
Supplementary Materials

A.1 Bayes Factors for t Tests

Expressed in the present notation, Gronau et al. (2020) show that the Bayes
factor for a one-sample t test with a shifted and scaled t prior is given by:

B10 =

∫ ∞

−∞

fnct(t | N − 1,
√
Nd)

fnct(t | N − 1, 0)
ft(d | ν, de, r) dd,

where fnct(t | N − 1, x) is the density of the noncentral t distribution with
N − 1 degrees of freedom and noncentrality parameter x. From here, it
is easy to derive the formula from Table 4 in the body of the paper. The
proof for the two-sample t test proceeds analogously. The Bayes factors for
moment priors can also be derived following the proofs provided by Gronau
et al. (2020, supplemental material) analogously.

A.2 Bayes Factors in Multiple Linear Regression

A.2.1 Data Likelihood with Ancillary Parameters Integrated Out

Let M = N − p, Ω = Σ/M , and γ be the standardized effects, γ = Ω
1
2β2,

using the unique square root of the positive definite matrix Ω. Note that the
effect size λ2 = γtγ and let γ = λγ ′. We begin by showing that∫

E

(∫∫
f(y | β1,Ω

− 1
2γ, ϵ)f(β1)f(ϵ) dβ1 dϵ

)
dB(γ ′) =

CfF (x | q,M − q,Mλ2), (A1)

where

• f(y | β1,Ω
− 1

2γ, ϵ) is the density of the distribution of the data y as
defined in Table 6 in the body of the paper with β2 replaced by Ω− 1

2γ
and σ2 by the precision ϵ = 1/σ2,

• x is the value of the F statistic for testing the reduced model against
the full model,

• fF (x | q,M − q,Mλ2) is the density of the noncentral F distribution
with q and M−q degrees of freedom and noncentrality parameter Mλ2,

• C is a factor that depends only on the data y and the design matrix
X1, and
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• B is the probability measure on the unit sphere that assigns equal
likelihood to each point γ ′ with ||γ ′|| = 1, and E is the set of points
on the unit sphere. It defines a uniform distribution of effects of size
λ2 = 1.

Note that

f(y | β1,Ω
− 1

2γ, ϵ) =
( ϵ

2π

)(N/2)
e−

1
2
ϵ||y−X1β1−ϵ−

1
2X2β2||2

and that

||y −X1β1 − ϵ−
1
2X2β2||2 = (β1 − β̂1)

tXt
1X1(β1 − β̂1)− β̂t

1X
t
1X1β̂1 +A,

where

β̂1 =
(
Xt

1X1

)−1
Xt

1(y − ϵ−
1
2X2β2), and

A = yty + ϵ−1βt
2X

t
2X2β2 − 2ϵ−

1
2βt

2X
t
2y.

Hence, with f(β1) = 1∫
f(y | β, ϵ)f(β1) dβ1 =

( ϵ

2π

)M
2 |Xt

1X1|−
1
2 e−

1
2
ϵ(A−β̂t

1X
t
1X1β̂1).

Let

Pred = X1(X
t
1X1)

−1Xt
1, and

Ppartial = (I − Pred)X2Σ
−1Xt

2(I − Pred),

and note that

ϵ(A− β̂t
1X

t
1X1β̂1) = ϵyt(I − Pred)y +Mλ2 − 2ϵ

1
2

√
Mγtγ∗

with γ∗ = Σ− 1
2Xt

2(I − Pred)y.
We can write

√
Mγtγ∗ as

√
Mγtγ∗ =

√
Mλ2

√
ytPpartialy (γ ′)t(

1

||γ∗||
γ∗).

The term (γ ′)t( 1
||γ∗||γ

∗) is the inner product of γ ′ with another vector of
length 1. Because the uniform distribution on the unit sphere is rotation-
invariant, we can choose this other vector to be a = (1, 0, . . . , 0)t without
changing the distribution of the inner product over the unit sphere. The uni-
form distribution of γ ′ on the unit sphere can be obtained as the distribution
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of z/||z|| with z = (z1, . . . , zq) and the zi following independent standard
normal distributions. Thus, the inner product follows the same distribution
as the variable ϕ = 1/||z||zta = z1/||z||.

From here, it is relatively easy to show that the density of the distribution
of ϕ is for q > 1

f(ϕ) =
Γ( q2)√
πΓ( q−1

2 )
(1− ϕ2)

q−1
2

−1. (A2)

Because the function under the integral over B(γ ′) depends on γ ′ only
via the inner product, we can replace the inner product by ϕ and integration
over B(γ ′) by integration over ϕ using the density f(ϕ).

Hence with f(ϵ) = 1/ϵ,∫
E

(∫∫
f(y | β1,Ω

− 1
2γ, ϵ)f(β1)f(ϵ) dβ1 dϵ

)
dB(γ ′) =∫ 1

−1

∫ ( ϵ

2π

)M
2 1

ϵ
|Xt

1X1|−
1
2 e−

1
2
Mλ2

e−
1
2
ϵyt(I−Pred)y+ϵ

1
2
√
Mλ2

√
ytPpartialy ϕ

Γ( q2)√
πΓ( q−1

2 )
(1− ϕ2)

q−1
2

−1 dϵdϕ.

Note that∫∫
Γ( q2)√
πΓ( q−1

2 )
(1−ϕ2)

q−1
2

−1ωM−1e−ω2+ρwϕ dω dϕ =
1

2
Γ(

M

2
) 1F1(

M

2
;
q

2
;
ρ2

4
),

where 1F1(·; ·; ·) is the confluent hypergeometric function of the first kind
(Abramowitz & Stegun, 1972, Chap. 15) and that the partial coefficient of
determination R2

partial equals ytPpartialy/y
t(I − Pred)y.1 It follows with a

change of variable ϵ = ω2/α (dϵ = 2ω/α dω with α = 1
2y

t(I − Pred)y):∫
E

(∫∫
f(y | β1,Ω

− 1
2γ, ϵ)f(β1)f(ϵ) dβ1 dϵ

)
dB(γ ′) =

(πyt(I − Pred)y)
−M

2 Γ(
M

2
)|Xt

1X1|−
1
2 e−

1
2
Mλ2

1F1(
M

2
;
q

2
;
1

2
Mλ2R2

partial) =

C ′e−
1
2
Mλ2

1F1(
M

2
;
q

2
;
1

2
Mλ2R2

partial), (A3)

where C ′ depends only on the data and design matrix X1.
1If an intercept is not part of the reduced model, this quantity is usually not called the

partical coefficient of determination, but this is irrelevant for our derivation.
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If x is the value of the F statistic, then

1

2
Mλ2R2

partial =
1

2
Mλ2 qx

M − q + qx
.

Hence, ∫
E

(∫∫
f(y | β1,Ω

− 1
2γ, ϵ)f(β1)f(ϵ) dβ1 dϵ

)
dB(γ ′) =

CfF (x | q,M − q,Mλ2). (A4)

A.2.2 Prior Induced by Effect-Size Priors on the Effect-Size Pa-
rameter

The marginal likelihood l1(y | M0) is given by∫ (∫∫
f(y | β1,β2, ϵ)f(ϵ) dβ1 dϵ

)(∫
EΩ,f

ft(β2 | ν,µ, r2Ω−1) dσΩ,f (µ)

)
dβ2,

where ft(β2 | ν,µ, r2Ω−1) is the density of the multivariate t distribution
with ν degrees of freedom, mean µ, and scale matrix r2(Ω)−1, while σΩ,f is
the probability measure on the surface of the spheres EΩ,f = {µ : µtΩµ =
f2} induced by the probability measure B for polar coordinates on the unit
sphere (Folland, 1999, Chap. 2), normed so that σΩ,f (EΣ,f ) = 1. Let us
derive the prior g(β2) induced by the uniform distribution on µ:

g(β2) =

∫
EΩ,f

ft(β2 | ν,µ, r2Ω−1) dσΩ,f (µ)

=

∫
Γ((ν + q)/2)

(πν)q/2Γ(ν/2)
(r2)−

q
2 |Ω|

1
2

(
1 +

1

νr2
(β2 − µ)tΩ(β2 − µ)

)−(ν+q)/2

dσΩ,f (µ).

Let λ =
√
βt
2Ωβ2 and note that

(β2 − µ)tΩ(β2 − µ) = λ2 + f2 − 2λf
βt
2

λ
Ω
µ

f
.

By a similar argument as in the last subsection, ϕ = ( 1λβ
t
2)Ω(

1
fµ) can be

seen to follow a distribution with density given by f(ϕ) in Equation A2.
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Hence,

g(β2) =

∫ 1

−1

Γ((ν + q)/2)

(πν)q/2Γ(ν/2)
(r2)−

q
2 |Ω|

1
2

(
1 +

1

νr2
(λ2 + f2 − 2λfϕ)

)−(ν+q)/2

Γ(q/2)√
πΓ((q − 1)/2)

(1− ϕ2)(q−1)/2−1 dϕ

=
Γ((ν + q)/2)(νr2)ν/2

πq/2Γ(ν/2)
|Ω|

1
2 (λ2 + f2 + νr2)−

ν+q
2

2F1

(
ν + q

4
;
1

4
(2 + ν + q);

q

2
;

4f2λ2

(λ2 + f2 + νr2)2

)
,

using the hypergeometric function 2F1.
It follows that

l1(y | M0) =

∫ (∫∫
f(y | β1,β2, ϵ)f(ϵ) dβ1 dϵ

)
g(β2) dβ2.

We now move to standardized effects by a change of variable: γ = Ω
1
2β2.

Note that λ2 = γtγ and that

l1(y | M0) =

∫ (∫∫
f(y | β1,Ω

− 1
2γ, ϵ)f(ϵ) dβ1 dϵ

)
h(γ) dγ.

with

h(γ) =
Γ((ν + q)/2)(νr2)ν/2

πq/2Γ(ν/2)
(λ2 + f2 + νr2)−

ν+q
2

2F1

(
ν + q

4
;
1

4
(2 + ν + q);

q

2
;

4f2λ2

(λ2 + f2 + νr2)2

)
.

In polar coordinates, γ is decomposed into its norm λ and its angle as in-
dicated by its directional vector of norm 1: γ/λ ∈ E, where E is as before
the unit sphere. We can therefore split the integration over the distribution
of γ into an outer integration over the distribution of the norm of γ with
density m(λ) (to be derived in the sequel) and an inner integral over its
angle. Setting γ = λγ ′, it follows from Theorem 2.49 in Folland (1999) that

l1(y | M0) =

∫ ∞

0

∫
EI,1

(∫∫
f(y | β1,Ω

− 1
2γ, ϵ)f(ϵ) dβ1 dϵ

)
h(γ) d(BB)(γ ′)λq−1 dλ,

where B = 2πq/2

Γ(q/2) is the measure (area or volume) of the unit sphere. The
function h(γ) depends on γ only via its norm λ = ||γ|| and thus, we can
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define h′(λ) as h(γ). It follows that

l1(y | M0) =

∫ ∞

0

∫
EI,1

(∫∫
f(y | β1,Ω

− 1
2γ, ϵ)f(ϵ) dβ1 dϵ

)
dB(γ ′)

Bλq−1h′(λ) dλ.

Setting m(λ) = Bλq−1h′(λ), it follows from Corollary 2.51 in Folland (1999)
that

1 =

∫
h(γ) dγ =

∫ ∞

0
m(λ) dλ,

so that m(λ) is seen to be a density. It follows that

m(λ) = 2
Γ((ν + q)/2)

Γ(ν/2)Γ(q/2)
(νr2)ν/2λq−1(λ2 + f2 + νr2)−

ν+q
2

2F1

(
ν + q

4
;
1

4
(2 + ν + q);

q

2
;

4f2λ2

(λ2 + f2 + νr2)2

)
.

It follows that the density of the effect size λ2 = βt
2Σ/(N − p)β2 = γtγ

induced by the priors is given by

qe(λ2) =
Γ((ν + q)/2)

Γ(ν/2)Γ(q/2)
(νr2)

ν
2 (λ2)

q
2
−1(λ2 + f2 + νr2)−

ν+q
2

2F1

(
ν + q

4
;
1

4
(2 + ν + q);

q

2
;

4f2λ2

(λ2 + f2 + νr2)2

)
.

It follows that the Bayes factor for effect-size priors is given by

BF10 =
l(y | M1)

l(y | M0)

=

∫
fF (F | q,M − q,Mλ2)

fF (F | q,M − q, 0)
qe(λ2) dλ2.

A.2.3 Prior Induced by Moment Priors on the Effect-Size Param-
eter

The moment prior for β2 focused on effect size λ2 is given by (ξ = (ν+q−2)f2

2ν )

2(ν − 2)

q(ν + q − 2)f2
βt
2Ωβ2ft(β2 | ν,0, ξΩ−1).

Moving to standardized effects γ = Ω
1
2β2, the prior on γ, h(γ) is seen to be

h(γ) = ξ−
q
2

2(ν − 2)

q(ν + q − 2)f2
γtγ

Γ(ν+q
2 )

(πν)q/2Γ(ν/2)

(
1 + (νξ)−1γtγ

)− ν+q
2 .
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The function h(γ) depends on γ only via its norm λ = ||γ|| and thus, we can
define h′(λ) as h(γ). Following the same steps as in the previous subsection,
it follows that the prior density for λ is given by

m(λ) =
2πq/2

Γ(q/2)
λq−1h′(λ)

=
2Γ(ν+q

2 )

Γ(q/2)Γ(ν/2)

2(ν − 2)

q(ν + q − 2)f2
(νξ)−

q
2λq+1

(
1 + (νξ)−1λ2

)− ν+q
2 .

Hence, the density induced on λ2 is

qm(λ2) =
Γ(ν+q

2 )

Γ(q/2)Γ(ν/2)

2(ν − 2)

q(ν + q − 2)f2
((ξν)−1λ2)q/2

(
1 + (ξν)−1λ2

)− ν+q
2 .

It follows that the Bayes factor for moment priors is given by

BF10 =
l(y | M1)

l(y | M0)

=

∫
fF (F | q,M − q,Mλ2)

fF (F | q,M − q, 0)
qm(λ2) dλ2.

It is also not difficult to show that the same formulae result for q = 1.

A.3 Coding ANOVA Models as Regression Models

Framing ANOVA analyses as equivalent regression model analyses, the first
predictor x1 = (1, . . . , 1) of the full model codes an intercept, whereas the
other predictors code the factors and interactions using, for example, sum-
to-zero contrasts (e.g. Judd et al., 2017). Each main effect and interaction is
thereby coded by a subset of predictors, and the F tests in ANOVA contrast
a reduced model from which certain effects and/or interactions are omitted
against a full model that includes these effects and/or interactions.

There are different ways to code designs that include within-participant
factors for equivalent regression analyses. The conceptually easiest way to
do this is through the use of orthonormal contrasts of the data (Lane, 2016).
This involves transforming the data using orthonormal contrasts such as
polynomial contrasts for each within-participant factor with more than two
levels (for factors with two levels, difference scores can be used). For example,
in a design with one within-participant factor with three levels, let the data
for the s−th person in the i−th condition be ysi. We then compute two scores
for each person, one for the linear trend ls1 = −

√
2
2 ys1+

√
2
2 ys3 and one for the
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quadratic trend ls2 = − 1√
6
ys1+

2√
6
ys2− 1√

6
ys3. If the sphericity assumption

is met, the variance-covariance matrix for (ls1, ls2)
t is diagonal with equal

values in the diagonal. In other words, we can treat the transformed data
as if they stemmed from a between-participants design. Note that we have
lost S data points with S being the number of participants so that the
transformed data comprise S × (3 − 1) data points. The full regression
model uses q = 3 − 1 parameters for the effects of the within factor, the
reduced model is the trivial one with l̂si = 0 and p = 0 – an intercept is
not needed because we are dealing with data contrasts with expected value
equal to zero. Note that sphericity is not an extraneous assumption that
needs to be added to the distributional assumptions for regression analyses
as stated in the body of the paper. Instead, if the full regression model holds,
sphericity is implied for the untransformed data (Lane, 2016).

For designs with several within factors, see Lane (2016) on how to de-
fine interaction-specific contrasts for a test of their interactions. For tests
of effects involving only a subset of the within factors in the design, we
first aggregate the data across the levels of the within factors not in the ef-
fect under scrutiny (Maxwell & Delaney, 2004, Chap. 12) before moving to
orthonormally transformed data. Between-participants factors can be seam-
lessly integrated into these models for tests involving interactions of within
and between factors – after moving to the transformed data, there is no
longer any principled difference between within and between factors. Tests
involving only between factors can simply be done on the data aggregated
across the within conditions.

Another way to code ANOVA designs with within-participant factors
proceeds from the untransformed data and introduces parameters for per-
sons and their interactions with within factors (excepting the highest order
interaction of persons and within factors; Rouder et al., 2012) in defining re-
duced and full regression models for testing specific effects and interactions
involving such factors. This approach also involves collapsing the data across
within factors not involved in the effect or interaction to be tested. The ap-
proach leads to the same F values and degrees of freedom as the approach
just considered and to the same effect-size and moment Bayes factors. None
of these coding schemes need concern the user of our R package. All that is
required for computing the new Bayes factors for an effect or interaction is
its F value from the univariate repeated-measures ANOVA or, as the case
may be, mixed ANOVA and its degrees of freedom.

A complication regarding the interpretation of effect size f in designs
with within-participant factors should be noted. The effect-size parameters f
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implied by these analyses differ from the ones obtained if the same hypothesis
tests are conducted in a between-participants setup with different groups of
participants realizing the levels of the within-participant factor. Consider,
for example, the test for a main effect of a between-participants factor in
a design with a within-participant factor A. The test can proceed on the
personwise means of the data across the levels of the factor A. If A has
m levels, it is easy to show that the variance of these means is σ2

b = uσ2

with u = 1
m(1 + (m− 1)ρ), where ρ is the common correlation between the

repeated measures (note that we assume compound symmetry at this point
for the sake of simplicity) and thus, in the definitions of the non-centrality
parameter and of f , we would divide by σ2

b instead of by σ2. If we want to
define f in terms of σ instead of σb, f should be divided by

√
u. Similar

correction factors apply to tests of effects involving within factors (see Faul
et al., 2007, Table 3, and see Lakens, 2013, for more discussion of this issue).

A.4 Framing Invariance

To show framing invariance, we have to show how the one-sample and two-
sample t test can be framed as comparisons of a reduced and a full linear
model as per the regression Bayes factor. For the one-sample t test, the
reduced model has zero predictors and states ŷ = X1β1 = 0. Hence, p = 0.
The full model has one predictor, the intercept, with q = 1 so that X2 = 1N ,
where 1N is a vector of length N with cell entries 1. From here, it is easy
to see that the assumptions from Table 6 in the body of the paper for the
regression case are the same as those from Table 3 in the body of the paper.
This means that the same distributions are specified in both cases, yielding
the same Bayes factor.

For the two-sample case, the reduced model has one predictor, the in-
tercept, X1 = 1N , hence p = 1, whereas the full model has the additional
predictor X2 = 1

2(−1tN1
,1tN2

)t, hence q = 1. The matrix Σ is then given by
Xt

2(I − 1
N 1N×N )X2, where 1N×N is the N by N matrix with cell entries 1.

Hence, Σ = N1N2/N and Σ/(N − p) = Σ/(N − 1) = M/(N − 1), where
M = N1N2/N . From here, framing invariance follows when the relations
between de and f (and the scaling factors r for the regression model and the
two-sample t test with effect-size priors) stated in the body of the paper are
taken into account.
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A.5 Large-Sample Consistency for Moment Bayes Factors

Because of framing invariance, it is sufficient to show large-sample consis-
tency for the moment Bayes factor for regression models. The proofs showing
consistency of the Bayes factor for models with fixed dimensionality do not
immediately work for priors such as the moment priors with value zero at
the true parameter value. The reason is that asymptotic expansions of the
logarithm of the Bayes factor log(BF10) are additively contributed to by
log(f1(θ̂1)/f0(θ̂0)) involving the ratio of the prior densities of the two mod-
els at the respective maximum likelihood estimates (Chib & Kuffner, 2016),
which is normally bounded in probability as N becomes large and can there-
fore be ignored in asymptotic treatments of Bayes factor consistency. If the
reduced model is true, the maximum likelihood estimates converge to the
true parameter values, which in the case of the full model means that f1(θ̂1)
will, however, tend to zero as N tends to infinity so that the above term
is no longer bounded. Fortunately, log(f1(θ̂1)/f0(θ̂0)) is thereby seen to
tend to minus infinity as N becomes large so that the additive term will in
fact additionally speed up the convergence of the Bayes factor to zero if the
reduced model is true (see Johnson & Rossell, 2010, for a more technical
explanation). No such problem arises if the reduced model is false, because
the maximum-likelihood estimate will converge to a value at which the prior
is positive.

A.6 Consistency in Information

Because of framing invariance, it is sufficient to show consistency in infor-
mation for the Bayes factor for regression models as F → ∞ or, equivalently,
R2 = R2

partial → 1.In terms of R2, the effect-size Bayes factor is given by (see
Equation A3)

B10(R
2) =

∫ ∞

0
e−

1
2
Mλ2

1F1(
M

2
;
q

2
;
1

2
Mλ2R2)qe(λ2) dλ2.

Because the term in qe involving 2F1 is greater or equal to 1, there is a
constant P1 > 0 so that

B10(R
2) ≥ P1

∫ ∞

0
e−

1
2
Mλ2

1F1(
M

2
;
q

2
;
1

2
Mλ2R2)(λ2)

q
2
−1(λ2+f2+νr2)−

ν+q
2 dλ2.

Because 1F1(a; b; c) tends to Γ(a)
Γ(b) e

zza−b as z becomes large, there are
constants P2 > 0 and P3 > 0 so that

B10(R
2) ≥ P2

∫ ∞

P3

e−
1
2
Mλ2(1−R2)(

1

2
MR2)

M−q
2 (λ2)

M−q
2 (λ2)

q
2
−1(λ2+f2+νr2)−

ν+q
2 dλ2.
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Hence, if R2 ≥ 1
2 and noting that λ2

λ2+f2+νr2
→ 1 as λ becomes large, there

are constants P4 > 0 and P5 > 0 so that

B10(R
2) ≥ P4

∫ ∞

P5

e−
1
2
Mλ2(1−R2)(λ2)

M−q−ν
2

−1 dλ2.

Setting Q = (12M(1 − R2))−1/2, it follows that Q → ∞ as R2 → 1 and
that (for Q ≥ P5)

B10(R
2) ≥ P4

∫ Q

P5

e−
1
2
MQ2(1−R2)(λ2)

M−q−ν
2

−1 dλ2 = P4e
−1

∫ Q

P5

(λ2)
M−q−ν

2
−1 dλ2.

The latter integral is easily seen to tend to infinity as Q → ∞ if M−q−ν ≥ 0,
that is if N ≥ p+ q + ν.

A very similar derivation shows that the moment Bayes factor tends to
infinity as R2 → 1 for N ≥ p+ q + ν − 2.

A.7 Predictive Matching

Because of framing invariance, it is sufficient to show predictive matching
for the regression model. We begin with the case that we have N = p + q
observations with a design matrix X of full rank p + q. Note that in this
case R2

partial = 1, because ŷ = y. Hence, with q = qm or q = qe, the Bayes
factor is

B10(R
2
partial = 1) =

∫ ∞

0
e−

1
2
Mλ2

1F1(
M

2
;
q

2
;
1

2
Mλ2)q(λ2) dλ2.

Because M − q = N − p− q = 0 and e−z
1F1(a; b; z) = 1F1(b− a, b,−z) for

all a, b, and z, this further simplifies to:

B10(1) =

∫ ∞

0
1F1(0;

q

2
;−1

2
Mλ2)q(λ2) dλ2.

Because 1F1(0, b,−z) = 1 for all b and z, we have

B10 =

∫ ∞

0
q(λ2) dλ2 = 1.

If N < p+ q, the matrix X2 is of rank N − p = q′ < q. Some of the β2 pa-
rameters are therefore redundant and we can reparametrize the model using
fewer additional parameters β′

2 (i.e., q′) parameters in the full model and a
design matrix X = (X1, X

′
2) so that X ′ is a (p+ q′)× (p+ q′) matrix of full
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rank (because the priors for β2 are proper priors, the redundant parameters
that do no longer occur in the reparameterized data likelihood can be inte-
grated out in computing the marginal likelihood of the full model). As just
shown, this yields B10 = 1.

The second case of uninformative data is given if the design matrix X1

for the reduced model has rank p, but the design matrix for the full model
(X1, X2) has also rank p. In this case, a linear transformation of the param-
eters β2 exists so that X1(β1 + Lσβ2) = X1β1 + σX2β2 for all β2 with a
p×q matrix L. If f(β1) and f(β2, σ) are the priors on the model parameters
(with f(β1) = 1),

l(y | M1) =

∫∫ (∫
f(y | β1,β2, σ)f(β1) dβ1

)
f(β2, σ) dβ2 dσ.

Make a change of variable in the inner integral from β1 to β∗
1 = β1 +Lσβ2.

Because the Jacoby factor for this change of variable is 1, and X1(β1 +
Lσβ2) = X1β

∗
1, the value of the inner integral with the new integration

variable β∗
1 is seen to be (a) not a function of β2 and (b) identical to the

analogous integral computed under M0. From here, it is easy to see that
again BF10 = 1.

A.8 Directional Tests, Tests against Values Other than Zero,
Tests of Interval Hypotheses

Directional tests such as H1 : θ ≥ 0 can be easily accommodated by restrict-
ing the integration in the computation of the Bayes factors (see Table 4)
to range from 0 to ∞ instead of from −∞ to ∞. Tests against values θ0
other than zero (i.e., of H0 : θ = θ0) can be accommodated by data trans-
formations and then testing against zero. For one-sample and two-sample t
tests, this amounts to conducting the test against zero on transformed data
ỹi = yi − θ0. For regression problems (H0 : β2 = θ0), the data should be
transformed according to ỹ = y −X2θ0.

Interval hypotheses specified in terms of effects d, for example H0 : |d| ≤ ϵ
versus H1 : |d| > ϵ can be tested in a two-step procedure for one-sample and
two-sample t tests. Restricting the integration in Table 4 to range from −d
to d yields a Bayes factor B1 testing the interval hypothesis against the strict
null; restricting the integation to values outside the interval yields a Bayes
factor B2 testing the above H1 against the strict null. The Bayes factor for
testing the above H1 against H0 is then obtained as the quotient B2/B1. For
regression/ANOVA models, tests of interval hypotheses such as H0 : f2 ≤ ϵ
versus H1 : f

2 > ϵ proceed analogously.
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A.9 Bayes Factors Based on p values versus Bayes Factors
Based on the Raw Data

The test statistics in significance tests are constructed so as to satisfy two
desiderata: Their distribution should depend only on the parameter(s) θ
contrasted in the hypothesis test and not on other model parameters ρ shared
by the underlying models (e.g., Johnson, 2005).2 Furthermore, they should
ideally capture all of the information that the data contain about the critical
parameter(s). This latter desideratum is perfectly satisfied if the test statistic
T is a sufficient statistic for θ, meaning that the distribution of the data given
T does not depend upon θ (Halmos & Savage, 1949). If so, we can factorize
the likelihood of the data y as follows:

f(y | ρ, θ) = f(y | ρ, T (y))f(T (y) | θ). (A5)

From here, it is easy to see that the ratio of the marginal likelihoods of the
data under M1 and M0, that is the Bayes factor based on the original data,
reduces to the Bayes factor based on p-values.

For many significance tests, including the t and F tests considered here,
the test statistic T does not reach the ideal case of providing a sufficient
statistic, but it is nevertheless constructed so that its distribution depends
only on the critical parameters while capturing as much information about
them as possible under this constraint. This suggests that the Bayes factor
based directly on the value t of the test statistic T as per Equation 5 in
the body of the paper will in general make appropriate use of the informa-
tion that the data contain on the hypothesis test in question. Rouder and
colleagues’ furthermore argue (Rouder & Morey, 2012; Rouder et al., 2009,
2012) that the Bayes factor does not depend strongly on the distributional
assumptions made for parameters outside the hypotheses that are contrasted
and that are shared by both models (see also O’Hagan & Forster, 2004, p.
179, for a similar argument). This intuition is supported by Du et al.’s (2019)
sensitivity analyses on the Bayesian t test regarding the effects of different
priors on the variance parameter σ2 as long as relatively vague priors are
chosen for σ2. This and the equivalence of the p value-based Bayes factor
and the default, effect-size, and moment Bayes factors suggest that the p
value-based Bayes factor will in general be similar to a Bayes factor com-
puted from a full set of distributional assumptions on all model parameters
when vague priors are used for the parameters shared by both models.

2This is often true only after a reparameterization using effect-size parameters
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A.10 Applications: Values of the Fractional and Adjusted
Fractional Bayes Factors

A.10.1 t Tests

Table A1 shows the fractional and adjusted fractional Bayes factor for the t
test examples shown in Table 7 in the body of the paper.

Table A1: Default, Fractional and Adjusted Fractional Bayes Factors for t
Tests

t(79) Default BF Fractional BF Adjusted Fractional BF
2.03 0.64 0.65 0.69
2.24 0.98 0.99 1.05

Note. BF = Bayes factor.

A.10.2 Regression Models

Considering the regression example from the body of the paper, the fractional
and adjusted fractional Bayes factors revealed decisive evidence against the
null model for all non-null models like the default, effect-size and moment
Bayes factors. Furthermore, this was also true for the comparison of reduced
models relative to the full model for all but three reduced models.

Table A2 shows the values of the fractional and adjusted fractional Bayes
factors for the three reduced models in the same format as in Table 8 in the
body of the paper.

Table A2: Default, Fractional and Adjusted Fractional Bayes Factors for
Reduced Models against the Full Models

Model R2
p Default BF Fractional BF Adjusted Fractional BF

M2 L+G+D .0126 4.41 5.57 5.50
M4 G+P+D .0002 12.97 16.27 16.27
M9 G+D .0136 61.03 53.23 52.15

Note. R2
p = partial R2; BF = Bayes factor; L = local climate variation; G =

global temperature; P = parasite load; D = population density. R2
p values are

computed from the different models’ R2 values reported by Rouder and Morey
(2012). Since these are rounded to four digits after the decimal point, results may
differ slightly if the original data would have been available for analysis.
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A.10.3 ANOVA

Table A3 shows the values of the fractional and adjusted fractional Bayes
factors for the ANOVA problem analyzed in the body of the paper (see
Figure 6 in the body of the paper).

Table A3: Default, Fractional and Adjusted Fractional Bayes Factors for
ANOVA Example

Effect Default BF Fractional BF Adjusted Fractional BF
Orientation 141.21 18.46 24.46
Frequency 0.48 0.14 0.14
Interaction 0.50 0.15 0.18

Note. BF = Bayes factor.
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