

xi1, xj2

)
supervised similarity label between sequences xi1 and xj2

2.3. The Needleman–Wunsch Algorithm and Sequence Similarity

Inspired by the common biological (especially genetic) sequence alignment methods [18,19]
and databases [20,21], we introduce the biological interpretability of sequence similarity based
on edit distance and the Needleman–Wunsch algorithm.

The Needleman–Wunsch algorithm is a dynamic programming algorithm based on
edit distance for sequence alignment [18]. The three key parameters of the algorithm are
Match, Mismatch and Indel score which determine the actual meaning of the results. In
our setting, the result about similarity scores 1 per Match and 0 per Mismatch and Indel.

The lengths of DNA sequences in our datasets are all same. Given two L-length
DNA sequences xi and xj, their Needleman–Wunsch score FLL

(
xi, xj

)
(abbreviated as FLL

function) is obtained by the iterative Equation (1) according to our parameter settings:

Fpq = max
{

Fp−1,q−1 + chsim
(

xp
i , xq

j

)
, Fp−1,q, Fp,q−1

}
, (1)
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where p denotes the index of xi and xp
i denotes the p-th character of xi. Similarly, q is the

index of xj and xq
j is the q-th character of xj. The character matching score chsim

(
xp

i , xq
j

)
is

defined by Equation (2).

chsim
(

xp
i , xq

j

)
=

{
1, xp

i = xq
j

0, xp
i 6= xq

j
. (2)

Equation (1) indicates that the Needleman–Wunsch score between xi and xj reaches
the maximum L only if they are identical. In addition, the minimum score is 0 only when
the deoxyribonucleotide types in two sequences are entirely different. Therefore we define
the similarity between two DNA strings xsim

(
xi, xj

)
be their Needleman–Wunsch score

divided by their common length L, that is Equation (3).

xsim
(
xi, xj

)
= FLL

(
xi, xj

)/
L. (3)

2.4. Sequence Edit Augmentation

Data augmentation [28,29] is a mainly used method for positive and negative sample
generation in self-supervised contrastive learning. The famous SimCLR model [8] aug-
mented the original data in two ways and obtained a pair of samples. The samples in the
same pair constitute a positive sample and those in different pairs are negative samples.

In our method, we augment our original DNA sequences by insertion, deletion and
substitution, which are edit operations defined by the Needleman–Wunsch algorithm. To
keep the parametric computing stable, we ensure the augmented sequences are in the same
length. The similarity (calculated by Equation (3)) between two augmented samples of one
original sequence is guaranteed to be larger than 90%.

As illustrated in Figure 2, for insertion operations, we insert random tokens at random
positions. Each insertion corresponds to a deletion operation to maintain the sequence
length. A substitution randomly replaces a token with another one and an individual
deletion is to replace a token with null token N. For a mini-batch data of size n, we acquire
2n augmented sequences.

A C CGT AG T
original sequence

A C C

G

T AG T

T

insertion & deletion

A C CGT NG T
deletion only

A C CG

A

AG T
substitution

T

Figure 2. An illustration of three DNA sequence edit augmentation ways. Tokens A, G, C, T denote
four types of deoxyribonucleotides and token N denotes unknown basic group or null token. Red
arrows denote inserting and blue ones denote removing.

2.5. Self-Supervised Contrastive Learning Based on a Sequence Similarity Criterion

We first construct a self-supervised contrastive learning model, named editCLR. In
editCLR, our criterion of sample pair labeling is not simply based on the original sequences
of augmented samples, but judging from their similarities.

A sequence similarity criterion with two thresholds is proposed to determine the
attributes of sample pairs. Given a pair of samples, if their similarity is greater than the
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positive threshold, they are treated as a positive pair. Or if the similarity is less than the
negative threshold, they are judged as a negative pair. Specifically, the quantity demand
of negative pairs is much higher than that of positive pairs in contrastive learning; thus,
we avoid the circumstance that a pair with low similarity becomes a positive one. We
assign the thresholds with the following standard: if a similarity lies in the interval where
the ratio of positive pairs is not significant and the variance of distribution is high, it
must be between the positive and negative thresholds, where the pair is regarded as a
neutral one. The neutral pairs will not participant in the loss calculation in self-supervised
contrastive learning.

To explore the relationship between sequence similarities and classification results, we
randomly sample 0.01% of possible sequence pairs (about 1.83× 108 unique combinations
without order) in every dataset. According to the statistical results, the proportion of
positive to negative pairs is almost 1:1. For each dataset, we count the minimum and
maximum similarities of all sampled pairs and average similarities of positive pairs (i.e.,
with a same supervised label) and negative pairs (i.e., with different labels). As shown
in Figure 3, the similarities of sampled pairs distribute between 0.3 to 1.0. Both average
similarities of positive pairs and negative pairs are about 0.6 and the results of all datasets
are nearly consistent.

Figure 3. Maximum, minimum and average similarities in all datasets. Abbreviation pos. (positive)
means the pairs with a same supervised label, and neg. (negative) means those with different label
(similarly hereinafter).

To obtain the accurate thresholds, we count the sampled pairs in each similarity
intervals (the width of an interval is 0.1). Figure 4 shows that the similarities of most
pairs (about 99.3%) are concentrated in intervals between 0.5 and 0.7. We have discussed
that positive pairs make up about 50% of pairs in these intervals. However, the variance
of pair counts is not high due to the concentration. Therefore, these pairs are treated as
negative pairs in self-supervised learning, offering abundant negative samples for model
training [8].
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Figure 4. The distribution of sampled pairs on each similarity interval in all datasets.

We furthermore count the amount of positive and negative pairs by similarity intervals
and calculate the proportion of positive pairs, yielding Figure 5. In the intervals with
similarities less than 0.4, the median of positive pair proportion is smaller than 50%. For
pairs in similarity over 0.7, the median of positive pair is larger than 50% and grows with
similarity. Specifically, in similarity interval 0.7 to 0.8, the distribution of positive pairs is
scattered, according with our threshold standard of neutral samples. Finally, the negative
threshold is set as 0.7 and positive threshold is 0.8.

Figure 5. The proportion of positive pairs in each similarity interval in all datasets.

Figure 5 also uncovers the evidence that motif occupancy results of a pair of DNA
sequences are related with their similarities. This means the sequence similarity can be a
prior guidance on the motif occupancy identification.

As a result, we specify that, given a pair of augmented DNA sequences xi1 and xj2,
the self-supervised contrastive learning label is assigned by Equation (4).
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labelsel f (xi1, xj2
)
=


1,
0,
−,

xsim
(
xi1, xj2

)
> 0.7

xsim
(
xi1, xj2

)
< 0.4

others
, (4)

where − represents that no label is assigned to neutral pairs.
The participation of sequence similarity criterion offers a stricter constraint on the

assignment of negative pairs in contrastive learning and properly adjusts the number of
positive pairs, making it easier for model to encode sequence helpful for downstream
classification.

Our self-supervised contrastive loss function is in the same form with that of Sim-
CLR [8], but we need to adjust the function due to absent neutral pairs. The definition of
our self-supervised contrastive loss function is as follows:

Given an n-sized mini batch data {x1, x2, . . . , xn}, 2n augmented samples are gen-
erated by edit operations. The i-th original sequence xi produces xi1 and xi2, which are
encoded into zi1 and zi2, respectively, through the shared CNN encoder. As defined in
Equation (5), the total self-supervised contrastive loss Lsel f is the summation of each aug-
mented sample loss.

Lsel f = ∑n
i=1

(
Lsel f

i1 + Lsel f
i2

)
. (5)

Let I ≡ {x11, x12, x21, x22, . . . , xn1, xn2} be the set of all augmented samples. For
an augmented sample xi1, let A(i1) ≡ I\{xi1} be other samples in the full set. Let
P(i1) ≡

{
xp ∈ A(i1), labelsel f (xi1, xp

)
= 1

}
be the positive set where samples can be

judged as positive pairs with xi1, N(i1) ≡
{

xp ∈ A(i1), labelsel f (xi1, xp
)
= 0

}
be the nega-

tive set with xi1. Then the sample loss of xi1, named Lsel f
i1 , is calculated by Equation (6).

Lsel f
i1 =

−(|P(i1)|+ |N(i1)|)
|A(i1)||P(i1)| ∑

xp∈P(i1)
log

exp
(
zsim

(
zi1, zp

)/
τ
)

∑
xq∈P(i1)∪N(i1)

exp
(
zsim

(
zi1, zq

)/
τ
) , (6)

where τ is a constant temperature hyper-parameter and zsim denotes the cosine similarity
as Equation (7).

zsim
(
zi1, zp

)
=

zi1 · zp

‖zi1‖
∥∥zp
∥∥ . (7)

Compared with the loss function of SimCLR, the main modification of Equation (6)
is the scaling parameter |P(i1)|+|N(i1)|

|A(i1)||P(i1)| . We exclude neutral pairs of samples (i.e., the sam-
ples in set A\(P ∪ N)) in our self-supervised contrastive learning process. The sizes of
positive and negative sets are variable for every augmented sample and might lead to the
instability of loss values and the oscillation of gradients in the neural network. We add a
scaling parameter to adjust the loss values within a fixed scale of single positive pair (and
|A| − 1 = 2n− 2 negative pairs) loss.

2.6. Supervised Contrastive Learning

We construct another supervised contrastive learning model, called supCLR, as an
alternative to our editCLR pre-training model. The idea of supCLR is more transductive
than that of editCLR, that is, directly employing the information of supervised labels.
As mentioned in the research on supervised learning of Khosla et al. [11], supervised
contrastive learning extends the assignment of positive pairs from a same original data to a
same class. In this circumstance, supervised information becomes strong constraints on
contrastive learning. From the view of clustering, supervised contrastive learning offers
some interpretability compared with direct classification.
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In our supCLR model, augmented samples are also transformed by edit operations,
in which only positive pairs are from original sequences with a same supervised label.
Neutral pairs no longer exist in supervised contrastive learning.

Figure 5 shows that sampled pairs with high similarities (e.g., over 0.9) are most in
the same class globally, but there are still a few but not very few exceptions. As described
in Section 2.2, the fixed window property of convolution trends to encode highly similar
samples to be very close in the representation space, which may let the confusing exceptions
mislead the model. We want to explore the effect of supervised information on these
exceptions and experiment on whether supervised contrastive learning could improve
sequence representations.

We redefine the contrastive label of sample pairs. Given a pair of augmented DNA
sequences xi1 and xj2 with original supervised labels yi and yj, respectively, their label for
supervised contrastive is obtained by Equation (8).

labelsup(xi1, xj2
)
=

{
1, yi = yj
0, yi 6= yj

. (8)

Same with Equation (5), the total supervised contrastive loss Lsup defined in Equation (9)
sums up each sample loss:

Lsup = ∑n
i=1

(
Lsup

i1 + Lsup
i2

)
. (9)

For an augmented sample xi1, we redefine its positive set for our supCLR model by
P(i1) ≡

{
xp ∈ A(i1), labelsup(xi1, xp

)
= 1

}
. In supervised contrastive learning, we do not

discard any pair; therefore, the negative set is just N(i1) ≡ A(i1)\P(i1). Although the
number of samples is settled, the size of positive set is still a variable in connection with xi1.
Thus the scaling parameter is a function of positive set size and xi1’s supervised contrastive
sample loss Lsup

i1 is defined by Equation (10).

Lsup
i1 =

−1
|P(i1)| ∑

xp∈P(i1)
log

exp
(
zsim

(
zi1, zp

)/
τ
)

∑
xq∈A(i1)

exp
(
zsim

(
zi1, zq

)/
τ
) . (10)

2.7. Model Training and Hyper-Parameter Settings

The datasets introduced in Section 2.1 contain training sets and test sets. Referring to
the work of Zeng et al. [3], we randomly sample 1/8 from the training sets as validation sets
for selection of some hyper-parameters and the final models. Our training procedure can be
divided into two steps. In the first step, we pre-train the CNN encoder by minimizing the
contrastive loss function. In the second step, we fine-tune both the CNN encoder and the
DNN classifier for downstream prediction. The self-supervised editCLR and supervised
supCLR are trained individually.

As a reference of the DeepSEA and DeepBind, we set the kernel size of convolution
as 24, the number of kernels as 64, and the number of hidden units in DNN as 32. We
apply some automatic hyper-parameter grid search methods to find the best Dropout rate
(searching within 0.1, 0.25, 0.5), temperature parameter τ (searching within 1.0, 0.1, 0.01)
and some other parameters mentioned below.

The structural hyper-parameters in editCLR and supCLR are the same. However,
the proportion of positive pairs in supCLR is much larger than that in editCLR, making
differences of some hyper-parameters between the two models.

In pre-training, we apply mini-batch training with batch size n = 1024 as a trade-
off between the proportion of negative pairs in contrastive learning and the O

(
n2) time

complexity for training. We adopt the Adam optimizer [30] to minimize the contrastive
loss. The recommended learning rate of SimCLR [8] is 0.075

√
n, we set our learning rate

with a variable as α
√

n, where α is searched logarithmically from 0.001 to 0.5 and α of
editCLR might be smaller. The weight decay of the optimizer is searched logarithmically
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from 0.00001 to 0.01 and might be larger in editCLR. We set the maximum training epoch
as 5.

In fine-tuning, the batch size is 128 for training. We adopt another Adam optimizer
with both learning rate and weight decay as 0.001 to minimize a binary cross-entropy loss
function [31]. The maximum epoch in fine-tuning is 20. Finally, we select the model of an
epoch with the highest accuracy.

Our models are pre-trained and fine-tuned on an NVIDIA GeForece RTX 2070 GPU.
For each iteration of a batch in pre-training, the computation of sequence similarities cost
about 4.1 s. Provided better computation abilities, larger pre-training batch size might
enhance the performance of the encoder.

3. Results
3.1. Comparison Experiments and Performance Measure

We construct an end-to-end CNN model without using contrastive learning as the
baseline model. The encoder and the classifier of this baseline model are totally same with
our editCLR and supCLR models, as well as their common hyper-parameters.

We measure the performance of all methods by accuracy, precision, recall, F1 score
and AUC. Through Softmax transformation, the 2-dimensional output of the classifier
transforms into two probability values. We use ypred to denote the second digit, that is
the predicted TF binding probability of the input DNA sequence (or the motif instance it
belongs to). The model predicts a sequence to be a positive sample if ypred > 0.5. Besides
the straightforward accuracy, we calculate the precision P, recall R and F1 score [32] of the
binary classification results by Equations (11)–(13), respectively.

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

F1 =
TP

TP + 1
2 (FP + FN)

, (13)

where TP, FP, FN denote True Positive (both label and prediction are positive), False
Positive (positive prediction for negative label) and False Negative (negative prediction for
positive label), respectively.

Additionally, by changing the prediction threshold we calculate area (area under curve,
AUC) under the receiver operating characteristic (ROC) curve [33] between False Positive
Rate FPR (the proportion of False Positive to all negative samples) and True Positive Rate
TPR (the proportion of True Positive to all positive samples).

3.2. Comparison Results

Firstly, we compare our editCLR and supCLR methods with the baseline CNN model
deployed as Section 2.2 and the SimCLR model proposed by Chen et al. [8]. Specifically,
we compare with two extra editCLR models without assigning neutral pairs (i.e., positive
threshold equals to negative threshold). We name editCLR model with 0.7 thresholds
as editCLR-0.7 and another with 0.8 thresholds as editCLR-0.8. The average results of
accuracy, precision, recall, F1 score and AUC of 40 datasets are listed in Table 2.

As shown in Table 2, both editCLR and supCLR methods outperform the baseline
model in all measures and show general better performance than the SimCLR method,
which means that our contrastive learning method is qualified to improve the prediction
results of motif occupancy identification. Our editCLR models without neutral pairs
perform close to SimCLR but obtain inferior results to standard editCLR model, which
proves that the neutral pairs improve the effect of our self-supervised contrastive learning
model. And supCLR is superior to all other compared methods on four measures, indicating
the outstanding performance of supervised contrastive learning.
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Table 2. Performance results on DEEPre dataset.

Method Accuracy F1 Score Precision Recall AUC

baseline 0.716 0.702 0.738 0.675 0.797
simCLR 0.719 0.721 0.761 0.689 0.801

editCLR-0.7 0.720 0.721 0.760 0.692 0.800
editCLR-0.8 0.720 0.722 0.760 0.690 0.804

editCLR 0.723 0.725 0.762 0.694 0.811
supCLR 0.734 0.734 0.784 0.691 0.823

All results are average values of 40 datasets. Bold values represent the best results for corresponding measures
(similarly hereinafter).

In detail, we illustrate the AUC distribution by dataset of all compared methods in
Figure 6. The figure shows that the supervised supCLR preforms generally better than other
methods and makes more stable and precise predictions. All contrastive learning based
models including SimCLR gain relative better results than CNN baseline model, proving the
advantages of contrastive learning over direct learning for motif occupancy identification.
Our self-supervised editCLR model is similar with the SimCLR, but the introduction of the
edit similarity criterion becomes one of editCLR’s advantages over SimCLR.

Figure 6. The distribution of AUC results on all datasets.

3.3. Analysis of Small Sample Learning

To study the robustness of our models, we furthermore experiment on the baseline
model, SimCLR, editCLR and supCLR with smaller training ratio. We, respectively, sample
50%, 20% and 10% of the training sets to train the three models and evaluate them on the
original test sets. The results are listed in Table 3 and the average results of AUC with
different training ratios are illustrated in Figure 7.

The results in Table 3 indicate that even with smaller training size, our contrastive
learning method is robust for motif occupancy identification. In addition, all the pre-
training models are less sensitive to the training size than the baseline direct learning
model. This is probably due to the difference in quantity of information obtained by the
encoders, where pre-training task offers adequate sample pairs but direct learning does
not. In addition, further benefiting from the nature of sequence similarity, self-supervised
editCLR becomes the most adaptive model for small sample learning.
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Table 3. Performance results on DEEPre dataset.

Method Training Ratio Accuracy F1 Score AUC

baseline

50%

0.688 0.683 0.762
SimCLR 0.690 0.697 0.764
editCLR 0.693 0.700 0.764
supCLR 0.700 0.698 0.765

baseline

20%

0.636 0.632 0.705
SimCLR 0.653 0.659 0.719
editCLR 0.657 0.664 0.722
supCLR 0.658 0.656 0.721

baseline

10%

0.629 0.607 0.674
SimCLR 0.636 0.646 0.695
editCLR 0.640 0.650 0.706
supCLR 0.639 0.645 0.703

All results are average values of 40 datasets.
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Figure 7. The distribution of AUC results on all datasets with different training ratios.

As shown in Figure 7 and the results, the baseline model suffers from over-fitting
when the training set size is large. However, with a small training sample, the baseline
model is not robust enough to overcome the under-fitting problem. Our self-supervised
method overcomes over-fitting problem by introducing the general relationships between
sequence similarity and classification results, which are statistically certain according to our
statistics in Section 2.5. In addition, our supervised method makes sure that the encoder
directly and adequately learns to pre-processes the features with supervised information.
This helps the model to learn better representations and in some ways alleviates over-fitting.
Therefore, our method possesses the advantage of robustness over different training sizes.

As mentioned in Section 3.2, our editCLR is similar with SimCLR but performs slightly
better than it. Figure 7 also indicates the robustness of SimCLR on small sample training
and the performance gap between SimCLR and our method.

3.4. Self-Supervised Model for Transfer Learning

We separate the model training procedure into pre-training and fine-tuning. In the
self-supervised editCLR pre-training model, CNN encoder learns the representations
of DNA sequences without supervised information. This means that editCLR encodes
DNA sequences with their implicit and inherent information, and might be applied to
transfer learning.
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Our baseline model is one of the researched architectures in the work of Zeng et al. [3],
named 1layer_64motif for 1 layer and 64 hidden-sized CNN encoder. The best archi-
tectures for motif occupancy identification in the above work are 1layer_64motif and
1layer_128motif (with 128 hidden units in CNN encoder), so we select a few pre-trained
editCLR models on both 1layer_64motif and 1layer_128motif architectures from datasets
with no less than 100,000 samples in training set and fine-tune them on other 20 datasets.
As shown in Table 4, model examples of both two architectures perform comparable with
the CNN baseline model even through they are transferred to other datasets, showing the
robustness of our editCLR method in transfer learning.

Table 4. The average results of 8 sampled pre-trained editCLR models transferred to 20 datasets.

Architecture Model Accuracy F1 Score AUC

1layer64motif

baseline 0.717 0.707 0.794
editCLR#1 0.693 0.718 0.768
editCLR#2 0.720 0.715 0.807
editCLR#3 0.715 0.729 0.792
editCLR#4 0.715 0.711 0.806

1layer128motif

baseline 0.723 0.712 0.805
editCLR#5 0.725 0.727 0.811
editCLR#6 0.726 0.715 0.804
editCLR#7 0.718 0.709 0.800
editCLR#8 0.721 0.716 0.808

All results are average values of 20 datasets which are not the original dataset where editCLR models are
pre-trained. The baseline model is directly trained on the 20 datasets without transfer learning.

4. Discussion

Motif occupancy identification is a binary classification task of predicting the binding
of DNA motif instances to TF proteins, which is important for research on genetics and
bioinformatics. Several sequence-based methods with computational machine learning or
deep learning models for motif occupancy identification have been proposed. However,
these methods are all end-to-end designs and make prediction for motif occupancy identifi-
cation directly, which are straightforward but lack of biological interpretability. Moreover,
these methods are not adaptive or robust enough for transfer learning and small sample
learning.

In this work, we propose a contrastive learning method for DNA encoding and
motif occupancy identification, along with our design of sequence similarity criterion and
modified contrastive loss function. We construct two models to pre-train DNA sequential
encoder: a self-supervised contrastive learning model editCLR based on sequence edit
similarity criterion and a supervised contrastive learning model supCLR based on sequence
supervised labels. We augment the original sequences for contrastive learning with edit
operations defined in edit distance. Specifically, we propose a sequence similarity criterion
based on the Needleman–Wunsch algorithm to discriminate positive and negative sample
pairs and weed out controversial sample pairs in self-supervised contrastive learning.
Finally, a simple DNN classifier is fine-tuned along with the pre-trained encoder to predict
the results of motif occupancy identification.

Compared with the end-to-end model with a same structure, our self-supervised edit-
CLR and supervised supCLR show better performance in motif occupancy identification.
Both model are robust with small samples and the self-supervised editCLR can also be
applied in transfer learning.

There are still some limitations of our method. As shown in Figure 6, a few outlier
points appear in the results of editCLR and supCLR models. These points might result
from the lack of pre-training epochs or bias in thresholds for a few datasets. This exposes
a problem about hyper-parameter settings, that is, for a single dataset, the best hyper-
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parameters are hard to determine. This problem might be solved by introducing soft-value
labels [34,35] to the loss function.

Another limitation is the cost of the similarity computing in self-supervised contrastive
learning. In our pre-training model, the Needleman–Wunsch algorithm is implemented on
a batch with the computational complexity of O

(
n2L2). Some faster similarity estimation

methods and parallel computing techniques [36–38] might be helpful for this problem. For
further works, we will consider overcoming the limitations above.

5. Conclusions

Motif occupancy identification task predicts whether DNA motif instances bind to any
transcription factor proteins. In this work, we propose a powerful and robust contrastive
learning method and two types of alternative models for sequence encoding and motif oc-
cupancy identification. Experiments and multiple measures show that both our contrastive
models outperform the end-to-end CNN model using direct learning, and make better pre-
diction than SimCLR contrastive method. We also compare all methods on small training
samples and find better robustness of our proposed method. Specifically, the supervised
model provides significance enhancement of the results on almost all measures and the
self-supervised model shows comparable outcomes for transfer learning by catching inherit
relations between sequence similarities and classification label types.
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