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A B S T R A C T

Background: Cognitive dysfunction adversely effects multiple functional outcomes and social roles after TBI. We
hypothesize that chronic systemic inflammation exacerbates cognitive deficits post-injury and diminishes func-
tional cognition and quality of life (QOL). Yet few studies have examined relationships between inflammation and
cognition after TBI. Associations between early chronic serum inflammatory biomarker levels, cognitive out-
comes, and QOL 6-months and 12-months after moderate-to-severe TBI were identified using unweighted (uILS)
and weighted (wILS) inflammatory load score (ILS) formation.
Methods: Adults with moderate-to-severe TBI (n ¼ 157) completed neuropsychological testing, the Functional
Impairment Measure Cognitive Subscale (FIM-Cog) and self-reported Percent Back to Normal scale 6 months (n ¼
139) and 12 months (n ¼ 136) post-injury. Serial serum samples were collected 1–3 months post-TBI. Cognitive
composite scores were created as equally weighted means of T-scores derived from a multidimensional neuro-
psychological test battery. Median inflammatory marker levels associated with 6-month and 12-month cognitive
composite T-scores (p < 0.10) were selected for ILS formation. Markers were quartiled, and quartile ranks were
summed to generate an uILS. Marker-specific β-weights were derived using penalized ridge regression, multiplied
by standardized marker levels, and summed to generate a wILS. ILS associations with cognitive composite scores
were assessed using multivariable linear regression. Structural equation models assessed ILS influences on
functional cognition and QOL using 12-month FIM-Cog and Percent Back to Normal scales.
Results: ILS component markers included: IL-1β, TNF-α, sIL-4R, sIL-6R, RANTES, and MIP-1β. Increased sIL-4R
levels were positively associated with overall cognitive composite T-scores in bivariate analyses, while remain-
ing ILS markers were negatively associated with cognition. Multivariable receiver operator curves (ROC) showed
uILS added 14.98% and 31.93% relative improvement in variance captured compared to the covariates only base
model (age, sex, education, Glasgow Coma Scale score) when predicting cognitive composite scores at 6 and 12
months, respectively; wILS added 33.99% and 36.87% relative improvement in variance captured. Cognitive
composite mediated wILS associations with FIM-Cog scores at 12 months, and both cognitive composite and FIM-
Cog scores mediated wILS associations with QOL.
Conclusions: Early chronic inflammatory burden is associated with cognitive performance post-TBI. wILS explains
greater variance in cognitive composite T-scores than uILS. Linking inflammatory burden associated with
cognitive deficits to functional outcome post-TBI demonstrates the potential impact of immunotherapy in-
terventions aimed at improving cognitive recovery post-TBI.
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1. Introduction

Traumatic brain injury (TBI) contributes to functional limitations,
disability, and reduced quality of life (QOL) (Riggio and Wong, 2009;
Walker and Pickett, 2007). Cognitive symptoms are an especially com-
mon and important area of concern for TBI survivors, with a majority of
individuals with moderate-to-severe TBI having persistent and marked
cognitive impairment at two years post-injury (Schretlen and Shapiro,
2003). TBI survivors commonly self-report persistent cognitive issues as a
major concern (Khan et al., 2016). Cognition influences functional out-
comes more than other factors, including demographic and injury char-
acteristics (Spitz et al., 2012). Cognitive dysfunction post-TBI often
factors into justification and goal-planning for rehabilitation care as
ongoing impairment reduces social participation (Sashika et al., 2017).

TBI affects the cognitive domains of executive functioning, memory,
and attention; dysfunction in each of these domains can lead to decreased
performance in other cognitive domains (Rabinowitz and Levin, 2014).
Lannoo et al. found individuals with moderate-to-severe TBI [Glasgow
Coma Scale scores (GCS) ranging from 3-12] perform significantly worse
than non-head trauma controls on neuropsychological measures six
months post-injury (Lannoo et al., 1998). Memory is an important
cognitive domain affected after TBI, with verbal memory being affected
more than visual memory (Vakil et al., 2019). Memory deficits affect
functional outcomes after TBI like return to work (Mani et al., 2017).
Studies have reported memory deficits persisting through five years
post-TBI (Marsh, 2018), particularly among those with severe TBI (Tate
et al., 1991; Dikmen et al., 1987). Executive functioning affects
high-order cognitive abilities that require planning, problem solving, and
emotional regulation. Studies demonstrate that impaired executive
function, verbal fluency, and processing speed hinder ability to return to
work or school (Spitz et al., 2012; Mani et al., 2017; Ownsworth and
McKenna, 2004; Ruff et al., 1993).

Heterogeneity in long-term cognitive recovery is not fully understood
among individuals post-TBI (Millis et al., 2001). Some contributors to
cognitive outcomes include baseline characteristics. Older age worsens
verbal memory and recognition test performance (Vakil et al., 2019) and
lowers processing speed, executive function, and memory test perfor-
mance (Green et al., 2008; Rabinowitz et al., 2018). Premorbid education
predicts cognitive recovery and reflects cognitive reserve (Schneider
et al., 2014). Another important contributor to cognition includes TBI
severity (Dikmen et al., 1995).

Functional cognition, measured by the Functional Independence
Measure (FIM) cognitive subscale (FIM-Cog), refers to how an individual
uses cognitive skills required for daily activities. Among individuals with
moderate-to-severe TBI, FIM-Cog is associated with lower community
participation, inability to drive, and unemployment at one year post-
injury (McGarity et al., 2017). Our previous work suggests that PTD
heavily influences functional cognition measures compared to objective
measures of cognitive performance (Failla et al., 2016). Together, im-
pairments like cognitive dysfunction and PTD affect daily skills requiring
functional cognition, which in turn impacts other function-associated
metrics like participation and QOL. Importantly, biologic variability
may contribute to cognitive outcome post-TBI, including inflammatory
pathway effects.

Our previous work shows that sustained high levels of CSF neuro-
inflammatory markers can increase PTD risk (Juengst et al., 2015a) and
odds of an unfavorable Glasgow Outcome Scale (GOS) score (Kumar
et al., 2016). Acute neuroinflammation post-TBI may lead to a chronic,
sustained inflammatory response in survivors in both the central nervous
system and systemically (Johnson et al., 2013; Kumar et al., 2015).
However, chronic systemic inflammation has only recently been recog-
nized as an important consequence of TBI. Our group showed that in the
first three months post-injury, serum inflammatory biomarkers are
elevated relative to controls and contribute significantly to GOS out-
comes at 6 and 12 months post-injury (Kumar et al., 2014). TBI is asso-
ciated with increased dementia risk, cognitive decline, and chronic
2

neurodegeneration in multiple studies (Schretlen and Shapiro, 2003;
Johnson et al., 2013; Lee et al., 2013; Wang et al., 2012). However, no
TBI studies to date have characterized chronic inflammatory profiles and
their influence on cognitive outcome. Identifying associations between
serum inflammatory marker levels and neuropsychological testing scores
after TBI may facilitate long-term prognostication of cognitive outcomes.

In our previous work by Kumar et al. (2014), a novel inflammatory
load score (ILS) was generated to assess overall inflammatory burden and
relationships with GOS after TBI to show inflammation’s aggregate effect
on outcome. Similar ILSs have been employed to study overall inflam-
matory load in other settings such as sepsis (Andaluz-Ojeda et al., 2012),
acute coronary syndromes (Correia et al., 2010), and thyroid disease
(Wakelkamp et al., 2003). However, ILS generation methods vary, and
each of these studies created an ILS by grouping data into binary, tertiary,
or quaternary categories. This approach reduces available information
due to biomarker stratification, and does not reflect the relative strength
of biomarker associations. A primary challenge in creating a weighted
load score is the high degree of collinearity among inflammatory bio-
markers, many of which have diverse biological roles within inflamma-
tory signaling pathways despite their degree of statistical relatedness.
Adjusted β-weights are similarly challenging to derive in this scenario as
regression coefficients are unstable in the presence of multicollinearity
(Farrar and Glauber, 1967).

Thus, this study’s primary goal was to examine associations between
inflammatory marker levels measured in serum samples collected 1–3
months post-TBI and cognitive performance at 6 and 12 months post-
injury. Our study examines how long-term neuropsychological perfor-
mance is shaped by early chronic systemic inflammatory burden. We
created and comparatively assessed multiple methods of ILS formation to
assess this relationship and create a sensitive and informative ILS,
developing both an unweighted (uILS) and weighted (wILS) score as
aggregate measures of inflammation’s association with cognitive per-
formance. We hypothesized that increased inflammatory burden in the
first three months post-injury would be associated with worse cognitive
performance measured with neuropsychological testing 6 and 12 months
post-injury.

2. Methods

2.1. Participants

Data from prospectively recruited individuals (N ¼ 157) with
moderate-to-severe TBI were collected and analyzed in accordance with
University of Pittsburgh Institutional Review Board approved protocols.
Informed consent was obtained from patients or next-of-kin. Individuals
were recruited from inpatient rehabilitation at a University of Pittsburgh
Medical Center (UPMC) level 1 trauma center and followed for up to 15
months post-injury. Individuals included in this analysis were 16–79
years of age, had non-penetrating moderate-to-severe TBI based on
admission GCS (3–12), and/or had their closed head injury verified by
ICD-9 diagnosis code or medical documentation of functional or medical
complications (i.e. positive anatomic neuroimaging findings or focal
neurologic signs) on day of injury. Individuals with penetrating TBI,
previous documented TBI, untreated endocrine or autoimmune disor-
ders, or ongoing neurodegenerative disease were excluded. Participants
completed neuropsychologic testing or were designated as cognitively
unable to complete neuropsychological testing at 6 and/or 12 months
post-injury.

2.2. Demographic and injury data

Demographic and injury severity variables were collected via medical
record review or participant/proxy interview including sex, age at injury
and at neuropsychological testing, race, baseline years of education,
mechanism of injury, length of acute hospitalization in days, cumulative
neuroimaging findings on computed tomography (CT) of the head
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gathered from review of all available CT reports for scans acquired during
subjects’ acute hospital stay, Injury Severity Score (ISS) (Baker et al.,
1974), and best Glasgow Coma Scale (GCS) score within 24 hours of
injury (Teasdale and Jennett, 1974). Initial CT imaging reports were not
available for some individuals who did not receive acute care at a UPMC
facility.

2.3. Serum biomarker collection

Serum samples were collected monthly for individuals with TBI and
collected once from healthy controls without TBI. Cytokine levels were
measured in serum (n ¼ 933 samples in total) using a Luminex™ bead
array assay (Millipore, Billerica, Massachusetts). Multiplex assays used
microsphere technology, tagging assay beads with several fluorescent-
labeled markers. A fluorescence detection laser optic system analyzed
the binding of each protein to the multiplex bead. The Human High
Sensitivity T-cell Magnetic Bead Panel included interleukin (IL)-10, IL-
12(p70), IL-13, IL-1β, IL-2, IL-21, IL-4, IL-23, IL-5, IL-6, IL-7, IL-8,
Macrophage Inflammatory Protein (MIP)-1α, MIP-1β, Tumor Necrosis
Factor (TNF)-α, Fractalkine, Granulocyte Macrophage Colony Stimu-
lating Factor (GM-CSF), Interferon-inducible T-cell alpha chemo-
attractant (ITAC), and Interferon (IFN)-γ. The intra-assay coefficient of
variability (%CV)was<5%. The inter-assay%CVwas<20%. The Human
Neurodegenerative Disease Magnetic Bead included soluble Intracellular
Adhesion Molecule (sICAM)-1, Regulated upon Activation, Normal T-cell
Expressed and Secreted (RANTES), Neural Cell Adhesion Molecule
(NCAM), and soluble Vascular Adhesion Molecule (sVCAM-1). The intra-
assay %CV was <6%. The inter-assay %CV was <13%. The Human
Soluble Cytokine Receptor Magnetic Bead Panel included soluble (s)
CD30, soluble glycoprotein (sgp)130, soluble IL-1 receptor (sIL-1R)-I, sIL-
1RII, sIL-2α, sIL-4R, sIL-6R, sTNFRI, and sTNFRII. The intra-assay %CV
was <10% while inter-assay %CV was <15%.

2.4. Cognitive outcome data

Individuals completed neuropsychological testing at 6 and/or 12
months post-TBI. A subgroup of TBI survivors with monthly inflamma-
tory data was unable to complete neuropsychological testing at 6 and/or
12 months due to the severity of their cognitive deficits, and they were
identified and grouped as cognitively unable to complete testing.
Cognitive composite scores were formulated using results from nine
neuropsychological tests, administered by trained staff. Testing compo-
nents were then scored and organized into four domains.

The verbal fluency domain included the Delis-Kaplan Executive Func-
tion Systems Verbal Fluency section (Delis and Kaplan, 2001) and the
Controlled Oral Word Association test (Borkowski et al., 1967). The
attention and processing speed domain included Trail Making Test A (Reitan
and Wolfson, 1985), the Symbol Search subtest from the Wechsler Adult
Intelligence Scale-R (Wechsler, 1997), and the oral section of the Symbol
Digit Modalities Test (Smith, 2002). The memory domain included the
California Verbal Learning Test II-Long Delay Free Recall score (Delis,
1987) and the Rey-Osterrieth Complex Figure Test delayed recall score
(Osterrieth, 1944). The executive function domain included the Trail
Making Test B (Reitan and Wolfson, 1985), Wisconsin Card Sorting Test
Percent Conceptual responses (Heaton, 1981), and the Delis-Kaplan Ex-
ecutive Function Systems Verbal Fluency Category switching accuracy
score (Delis and Kaplan, 2001).

Raw test scores were converted into T-scores using publisher-
recommended normative data, correcting test performance for age,
race, sex, and education level when indicated. To obtain a domain score,
participants completed at least one of the domain-specific tests. T-scores
of individual, domain-specific tests were averaged to create the reported
domain T-score. The overall composite score is an equally weighted
average of the four domains scores specified above and excluded in-
dividuals missing any domain scores. Individual T-score performance in
any cognitive domain was considered “impaired” if the T-score was >1
3

standard deviation below the normalized mean of 50 (i.e. T-score �40).

2.5. Functional outcome data

Participants’ functional outcomes were assessed using the Functional
Independence Measure (FIM) (Dodds et al., 1993) and Percent Back to
Normal patient questionnaire (Powell et al., 2001) at 6 and/or 12months
post-injury. The cognitive subscale score for the FIM (FIM-Cog) was
calculated with the components of expression, comprehension, social
interaction, problem-solving, and memory. Each component is rated
from 1 to 7, with scores<5 indicating need for caregiver assistance. The
sum of these five components yields the FIM-Cog Score, ranging from
5-35. The Percent Back to Normal measure is a single question asking
individuals how close they feel to being back to normal, on a scale of
0–100 percent. In this study, we used self-reported Percent Back to
Normal as a proxy for QOL and self-reported function after TBI. Trained
research staff administered both measures via in-person interview.

2.6. Statistical methods

Statistical analyses were performed using Statistical Analysis Soft-
ware (SAS 9.4) (SAS Institute Inc) and R version 3.6.2 (R Core Team,
2019). To determine relationships between demographic and clinical
variables and cognitive composite scores, Spearman’s rank correlations
was used to assess continuous demographic and clinical variable re-
lationships with cognitive composite scores; Kruskal-Wallis tests were
used for categorical variables. For demographic variable relationships
with cognitive impairment status, Kruskal Wallis tests were used for
continuous variables and χ2 tests, or Fisher’s exact test when appropriate,
were used for categorical variables.

Median values for each individual’s respective inflammatory
biomarker levels obtained one, two, and/or three months post-injury
were calculated as a single-value describing early chronic inflammatory
burden, while minimizing the potential effects of extreme observations.
Biomarker medians were then standardized to have mean 0 and standard
deviation 1. Levels were then included in separate, simple linear
regression models for each cognitive domain at the 6- and 12-month
timepoints.

Inflammatory biomarkers tested in these regressions were selected for
ILS formulation if they met statistical significance threshold criteria of p
< 0.10 at both time points when assessed for associations with overall
cognitive performance at 6 and/or 12months. P-value cut-offs were more
liberal to allow for inclusion of potentially biologically significant
markers into the ILS score and establish trends for markers to influence
cognitive performance at both 6 and 12 months.

Using these selected markers, we then created an uILS using methods
described in detail by Kumar et al. (2014). To create this uILS, selected
biomarkers were quartiled, preserving the direction of their associations
with overall cognitive composite and summed together. Individuals’
biomarker data was assigned a rank (1–4) for each marker depending on
which quartile the selected serummarker level was located. For example,
individual markers in the lowest quartile (25th percentile or lower) were
assigned a score of 1, and individual markers in the highest quartile (75th
percentile or higher) were assigned a score of 4. If increasing levels of an
individual inflammatory marker were positively associated with cogni-
tive outcome, the quartile assignments were reversed to account for the
direction of this association.

Using markers selected above, a weighted inflammatory load score
(wILS) was also created for the overall cognitive composite. Covariate
and biomarker adjusted ridge regression was performed to obtain stable
β-values for each inflammatory marker in the presence of high multi-
collinearity. We used the most regularized model such that error was
within one standard error of the minimum mean squared error (MSE)
using the R package ‘glmnet’ version 3.0-2 (Friedman et al., 2010). In-
dividuals’ standardized biomarker values were then multiplied by ridge
regression-derived β-coefficients, while preserving the direction of



Table 1a
Demographic and clinical variables by cognitive impairment status at 6 Months
post-injury.

6 Month Cohort (n ¼ 139)

Not
Cognitively
Impaired (n
¼ 63)

Cognitively
impaired (n
¼ 56)

Cognitively
Unable to
Complete
Testing (n ¼
20)

p-value

Age at Injury, mean
(SE)

40.22 (2.34) 36.39 (2.25) 35.10 (4.02) 0.3525

Sex, Men (%) 50 (79.37%) 43 (76.79%) 14 (70.00%) 0.6862
Race, n (%) 0.1302
Caucasian 58 (92.06%) 53 (94.64%) 16 (80.00%)
African American
and Other

5 (7.94%) 3 (5.36%) 4 (20.00%)

Years of Education,
Mean (SE)

13.65 (0.26) 12.29 (0.23) 13.58 (0.45) 0.0010*

Mechanism of injury,
n (%)

0.7357

Automobile/MVA 29 (46.03%) 25 (44.64%) 11 (55.00%)
Fall 19 (13.67%) 15 (26.79%) 3 (15.00%)
Violent/Gunshot
Wound

1 (1.59%) 0 (0.00%) 1 (5.00%)

Motorcycle 10 (15.87%) 10 (17.86%) 4 (20.00%)
Other 4 (6.35%) 6 (10.71%) 1 (5.00%)

Best in 24 GCS,
Median (IQR)

10 (7–13) 7 (6–8) 6 (3.5–9) <.0001*

Non-head ISS, Mean
(SE)**

10.73 (1.54) 11.37 (1.90) 15.54 (2.83) 0.2287

Acute Hospital
Length of stay,
Mean Days (SE)

14.21 (1.00) 23.80 (1.64) 32.40 (3.29) <.0001*

CT Head Findings, %
with finding***
Subarachnoid
Hemorrhage

65% 63% 80% 0.4311

Subdural
Hematoma

62% 68% 80% 0.2424

Epidural
Hematoma

12.7% 20% 15% 0.5002

Intraventricular
Hemorrhage

27% 30% 40% 0.5477

Intraparenchymal
Hemorrhage

43% 45% 65% 0.2263

Intracerebral
Hemorrhage

2% 4% 0% 0.5588

Diffuse Axonal
Injury

8% 14% 15% 0.4444

Cerebral
Contusion

46% 57% 75% 0.0494*

FIM Cognitive
Subscale: 6
Months, Mean (SE)

33.25 (0.25) 29.76 (0.68) 10.82 (2.01) <0.0001*

Cognitive Impairment defined as Overall cognitive composite T-score < 40, Row
totals are reported for categorical variables; *indicates statistical significance at
p < 0.05; **ISS Non-head has large amount of missing data; *** Percentages
across groups do not sum to 100% due to participants having >1 lesion type
recorded from CT head.

K.A. Milleville et al. Brain, Behavior, & Immunity - Health 11 (2021) 100185
association, and summed to generate a wILS for each study participant.
Multivariable linear regression was used with both uILS and wILS to
delineate the relative and absolute incremental predictive capacity of
uILS and wILS for cognitive domain T-scores at 6 and 12 months
compared to a base model adjusted for age, sex, years of education, and
GCS.

Kruskall-Wallis tests were used to assess relationships between in-
flammatory markers selected from bivariate regressions with cognitive
impairment status by grouping subjects as follows: unimpaired,
impaired, and unable to complete cognitive testing. For graphing,
markers were scaled by a multiple of 10X to fit a 0 to 45 range.

We used a structural equation model (SEM) to elucidate inflammatory
effects on function post-TBI. Specifically, we simultaneously evaluated
how ILS generated based on cognitive performance scores also captured
variance in FIM-Cog scores at 12 months, mediated through the overall
cognitive composite score, and how the ILS relationship to percent back
to normal at 12 months was mediated by FIM-Cog scores. We applied
Rasch-adjustment (Heinemann et al., 1994) to FIM-Cog and checked the
normality assumption of the residuals for both FIM-Cog (Rasch-adjusted)
and percent back to normal. Covariate-adjusted regression models used
in the SEM analyses were fit simultaneously using the R package ‘lavaan’
version 0.6-6 (Rosseel et al., 2017). Root mean square error of approxi-
mation (RMSEA), standardized root mean square residual (SRMR) were
used to examine SEM residuals, while the comparative fit index (CFI) and
Tucker-Lewis index (TLI) were used to examine the fit of the SEM. The
mediation percentage was calculated as the change in the effect of the ILS
due to mediation by the FIM-cog and overall cognitive composite relative
to the total effect on QOL.

3. Results

3.1. Description of population

Our cohort included n ¼ 157 subjects with moderate-to-severe TBI
with inflammatory data. Of these subjects, n ¼ 119 and n ¼ 125
completed all domains of cognitive testing at 6 and 12 months, respec-
tively, with n ¼ 20 and n ¼ 11 participants cognitively unable to com-
plete neuropsychological testing at 6 and 12 months, respectively.
Table 1a and 1b present detailed demographic and injury data by
cognitive impairment status, including those unable to complete cogni-
tive testing as a group. At 6 months post-injury, years of education (p <

0.0001), GCS (p < 0.0001), acute hospitalization length of stay (LOS) (p
< 0.0001), FIM cognitive subscale score (p< 0.0001), and the CT finding
of cerebral contusion (p ¼ 0.0494) all differed by cognitive impairment
status. At 12 months post-injury, years of education (p< 0.0001), GCS (p
< 0.0001), acute hospitalization LOS (p < 0.0001), and FIM cognitive
subscale score (p < 0.0001) differed by cognitive impairment status.
Average FIM cognitive subscale scores at 6 and 12 months were much
lower in those unable to complete cognitive testing (10.82 at 6 mo.,
11.40 at 12 mo.) than those able to complete testing (33.25 and 29.76 at
6 mo., 33.12 and 30.51 at 12 mo. for unimpaired and impaired subjects
respectively). Table 2 shows demographic and injury information
significantly associated with overall cognitive composite T-scores at 6
and 12 months. Overall cognitive performance significantly differed with
years of education (p < 0.0001; p ¼ 0.0008), GCS (p < 0.0001; p <

0.0001), acute hospitalization LOS in days (p< 0.0001; p< 0.0001), FIM
Cognitive subscale scores (p < 0.0001; p < 0.0001) at the corresponding
timepoint when neuropsychological data was collected . Age and sex
were not significantly associated with overall cognitive composite T
scores at 6 or 12 months in bivariate analysis.

3.2. Early chronic cytokine associations with cognitive outcome and ILS
formation

Bivariate linear regression associations of median standardized in-
flammatory marker levels from 1-3 months and overall cognitive
4

composite T-scores at 6 and 12 months are summarized in Table 3.
Markers selected for ILS inclusion were based on our p-value criterion of
p < 0.1 at both timepoints. Markers include IL-1β, TNF-α, sIL-4R, sIL-6R,
RANTES, and MIP-1β. The median � IQR of the uILS was 17 [15–20.25].
The median � IQR of the wILS was -0.023 [-0.076–0.043] and -0.029
[-0.077–0.040] for the 6- and 12-month timepoints, respectively.

We also evaluated bivariate biomarker associations with cognitive
subdomains for 6 and 12 months post-TBI (Table 4a and 4b). Markers are
presented if p < 0.10. Memory was associated with the greatest number
of biomarkers for both 6- and 12-month timepoints. Significant markers
selected for the ILS above were associated with multiple subdomains of
cognition. sIL-4R was positively associated with all subdomains, and
RANTES was negatively associated with all but attention and processing



Table 1b
Demographic and clinical variables by cognitive impairment status at 12 Months
post-injury.

12 Month Cohort (n ¼ 136)

Not
Cognitively
Impaired (n
¼ 68)

Cognitively
Impaired (n
¼ 57)

Cognitively
Unable to
Complete
Testing (n ¼
11)

p-value

Age at Injury, mean
(SE)

39.06 (2.31) 38.65 (2.26) 35.18 (5.09) 0.7609

Sex, Men (%) 53 (77.94%) 44 (32.35%) 7 (63.34%) 0.5754
Race, n (%) 0.4394
Caucasian 63 (92.65%) 53 (92.98%) 9 (81.82%)
African American
and Other

5 (7.35%) 4 (7.02%) 2 (18.18%)

Years of Education,
Mean (SE)

13.43 (0.24) 12.59 (0.26) 13.63 (0.53) 0.0424*

Mechanism of
injury, n (%)

0.7405

Automobile/
MVA

35 (51.47%) 23 (40.35%) 8 (72.73%)

Fall 17 (25.00%) 16 (28.07%) 1 (9.09%)
Violent/Gunshot
Wound

1 (1.47%) 1 (0.74%) 0 (0.00%)

Motorcycle 10 (14.71%) 12 (21.05%) 2 (1.47%)
Other 5 (7.35%) 5 (8.77%) 0 (0.00%)

Best in 24 GCS,
Median (IQR)

10 (7–11) 7 (5.5–9) 6 (4–9) <0.0001*

Non-head ISS,
Mean (SE)**

10.26 (1.58) 12.42 (1.57) 15.14 (4.25) 0.2728

Acute Hospital
Length of stay
(days), Mean (SE)

14.91 (1.06) 24.33 (1.49) 31.90 (4.32) <0.0001*

CT Head Findings,
% with
finding***
Subarachnoid
Hemorrhage

66% 61% 82% 0.6801

Subdural
Hematoma

59% 70% 91% 0.0721

Epidural
Hematoma

13% 16% 27% 0.5559

Intraventricular
Hemorrhage

25% 35% 27% 0.3567

Intraparenchymal
Hemorrhage

46% 46% 64% 0.6763

Intracerebral
Hemorrhage

2% 2% 0% 0.8953

Diffuse Axonal
Injury

7% 16% 27% 0.1236

Cerebral
Contusion

53% 49% 82% 0.2490

FIM Cognitive
Subscale12
Months, Mean
(SE)

33.12 (0.26) 30.51 (0.54) 11.40 (2.86) <0.0001*

Cognitive Impairment defined as Overall cognitive composite T-score < 40; Row
totals are reported for categorical variables; *indicates statistical significance at
p < 0.05; **ISS Non-head has large amount of missing data; *** Percentages
across groups do not sum to 100% due to participants having >1lesion type
recorded from CT head.

Table 2
Demographic and clinical bivariate associations with overall cognitive composite
T score.

6 Months Cognitive
Composite Score (n ¼
119)

12 Months Cognitive
Composite Score (n ¼
125)

R p-value R p-value

Years of Education 0.384 <0.0001* 0.295 0.0008*
Best in 24 GCS 0.404 <0.0001* 0.405 <0.0001*
Acute Hospital Length of stay �0.511 <0.0001* �0.458 <0.0001*
FIM Cognitive Subscale at 6 or 12
Months

0.489 <0.0001* 0.537 <0.0001*

Excludes subjects cognitively unable to complete testing; *indicates statistical
significance at p < 0.05.

Table 3
Biomarkers for ILS derived from bivariate regression models with overall com-
posite scores.

Biomarker 1–3 Month
Median

6 Month Overall
Composite (n ¼ 119)

12 Month Overall
Composite (n ¼ 125)

β (Standard
Error)

p-
value

β (Standard
Error)

p-
value

IL-1 β ¡1.54 (0.83) 0.066 �1.35 (0.76) 0.077
IL-7 �1.48 (0.86) 0.090 �1.63 (0.79) 0.042
TNF α �1.38 (0.82) 0.093 �1.44 (0.74) 0.055
sIL-4R 2.34 (0.92) 0.012 1.54 (0.78) 0.051
sIL-6R �1.92 (0.90) 0.036 �1.45 (0.81) 0.077
MIP-1b �1.84 (0.82) 0.026 �1.79 (0.74) 0.017
RANTES �1.62 (0.97) 0.097 �2.42 (0.82) 0.004
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speed subdomain at 6 months (Table 4a). At 12 months, RANTES was
negatively associated with all subdomains and MIP-1β was negatively
associated with all but the executive function subdomain (Table 4b).
3.3. Inflammatory burden associations with overall cognitive performance

Table 5 shows the 6-month multivariable regression model assessing
uILS associations with overall cognitive composite scores. A one unit
increase in uILS was associated with 0.50 unit decrease in overall
cognitive composite scores. Years of education (β ¼ 1.54, p ¼ 0.0004)
and GCS (β ¼ 0.95, p ¼ 0.001) were also associated with cognitive
5

performance. The adjusted R2 was 0.28—a 15.23% relative improvement
over the base model without uILS including GCS, age, sex, and years of
education (adjusted R2¼0.243). Using wILS, the relative improvement in
adjusted R2 was about 34% (adjusted R2 ¼ 0.326) over the base model
(adjusted R2¼0.244), and a 0.1 unit increase in wILS was associated with
a 2.25 unit decrease in overall cognitive composite (Table 6). Table 7
presents the multivariable regression evaluating uILS associations with
12-month overall cognitive composite scores. A one unit increase in uILS
was associated with 0.62 unit decrease in overall cognitive composite
scores. Years of education (β ¼ 1.06, p ¼ 0.006) and GCS (β ¼ 0.92, p ¼
0.0002) were positively associated with 12-month composite scores. The
adjusted R2 was 0.27, which was a 31.70% relative improvement over
the base model (adjusted R2¼0.205). Using wILS, the relative improve-
ment in adjusted R2 was 36.59% over the base model, and a 0.1 unit
increase in wILS was associated with a 2.16 unit decrease in overall
cognitive composite (Table 8). Women tended to have worse composites
thanmen in both of the wILS and uILS multivariable models at 12 months
post-injury despite adjusting for sex specific normative values where
possible in the component neuropsychological tests used to formulate
composite scores. Together, the data suggest wILS scores improve model
performance over uILS scores.
3.4. Early chronic cytokine associations with cognitive impairment status

Fig. 1 depicts cytokine associations with 6-month cognitive impair-
ment status, including those unable to complete cognitive testing. Me-
dian TNF-α levels for those with TBI was higher than among controls.
Table 9 additionally shows the significant differences among groups for
TNF-α (p¼ 0.007), RANTES (p¼ 0.0308), and MIP-1β (p¼ 0.045); trend
level associations were noted for IL-1β and sIL-4R at 6 months post-
injury. These bivariate results indicate that cognitively impaired and
unable to complete groups had higher inflammatory burden. Similar
patterns were noted for 12-month impairment status (Fig. 2) wherein
TNF-α (p ¼ 0.006) and RANTES (p ¼ 0.019) differed by cognitive
impairment status, and trend level associations were noted for IL-1β and



Table 4a
Bivariate associations with standardized biomarkers 6-month cognitive composite domain scores.

Biomarker
1–3 Month Median

Subdomains

Memory 6M (n ¼ 124) Attention & Processing Speed 6M (n ¼ 126) Verbal Fluency 6M (n ¼ 123) Executive Function
6M (n ¼ 125)

β (SE) p-value β (SE) p-value β (SE) p-value β (SE) p-value

IL-1 β �2.11 (1.11) 0.060
IL-5 2.21 (1.23) 0.087
IL-7 �2.37 (1.14) 0.040
IL-8 �2.32 (1.04) 0.028
IL-10 2.78 (1.26) 0.030
IL-17 3.94 (1.96) 0.046
sIL-4R 3.31 (1.19) 0.007 2.54 (1.12) 0.026 1.77 (1.02) 0.085 2.30 (1.11) 0.040
sIL-6R �1.88 (1.10) 0.090 �2.46 (0.97) 0.013
MIP-1a �2.86 (1.23) 0.021
MIP-1b �3.10 (1.08) 0.005
sTNF-R1 �2.28 (1.01) 0.026
sTNF-R2 �2.01 (1.00) 0.046
sICAM1 �2.46 (1.06) 0.022
RANTES �2.35 (1.04) 0.025
sgp130:IL-6R 2.21 (1.28) 0.086

Table 4b
Bivariate associations with standardized biomarkers and 12-month cognitive composite domain scores.

Biomarker 1–3 Month Median Subdomains

Memory 12M (n ¼ 131) Attention & Processing Speed 12M (n ¼ 129) Verbal Fluency 12M (n ¼ 130) Executive Function 12M (n ¼ 129)

β (SE) p-value β (SE) p-value β (SE) p-value β (SE) p-value

IL-1 β �1.87 (1.05) 0.077 �1.74 (1.04) 0.097
IL-7 �2.11 (1.08) 0.052 �1.80 (1.08) 0.099
IL-8 �2.22 (1.05) 0.037
TNF α �1.87 (1.03) 0.073
sIL-2Ra �1.74 (0.82) 0.037
sIL-4R 2.78 (1.05) 0.009 2.30 (1.04) 0.029
MIP-1a �2.28 (1.16) 0.051
MIP-1b �2.76 (1.03) 0.008 �2.18 (1.02) 0.035 �1.45 (0.86) 0.096
MIP-3a �1.98 (1.11) 0.075
sTNF-R1 �1.62 (0.91) 0.077 �1.72 (0.80) 0.034
GM CSF �1.46 (0.87) 0.096
sICAM1 �2.04 (0.98) 0.040
RANTES �2.58 (1.14) 0.025 �2.35 (1.14) 0.042 �2.21 (0.95) 0.023 �1.81 (0.85) 0.034
sgp130:IL-6R 2.24 (1.19) 0.063 2.27 (0.88) 0.011

Table 5
Unweighted ILS –multivariable linear regression with 6-month overall cognitive
composite.

Variable β (Standard
Error)

p-value Adjusted R2

Age 0.004 (0.05) 0.936 0.243 for base model
Sex �2.46 (2.06) 0.235 0.280 adding ILS
Years
Education

1.54 (0.42) 0.0004 Difference ¼ 0.037 or 15.23%
improvement

Best in 24 GCS 0.95 (0.28) 0.001
Unweighted
ILS

�0.50 (0.20) 0.013

n ¼ 106; Results based on Quartiled Inflammatory Markers with 6M Overall
Composite.

Table 6
Weighted ILS – multivariable linear regression with 6-month overall cognitive
composite.

Variable β (Standard
Error)

p-value Adjusted R2

Age 0.03 (0.05) 0.614 0.244 for base model
Sex �2.41 (1.99) 0.229 0.326 adding ILS
Years
Education

1.71 (0.40) <.0001 Difference ¼ 0.082 or 33.61%
improvement

Best in 24 GCS 0.89 (0.27) 0.001
Weighted ILS �22.52 (5.98) 0.0003

n ¼ 107; Results based on Ridge Regression with 6M Overall Composite with
maximum regularization within 1 SE of minimum MSE.
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sIL-6R at 12 months post-injury. Median TNF-α levels were higher than
control levels in all TBI groups at both timepoints post-injury.

3.5. ILS associations with multidimensional outcomes

A covariate adjusted (age, sex, GCS, education, depression status)
SEM was built with N ¼ 108 subjects, and it was used to test the wILS
association with 12-month QOL scores and the proportion of covariance
in this relationship attributable to wILS associations with overall cogni-
tive composite scores and FIM-Cog scores. The RMSEA and SRMR were
6

<0.001 (p-value: 0.848) and 0.002 (recommended: p�0.05), indicating
small residuals. The CFI and TLI were 1.0 and 1.178, respectively,
meeting the recommended >0.95 criteria, ensuring a satisfactory fit.
Regression models showed significant wILS effects on QOL through FIM-
Cog and cognitive composite scores (Fig. 3). The SEM indicated that at 12
months, 44.53% of the wILS and FIM-Cog (Rasch-adjusted) relationship
was due to wILS relationship with overall cognitive composite, and
16.50% of the wILS and QOL relationship was due to wILS relationships
with cognitive composite scores and FIM-Cog. Covariates in each of the
paths are reported in Table 10. Notably, this 12-month model shows that
in addition to education and injury severity, women performed



Table 7
Unweighted ILS – multivariable linear regression with 12-month overall cogni-
tive composite.

Variable β (Standard
Error)

p-value Adjusted R2

Age �0.05 (0.43) 0.266 0.205 for base model
Sex �2.85 (1.83) 0.122 0.270 adding ILS
Years
Education

1.06 (0.38) 0.006 Difference ¼ 0.065 or 31.70%
improvement

Best in 24 GCS 0.92 (0.24) 0.0002
Unweighted
ILS

�0.62 (0.18) 0.001

n ¼ 112; Results based on Quartiled Inflammatory Markers with 12M Overall
Composite.

Table 8
Weighted ILS – multivariable linear regression with 12-month overall cognitive
composite.

Variable β (Standard
Error)

p-value Adjusted R2

Age �0.03 (0.04) 0.571 0.205 for base model
Sex �2.93 (1.82) 0.110 0.280 adding ILS
Years
Education

1.17 (0.37) 0.002 Difference ¼ 0.075 or 36.59%
improvement

Best in 24 GCS 0.92 (0.23) 0.0002
Weighted ILS �21.57 (6.01) 0.001

n ¼ 112; Results based on Ridge Regression with 6M Overall Composite with
maximum regularization within 1 SE of minimum MSE.

Fig. 1. 1- to 3-month Cytokine Median Levels by 6-Month Cognitive
Impairment Status: Median marker levels are graphed by group membership,
with levels scaled by a multiple of 10x to fit a 0 to 45 range. Error bars indicate
25th-75th percentile and control levels are included for reference. *** indicates
statistical significance at p < 0.05.
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significantly worse than men with respect to overall cognitive perfor-
mance. Also, depression was a potent predictor of FIM-Cog scores and
QOL, second in effect size only to ILS in both models.

4. Discussion

While acute neuroinflammation has been well accepted as a major
feature of secondary injury after TBI, the role of systemic inflammation,
particularly in the chronic phases of recovery, remains understudied. We
have previously shown early, chronic, systemic inflammation maps to
global recovery post-TBI (i.e. GOS scores at 6 and 12 months), yet no
work published to date has focused on systemic inflammation effects on
7

cognitive dysfunction and/or its downstream impacts on multiple di-
mensions of function after TBI. Few studies focus on inflammatory
biomarker load score development or consider advanced statistical
methodologies to deal with issues common to biomarker score formu-
lation, such as collinearity among biologically interrelated markers with
diverse functions.

Thus, our goals for this study were: 1) to identify relationships be-
tween early chronic inflammatory burden and long-term cognitive
outcome after TBI; 2) to compare different methodologies of ILS formu-
lation (weighted and unweighted score formulation) and their capacity
to discriminate cognitive outcomes; and 3) assess cognitive performance
derived ILS scores for their relationships to functional outcomes mea-
sures using a mediation model approach. Both ILS formulation methods
captured additional variance in cognitive performance that was not
accounted for by our base model of age, education, sex, and GCS,
showing that systemic inflammatory burden in the early chronic phase of
injury is independently related to cognitive outcome after TBI. The wILS
accounted for a larger absolute and percent change in adjusted R2 than
the uILS, and the ridge regression approach allowed for the derivation of
stable β-weights when considering biologically diverse markers with a
high degree of statistical collinearity. Further, the data show that the
systemic inflammatory burden associated with objective cognitive per-
formance deficits also impacts downstreammeasures of function, such as
functional cognition and QOL metrics.

The work presented here is seminal to the TBI field, in that there are
no previous reports of systemic inflammatory biomarkers and their ca-
pacity to predict cognitive performance in a clinical population with
moderate-to-severe TBI. Cognitive functioning is a complex trait, and
factors like age, sex, education, cognitive reserve, and comorbidities all
play a role in affecting neuropsychological testing performance in the
general as well as specific clinical populations (Green et al., 2008;
Rabinowitz et al., 2018; Schneider et al., 2014; Brunner, 2005). Our
models include many of these key contributors, even when adjusting for
these factors using population normative data. Yet the additional bio-
logical information, in this case systemic inflammation, significantly
improves overall model performance. Published statistical models
capturing variation in neuropsychological testing performance in young
healthy populations, such as those at risk for TBI are sparse, yet models
exist predicting cognitive decline in late middle age using dementia,
stroke, and cardiovascular disease risk scores (Kaffashian et al., 2013).
Interestingly, a meta-analysis assessing risk for cognitive decline among
subjects from large clinical studies involving elderly individuals shows
inflammation and oxidative stress markers can considerably improve
cognitive decline prediction models (Harrison et al., 2017). Other studies
predict dementia risk and progression with variable effectiveness (Licher
et al., 2018a, 2018b; Andrews et al., 2017, 2019; de Wolf et al., 2020).
Similar to our study, however, significant model improvements in vari-
ance capture occur when adding biological information (Licher et al.,
2018a; Lewczuk et al., 2018).

Notably, the weighted ILS approach uses a novel application of ridge
regression to derive adjusted β-values, which allowed us to account for
marker collinearity when creating our wILS (Hoerl and Kennard, 1970).
The degree of collinearity observed within our cohort for the inflam-
matory panel presented would normally preclude using a large number of
associated markers in the same regression model to derive adjusted
β-weights because the regression coefficients can be unstable in presence
of multicollinearity (Farrar and Glauber, 1967). We addressed the sta-
tistical issue of biologically interrelated, yet mechanistically diverse
markers, by using ridge regression to derive coefficients for creating the
wILS. The utility of ridge regression-derived β-coefficients is that the
approach applies a “regularization” penalty term to each model term to
limit the impact of collinearity on the β-coefficients generated for each
marker (Hoerl and Kennard, 1970). In the context of statistical and ma-
chine learning models, the regularized model achieves more stable
β-coefficients by substantially reducing the standard errors at the cost of a
very small bias added to the parameter estimates. This novel application



Table 9
1–3 M median cytokine levels by 6- and 12-month cognitive impairment status.

6-Month Cohort (n ¼ 139) 12-Month Cohort (n ¼ 136)

Not Cognitively
Impaired

Cognitively
Impaired

Unable to Complete
Testing

p-
value

Not Cognitively
Impaired

Cognitively
Impaired

Unable to Complete
Testing

p-
value

IL-1β 4.98 6.82 8.92 0.099 5.23 5.80 8.16 0.074
IL-7 20.80 25.05 20.68 0.169 21.40 25.19 19.89 0.368
TNF-α 15.51 19.80 22.61 0.007 15.93 20.47 27.53 0.006
sIL-4R *.01 16.43 14.84 15.13 0.077 16.31 15.07 14.90 0.432
sIL-6R *.001 22.95 26.81 25.47 0.143 24.23 27.08 25.58 0.067
MIP 1β *.1 4.93 5.73 5.76 0.045 4.95 5.267 8.70 0.122
RANTES*.0001 4.78 5.60 5.67 0.031 4.91 5.99 5.01 0.019

Fig. 2. 1- to 3-month Cytokine Median Levels by 12-Month Cognitive
Impairment Status: Median marker levels are graphed by group membership,
with levels scaled by a multiple of 10x to fit a 0 to 45 range. Error bars indicate
25th-75th percentile and control levels are included for reference. *** indicates
statistical significance at p < 0.05.
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of ridge regression to generate stable β-coefficients for wILS formulation
advances the biomarker field broadly. The work also builds upon our
previous approach to uILS formation in the moderate-to-severe TBI
population to demonstrate associations between a uILS and GOS after TBI
(Kumar et al., 2014) by demonstrating the importance of systemic in-
flammatory burden to cognitive performance after TBI and the relevance
of systemic inflammation to functional measures impacted by cognitive
performance deficits.

The neuroimmune response is largely mediated by resident microglia
that undergo rapid activation upon surveillance and detection of central
nervous system (CNS) damage after TBI (Loane and Byrnes, 2010; Loane
and Kumar, 2016). Activated microglia facilitate and perpetuate in-
flammatory cascades that promote systemic cellular immunity infiltra-
tion into the CNS to clear debris and dead neural tissues and cells (Jeong
Fig. 3. SEM of QOL (12mo.) with ILS. FIM cognition (Rasc
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et al., 2013). Further, our work suggests that acute cortisol levels impact
neuroinflammation, seemingly through divergent pathways, wherein
increases in cerebrospinal fluid cortisol can facilitate a permissive im-
mune response or promote a state of immunoparalysis, each of which can
negatively impact outcome (Santarsieri et al., 2014a). This point is
interesting because physiologically and in response to acute injury, the
brain and the systemic immune system communicate via the sympathetic
nervous system (SNS) (Elenkov et al., 2000; Kenney and Ganta, 2014)
and via Hypothalamic-Pituitary-Adrenal (HPA) axis modulation (Elenkov
et al., 2000). SNS activation has direct effects in lymphoid organs and
liver that support cytokine production (Baumann and Gauldie, 1016;
Dinarello, 1093; Heinrich et al., 1042; Kossmann et al., 1097). After the
initial systemic inflammatory response, acute immunosuppression results
from SNS activation and an innate immune response, which depletes
lymphocytes and increases acute infection risk (Kourbeti et al., 2012;
Schirmer-Mikalsen et al., 2013; Esnault et al., 2017). HPA activation
drives excess CSF cortisol levels that impact neuroinflammation and also
BDNF relationships with mortality and global outcome (Santarsieri et al.,
2014a, 2014b; Munoz et al., 2017). Systemic infection often co-occurs
with critical illness, propagates systemic inflammation, and perpetuates
non-neurological organ dysfunction (Kemp et al., 2008; Zygun et al.,
2005). For example, hospital acquired pneumonia (HAP) can occur in
~30%–33% of the population with moderate to severe TBI (Kesinger
et al., 2015; Kumar et al., 2020). Together, these phenomena likely shape
the early chronic systemic inflammatory profiles observed here after
moderate-to-severe TBI. Inflammatory markers are quite variable in our
TBI cohort, yet Figs. 1 and 2 show many individuals have levels well
above referenced controls, with higher values generally predicting lower
cognitive composite scores and injury related deficits that preclude
ability to complete cognitive testing. Some biomarker median values are
not measurably different than controls, though, suggesting that
biomarker levels do not necessarily have to be extremely “elevated” or
“deficient” to be associated with chronic TBI pathology. Multiple in-
flammatory markers mapping to cognitive performance after TBI have
also been implicated in cognition and in neurodegenerative and other
diseases affecting cognition.

IL-1β and TNF-α have been mechanistically characterized in literature
as mediators of cognitive impairment. For, example, CNS
h-adjusted) and overall cognitive composite (n ¼ 108).



Table 10
SEM of QOL (12mo.) with ILS, FIM cognition (Rasch-adjusted) and overall
cognitive composite (n ¼ 108).

Regressions:

Coefficients Std. Err z-value P-value
Percent back to normal ~
ILS �36.93 16.822 �2.195 0.028
Age �0.06 0.114 �0.529 0.597
Sex (Male) �5.787 4.744 �1.22 0.222
Years of education 0.55 0.966 0.569 0.569
GCS 0.3 0.621 0.483 0.629
PTD �12.392 5.474 �2.264 0.024
Overall cognitive composite ~
ILS �22.524 6.264 �3.596 <0.001
Age �0.019 0.043 �0.441 0.659
Sex (Male) �3.996 1.823 �2.192 0.028
Years of education 1.284 0.368 3.485 <0.001
GCS 0.86 0.235 3.658 <0.001
PTD 0.289 2.004 0.144 0.885
FIM Cog ~
Overall cognitive composite 0.51 0.137 3.713 <0.001
ILS �14.313 9.464 �1.512 0.13
Age �0.084 0.062 �1.356 0.175
Sex (Male) 3.742 2.66 1.407 0.159
Years of education 0.133 0.555 0.24 0.81
GCS 0.24 0.356 0.676 0.499
PTD �10.399 2.862 �3.634 <0.001
Percent back to normal ~
FIM Cog 0.635 0.165 3.853 <0.001
Defined Parameters:
Indirect effect on FIM Cog �11.491 4.448 �2.583 0.01
Total effect on FIM Cog �25.804 9.498 �2.717 0.007
Indirect effect on QOL �7.3 3.403 �2.146 0.032
Total effect on QOL �44.23 16.686 �2.651 0.008
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lipopolysaccharide (LPS) infusion studies show that TNF-α mediates
chronic inflammation induced hippocampal dysfunction and cognitive
impairment (Belarbi et al., 2012). Abnormal TNF-α activation is also
associated with neurodegeneration, and increased systemic TNFR1 and
IL-1β levels are implicated with Alzheimer’s disease risk in elderly adults
(Tan et al., 2007; Diniz et al., 2010). Exogenous IL-1β infusion in mice
also reduces spatial (i.e. hippocampal dependent) learning (Gibertini
et al., 1995). Importantly, deficits in visuospatial learning in mouse TBI
models may improve after IL-1β neutralization treatment (Clausen et al.,
2011). We show high TNF-α levels as also associated with inability to
complete cognitive testing. While higher TNF-α and IL-1β levels showed
trends associated with overall cognitive composite scores at 6 and 12
months, both were highly associated with worse memory composite
scores at 6 and 12 months post-TBI. Together with the literature, these
data suggest a specific vulnerability of hippocampal function to inflam-
mation, particularly with markers that propagate the innate immune
response.

Soluble Interleukin-4 Receptor (sIL-4R) is uniquely and positively
associated with both overall cognition and each cognitive sub-domain,
which we report is a novel finding. Biologically, sIL-4R is generated via
proteolytic cleavage of the transmembrane IL-4R and can modulate IL-4
and IL-13 signaling (Gessner and R€ollinghoff, 2000; Andrews et al.,
2006). sIL-4R competitively inhibits IL-4 signaling in a dose dependent
manner by binding to IL-4 and preventing it from binding to its trans-
membrane receptor, but this soluble receptor also modulates IL-4 trans-
mission by altering biodistribution of the cytokine (Gessner and
R€ollinghoff, 2000; Andrews et al., 2006; Sato et al., 1993). Growing ev-
idence suggests IL-4 signaling, via Th2 type differentiated T-helper
cellular release, is important for learning and memory (Karo-Atar et al.,
2018). Derecki et al. reports that IL-4 producing Th2 cells accumulate in
meninges after mice are exposed to the Morris Water Maze (MWM) as a
visuospatial learning and memory task, and cognitive performance in
IL-4 knockout mice improves after infusion of IL-4 producing Th2 cells
(Derecki et al., 2010). Similar findings occur with IL-13 production after
MWM, wherein both IL-4 and IL-13 stimulate astrocytes in the meninges
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and hippocampus (Brombacher et al., 2017) to improve cognitive func-
tion. After cerebral ischemia, IL-4R mRNA levels are increased, which
may potentiate IL-4 signaling to stabilize cognitive performance after
stroke (Liu et al., 2016). Further, other studies demonstrate IL-4
administration can improve cognitive performance after stroke in mice
deficient in endogenous IL-4 production (Zhang et al., 2019). Despite
data linking IL-4 signaling to cognition, to our knowledge, this is the first
known study to identify consistent positive associations between sIL-4R
levels and cognitive performance in any clinical population and repre-
sents a novel finding that warrants further study on its primary actions
and as a potential treatment target affecting cognitive outcomes after
TBI.

Another interesting finding is the significance of soluble Interleukin-6
Receptor (sIL-6R) with cognitive outcome, particularly overall cognition
and verbal fluency. sIL-6R is generated by either proteolytic cleavage of
membrane bound IL-6R or translation of alternatively spliced mRNA. It
specifically binds with IL-6 and potentiates pro-inflammatory trans-
signaling, with ubiquitous activity on any cell type (Rose-John et al.,
2006; Morieri et al., 2017). IL-6 trans-signaling is a dominant mechanism
driving many forms of CNS pathology (Campbell et al., 2014). CNS IL-6
signaling can also perpetuate blood brain barrier failure after TBI,
meaning systemic IL-6 family cytokine levels are potentially relevant for
TBI outcome prediction specifically (Shlosberg et al., 2010; Rochfort and
Cummins, 2015). Increased sIL-6R trans-signaling is also associated with
Alzheimer disease clinically, and inhibition of trans-signaling decreases
amyloid plaque burden in mice (Hampel et al., 1999; Escrig et al., 2019).
However, recent studies using a rodent model of experimental TBI sug-
gest a potential role for sIL-6R trans-signaling in supporting adult neu-
rogenesis and cognitive function through neuron-microglia interactions
in rodent models (Willis et al., 2020). Yet sgp130 in a ratio with sIL-6R,
has a positive association with memory scores in our study, whichmay be
due to sgp130 effects in neutralizing sIL-6R trans-signaling (Morieri
et al., 2017). Together, our data in combination with this literature
suggests that IL-6 trans-signaling effects on CNS recovery, damage, and
repair are likely both nuanced and complex.

MIP-1β and RANTES are important chemokines that facilitate im-
mune cell chemotaxis; both act in the CNS and periphery through the
CCR5 receptor to facilitate microglial andmacrophage chemotaxis (Sorce
et al., 2011). CNS MIP-1β levels are elevated in neurodegenerative and
autoimmune disorders such as multiple sclerosis (MS), particularly in
microglia near the white matter surrounding MS lesions (Simpson et al.,
1998). RANTES specifically is elevated in the plasma and brain tissue of
subjects with mild cognitive impairment or Alzheimer disease, but its
effects can be both neurodegenerative through immune modulation via
the CCR5 receptor or neuroprotective due to CCR5 effects on neuronal
survival (Sorce et al., 2011; Marksteiner et al., 2011; Tripathy et al.,
2010; Stuart and Baune, 2014). CSF MIP-1β levels in Alzheimer’s disease
patients are associated with cognitive decline (Taipa et al., 2019). In our
results, RANTES and MIP-1β are both associated with worse cognitive
performance after TBI in overall composite scores and also across mul-
tiple sub-domains of cognition.

We show novel associations between IL-7 and worse overall cognitive
and memory composite scores. IL-7 physiologically is essential for
development of adaptive immune cells and modulates T-cell homeosta-
sis, particularly augmenting autoimmunity (Lundstr€om et al., 2012).
Both low IL-7 and IL-7 receptor levels are associated with increased MS
risk (Lundmark et al., 2007; Fern�andez-Paredes et al., 2017). In contrast,
our recent clinical research has shown positive associations with chronic
IgM class auto-antibody production after TBI that may be protective
against later-occurring conditions like secondary hypogonadism, with
auto-antibody production associated with systemic IL-7 levels (Vijapur
et al., 2020). This is the first study, to our knowledge, to show an IL-7
association with memory and overall cognitive performance on neuro-
psychological testing in a clinical population. In addition, work from our
group suggests that brief intermittent administration of rhIL-7 in mice
can improve behavioral recovery after experimental TBI (in preparation).
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However, CSF IL-7 levels are reportedly elevated in Alzheimer disease
and predict disease progression in frontotemporal dementia (Taipa et al.,
2019). Yet with this current study, higher levels of endogenous IL-7 were
associated with worse cognitive composite scores among those
completing neuropsychological testing, while relatively lower IL-7 was
associated with both good cognitive test performance as well as the
inability to complete cognitive testing suggesting that IL-7 may have
complex dose-dependent effects on other aspects of inflammation (e.g.
innate immunity; auto-antibody production) that influence recovery
(Vijapur et al., 2020; Sheikh and Abraham, 2019). Thus, further work
will need to delineate the potential positive and negative effects of this
molecule on cognitive recovery, specifically in the TBI population.

Memory is a large contributor to ILS relationships with overall per-
formance in our analyses, and multiple additional markers not in ILS are
associated with the memory sub-domain. Interestingly, levels IL-5, IL-10,
and IL-17 are associated with higher memory subdomain scores, as well
as sIL-4R and sgp130:sIL-6R ratios discussed above. IL-5 is important for
B-cell and eosinophil maturation (Takatsu and Nakajima, 2008). How-
ever it is unclear exactly how IL-5 might influence TBI and/or cognition,
though B-cell mediated autoantibody production may be relevant to
tissue repair and recovery as noted above. IL-10 antagonizes the auto-
immune effects of IL-6 and an increased ratio of IL-6:IL-10 has been
previously shown by our group to have deleterious effects on global
outcome (Kumar et al., 2014). IL-17 supports memory by increasing
hippocampal long-term potentiation (LTP) and synaptic plasticity
(Ribeiro et al., 2019). The hippocampus is particularly vulnerable to
neuroinflammation due, in part, to its negative impacts on LTP, synaptic
plasticity, and reduced neurotransmission, particularly with neuro-
inflammatory diseases like MS (Mancini et al., 2017). Systemic inflam-
mation, including from aging, chronic intestinal inflammation, and other
chronic disease states also influences hippocampal neurogenesis (Zonis
et al., 2015; Chesnokova et al., 2016; Hill et al., 2019), a phenomenon
also important to TBI recovery (Xiong et al., 2011; Blaya et al., 2019;
Carlson and Saatman, 2018). The effects of chronic inflammation on
hippocampal function after TBI may be one reason for strong relation-
ships between memory and inflammatory markers in our analyses.

Literature from our group points to the relevance of biological het-
erogeneity in characterizing relationships between disease/injury and
health/function, and we have conceptualized these relationships through
the Rehabilomics research framework (Wagner, 2010, 2017; Wagner and
Zitelli, 2013). Importantly, impairment in CNS body functions like
depression also have ties to inflammation acutely after TBI (Juengst et al.,
2015a), and both cognition and depression can have a profound impact
on functional domains like activities of daily living, participation in so-
cial and societal roles (Failla et al., 2016; Juengst et al., 2015b). Our
results suggest systemic inflammation, particularly as operationalized by
the wILS, can impact CNS impairments like cognition and have resultant
effects on functional measures, like FIM-Cog and QOL scores. While wILS
was related to QOL (i.e. percent back to normal scores), overall cognitive
composite and FIM-Cog scores were in the causal pathway, and depres-
sion was adjusted for in the various regression model components of the
mediation. This finding emphasizes how systemic inflammation can
indirectly influence function through its pathological effects on objective
impairments, in this case neuropsychological test performance. These
mediation models showing early chronic systemic inflammation effects
on functional outcomes are seminal to the field as they provide direct
evidence that biomarkers can capture complex relationships between
disease, impairment, and function consistent with and as hypothesized
with the Rehabilomics researchmodel (Wagner, 2010, 2017;Wagner and
Zitelli, 2013). Also, these findings show that mediation analyses are
effective in dissecting complex relationships between biology and
function.

Sex differences were noted at the trend level for 12-month multi-
variable models predicting cognitive composite test scores using the wILS
and the uILS and was a significant predictor of cognitive deficits in the
SEM associated regression (Table 10). Sex differences in computerized
10
neurocognitive testing after concussion have been assessed in numerous
reports, with many noting sex differences on visual spatial testing per-
formance (Covassin et al., 2013; Majerske et al., 2008). However, vari-
ation with use and availability of normative data among child and
adolescent athletes in score reporting, along with gender differences in
post-concussive management, complicate the application of these find-
ings (Majerske et al., 2008). Fewer studies have evaluated sex differences
in test performance among those with moderate-to-severe TBI. Major
studies in this population suggests women perform better in areas such as
verbal memory, attention, and working memory (Ratcliff et al., 2007),
however the lack of normative test scoreuse/reporting with neuropsy-
chological data reporting complicates interpretation of TBI-specific sex
differences. In fact, demographic differences in NIH toolbox neuropsy-
chological test score performance among TBI/Stroke populations account
for ~1/3 of the variance in scores, a finding that drops to ~5% when
correcting for demographic differences in the general population (Nitsch
et al., 2017). Our findings suggest that despite correcting for de-
mographic influences on component score performance, women with TBI
perform worse when adjusting for covariates like education and injury
severity. Sex differences also exist with inflammatory response charac-
teristics, including T-cell immunity, risk for autoimmune disease, and
immune contributions to longevity, behavior, and dendritic cell function
(Ahnstedt and McCullough, 2019; Gold et al., 2019; Lasselin et al., 2018;
Laffont et al., 2017; Austad and Bartke, 2016). However, there were no
significant interactions with sex and ILS scores in our study. Sex differ-
ences, with women as the risk group, have been reported in how dopa-
mine genetics influence cognitive performance after TBI (Myrga et al.,
2016), however future work is needed more broadly to better understand
TBI-specific sex differences in cognitive performance.

Depression status, as measured by the PHQ-9, was associated with
both QOL (percent back to normal) and functional cognition (FIM-Cog).
These findings are consistent with other TBI research suggesting a link
between mental health and life satisfaction (Juengst et al., 2015b; Rauen
et al., 2020), as well as functional cognition metrics (Failla et al., 2016).
We did not specifically assess inflammatory associations with PTD, even
though reports exist suggesting inflammation as a contributor to PTD
(Juengst et al., 2017) and that early inflammatory cascades influence
later depression risk (Juengst et al., 2015a). Our future work will focus
on how chronic inflammation affects PTD risk and its downstream im-
pacts on functional outcomes.

Study limitations include the absence of pre-injury biomarker levels
or neuropsychological testing results for our TBI cohort. However,
normative reference data was used to develop cognitive composite T-
scores, reducing the impact of this limitation and healthy control serum
samples were measured to provide an inflammatory assay reference
group. Although we identified differences in marker levels based on
broad groupings of impairment status and those unable to complete
cognitive testing, ILS analyses only included survivors and subjects
cognitively and physically able to complete neuropsychological testing.
Yet the inclusion of those cognitively unable to participate in formal
neuropsychological testing suggests that some aspects of systemic in-
flammatory burden may be worse in these individuals. This work is also
observational in nature and we cannot fully establish causality between
changes in serum inflammatory biomarker levels and cognitive com-
posite T-scores.

5. Conclusion

Despite these limitations, this is the first study examining the rela-
tionship between early chronic inflammation and cognitive outcome
after TBI, and novel inflammatory marker associations with cognition
have been identified through this work that may be useful in identifying
modifiable treatment targets to reduce systemic inflammatory burden
after TBI. We also demonstrate the potential importance of systemic
inflammation in perpetuating neuroinflammatory burden, and future
studies are necessary to characterize CNS-systemic inflammation
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relationships with neuroinflammation, as well as the mechanistic un-
derpinnings for these observational findings. Additional work should
validate ILS as a predictor of cognitive status after TBI and explore im-
munogenetic relationships to outcome. Further, inflammatory relation-
ships with other secondary conditions after TBI should be explored as
should their relationships with multiple domains of function. Impor-
tantly, the work presented here, linking inflammatory burden associated
with cognitive deficits to functional outcome post-TBI, demonstrates the
potential functional impact of immunotherapy interventions aimed at
improving cognitive recovery post-TBI.
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