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Abstract: Abdominal aortic aneurysm (AAA) and intracranial aneurysm (IA) are serious arterial
diseases in the aorta and brain, respectively. AAA and IA are associated with old age in males and
females, respectively, and if rupture occurs, they carry high morbidity and mortality. Aneurysmal
subarachnoid hemorrhage (SAH) due to IA rupture has a high rate of complication and fatality.
Despite these severe clinical outcomes, preventing or treating these devastating diseases remains
an unmet medical need. Inflammation and oxidative stress are shared pathologies of these vascular
diseases. Therefore, therapeutic strategies have focused on reducing inflammation and reactive
oxygen species levels. Interestingly, in response to cellular stress, the inducible heme oxygenase-1
(HO-1) is highly upregulated and protects against tissue injury. HO-1 degrades the prooxidant heme
and generates molecules with antioxidative and anti-inflammatory properties, resulting in decreased
oxidative stress and inflammation. Therefore, increasing HO-1 activity is an attractive option for
therapy. Several HO-1 inducers have been identified and tested in animal models for preventing
or alleviating AAA, IA, and SAH. However, clinical trials have shown conflicting results. Further
research and the development of highly selective HO-1 regulators may be needed to prevent the
initiation and progression of AAA, IA, or SAH.

Keywords: abdominal aortic aneurysm; intracranial aneurysm; subarachnoid hemorrhage;
heme oxygenase-1; inflammation; oxidative stress

1. Introduction

1.1. Aneurysmal Diseases

Cardiovascular diseases remain the leading cause of death worldwide, particularly in developed
countries. Of all cardiovascular diseases, aneurysmal diseases are not as well-known or studied as
coronary heart diseases. An aneurysm is a bulge or ballooning in a blood vessel and the underlying
problem in aneurysmal disease is weakening of the arterial wall leading to progressive dilatation
and risk of rupture [1]. Aneurysms are classified by their location in the vasculature: abdominal
aortic aneurysms (AAAs) occur in the abdominal aorta and intracranial aneurysms (IAs) develop
in the cerebral arteries. The global prevalence rate of AAA in 2010 ranged from 7.88 to 1229 per
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100,000 individuals in the 40–44 and 65–69 age groups, respectively [2]. The overall death rate of AAA
increased from 2.49 to 2.78 per 100,000 individuals from 1990 to 2010 [3]. Men with advanced age
are more prone to develop AAAs and male gender is also associated with a four-fold higher risk of
AAA [3–5]. With the global average increase in age and lifespan [6], the age-standardized mortality of
AAA has also increased, indicating a concerning rise in total AAA incidence [1,3,7].

Prospective autopsy and angiographic studies reveal that 3.6–6% of the population has an IA,
which is primarily localized in proximal arterial bifurcations in the circle of Willis [8]. The estimated
lifetime medical costs, including hospitalization and surgery, for patients with unruptured IAs in the
United States is over USD 500 million [9]. Although AAAs and IAs are both arterial aneurysms, IAs are
characterized by a distinct saccular morphology that is different from AAAs. In contrast to the male
prevalence of AAAs, IAs have higher prevalence in females [10,11] and increase rapidly with age [12].
Computed tomography (CT) and magnetic resonance imaging (MRI) are progressively more common
in clinical practice, resulting in the more frequent detection of unruptured IAs. Therefore, there is an
increasing need for pharmacological treatments to suppress IA progression and rupture.

Subarachnoid hemorrhage (SAH) is a neurological emergency characterized by bleeding into the
space surrounding the brain that is filled with cerebrospinal fluid. SAH without a preceding trauma
is caused by the rupture of an IA in 80% of cases, accounting for 5–10% of all strokes in the United
States [13,14]. The multifactorial pathophysiology following SAH often results in irreversible brain
damage. The amount of subarachnoid blood detected on the initial CT of patients with aneurysmal
SAH has independent predictive power for the occurrence of delayed cerebral ischemia [15]. SAH is
also associated with a higher rate of medical complications and 40–50% mortality [16]. SAH affects
younger individuals than those affected by other forms of stroke [13]. Despite only accounting for
3% of all strokes each year [17], SAH stroke is a major cause of premature mortality, accounting for
27% of all stroke-related years of potential life lost before the age of 65 [18]. In addition, the survivors
often experience long-term functional disability and/or cognitive impairment [19]. Aneurysmal SAH
remains an overwhelmingly destructive form of stroke and contributes to a substantial medical and
economic burden, with a magnitude similar to that of ischemic stroke [20]. The estimated annual cost
of SAH in the United States is USD 1.755 billion, more than three-fold higher than the costs associated
with unruptured IAs [9]. Factors associated with an increased risk of aneurysm rupture include race,
hypertension, cigarettes and alcohol use, and IA diameter larger than 7 mm [21,22].

1.2. Current Treatments for Aneurysmal Diseases

AAAs often grow slowly and are usually asymptomatic, making them difficult to detect.
Patients with abdominal or back pain are recommended to have ultrasound imaging to determine
whether a AAA is present [23]. Although the risk of rupture for small AAAs (3.5–5.5 cm diameter)
is low [24], large AAAs (>5.5 cm diameter) are prone to rupture, resulting in a mortality rate of
80–85% [4]. Several approaches are proposed to attenuate the progression of small AAAs including
the management of atherosclerotic risk factor factors—hypertension, hyperlipidemia, and diabetes.
Furthermore, AAAs should be monitored regularly [23]. For large or symptomatic AAAs, prophylactic
operative repair by open surgery or endovascular repair is necessary [23,25]. Patients with ruptured
AAAs that present with severe abdominal or back pain, hypotension, and palpable abdominal mass
need immediate interventional procedures. Although open repair is the treatment of choice for most
ruptured AAAs, endovascular stent-graft repair is warranted in many cases because it is less invasive
and has a lower morbidity and mortality [26].

Treatment options for IAs are limited to invasive therapies including surgical clipping and
endovascular embolization. Randomized, controlled trials suggest that IAs that are judged to be
treatable by surgical interventions are best treated by endovascular procedures, although open surgery
maybe preferred in certain cases [13]. Data from the International Study of Unruptured Intracranial
Aneurysms reported non-negligible risk of these procedures, with combined mortality and morbidity
at 1 year of 12.6% and 9.5%, respectively [27]. Currently, endovascular coiling to block blood flow is
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often preferred for elderly patients because it is minimally invasive and has lower associated mortality
and morbidity [27]. However, endovascular coil embolization has a high rate of recurrence and needs
retreatment [28]. To prevent aneurysmal SAH, proper management of risk factors similar to those of
AAAs including controlling hypertension may prevent IA rupture. Nevertheless, for ruptured IAs,
surgical clipping or endovascular coiling should be performed as early as feasible in the majority of
patients to reduce the rate of bleeding after aneurysmal SAH. For patients judged to be technically
amenable to both interventions, endovascular coiling should be considered [29].

1.3. Opportunity of Heme Oxygenase-1 in Aneurysmal Diseases

Surgical interventions are required to repair large AAAs and IAs. For small unruptured aneurysms,
pharmacological agents that could prevent or even regress these aneurysms would alleviate the need
for patients to undergo major surgical procedures [30,31]. Despite that, there are some differences in
the etiology between AAAs and IAs; these vascular diseases share similar risk factors, including age,
smoking, hypertension, and family predisposition [11]. Furthermore, many pathogenic mechanisms
and characteristics of AAA have been reported in IAs, including oxidative stress, inflammation,
endothelial dysfunctions, phenotypic modulation and loss of vascular smooth muscle cells (VSMCs),
leukocytes infiltration, and vascular remodeling. Elastin fragmentation and degradation of extracellular
matrix (ECM) by matrix metalloproteinases (MMPs) result in arterial wall weakening [32]. Given that
both inflammation and oxidative stress contribute to AAAs and IAs, pharmacological therapeutic
strategies aimed at reducing inflammation and reactive oxygen species (ROS) levels appear to be
promising approaches for preventing/treating these devastating vascular diseases.

Heme oxygenase (HO) is an endoplasmic reticulum-associated enzyme that catalyzes the
degradation of the prooxidant heme and generates carbon monoxide (CO), biliverdin, and ferrous
iron [33–35]. Ferrous iron can induce ferritin expression to sequester iron while bilirubin, converted from
biliverdin, is an antioxidant. In addition to its anti-inflammatory functions, recent studies indicate
that bilirubin also promotes health via hepatic pathways [36]. CO has both anti-inflammatory and
antioxidant properties. Two major HO isoforms have been identified (HO-1 and HO-2). HO-2 is
constitutively expressed; however, the inducible HO-1 isoform is most extensively studied. Numerous
studies have revealed that HO-1 is normally expressed at low levels in most tissues; in response to
pathological stress, HO-1 is significantly induced [37], probably as an endogenous mechanism to protect
against tissue injury (Figure 1). Various studies have demonstrated the protective effects of HO-1 in
cardiovascular health. In particular, in an HO-1-deficient human, excessive vascular inflammation
has been observed [38,39]. In recent years, naturally derived HO-1 inducer has been employed as an
approach to treating exacerbated inflammation [40]. Based on the properties of HO-1, induction of
HO-1 offers a unique opportunity as a therapeutic target for aneurysmal disorders.
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Figure 1. Schema of heme oxygenase-1 (HO-1) upregulation. In response to cellular stress, HO-1 can
be strongly induced by many factors, such as reactive oxygen species, inflammatory factors,
hypoxia/hyperoxia, UV irradiation, heavy metals, heat shock, ethanol, heme, and nitric oxide (NO).
Heme is not only a substrate for HO-1 but also a stimulus for HO-1 upregulation. A source of heme is
from breakdown of hemoglobin released from lysed blood due to hemorrhage. Factors that upregulate
HO-1 also increase Nrf2 expression, which then binds to antioxidant response elements (ARE) in the
HO-1 promoter to induce HO-1 gene transcription. Other cis-elements on the HO-1 promoter include
AP-1 and NFκB sites contribute to transcriptional regulation of HO-1. After induction, HO-1 catalyzes
the oxidation of heme to generate biologically active molecules, including carbon monoxide (CO) that
has antioxidant and anti-inflammation functions. Ferrous iron (Fe2+) can induce ferritin expression for
iron sequestration. Additionally, biliverdin is subsequently reduced to bilirubin by biliverdin reductase
which is an additional antioxidant.

2. HO-1 in Abdominal Aortic Aneurysm

AAA is a localized dilatation of the abdominal aorta exceeding the normal diameter by more
than 50% [41]. The unique hemodynamic environment of the infrarenal aortic region predisposes it to
site-specific degenerative changes. The infrarenal aorta is the most common site of aortic aneurysm
formation. Differential hemodynamic factors and regional features may explain the specific anatomic
localization of AAA [42]. AAA is a chronic vascular disease caused by progressive inflammation and
oxidative stress-induced injury, resulting in permanent aortic segmental dilatation, which may progress
to dissection or rupture [43,44]. In addition to inflammatory cell infiltration and ROS production,
AAA is also associated with depletion of medial VSMCs and degradation or remodeling of aortic wall
ECM [45]. Old age, male gender, smoking history, high blood pressure, and hereditary predisposition
are the most critical contributing factors to AAA [5]. In addition to the common cardiovascular risk
factors, increasing evidence indicates separate pathogenic mechanisms underly the development
of both AAA and arterial occlusive diseases [46,47]. AAA is traditionally detected by ultrasound;
however, prognostic markers will help identify patients with AAA. A prospective study has identified
several circulating biomarkers (white blood cell count, fibrinogen, D-dimer, troponin T, N-terminal
probrain natriuretic peptide, and high-sensitivity C-reactive protein) that are strongly associated with
AAA incidence [48].
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Other than environmental (common cardiovascular) risk factors, genetic risk factors also
contribute to the development of AAA. Meta-analysis of genome-wide association studies identified
10 disease-specific risk loci, including MMP-9, IL6R, LDLR, ERG, and SMYD2. These risk loci do
not always associate with coronary artery disease, blood pressure, lipids, or diabetes mellitus [49],
which emphasizes that distinct mechanisms underly the pathogenesis of AAA vs. other cardiovascular
diseases. A recent genome-wide association study in the Million Veteran Program identified 14 more
novel AAA risk loci, including LDAH and ADAMTS8 [50]. Although not identified within these 24
risk loci, the stress response gene HO-1 has been shown to be involved in AAA development and
progression. The regulation of the HO-1 expression is controlled by polymorphisms in the length of GT
repeats in the proximal promoter, and shorter GT repeats (<25 GT) exhibit greater HO-1 upregulation
and anti-inflammatory responses compared with longer repeats [51]. Intriguingly, patients with AAA
are less frequently carriers of short (<25 GT) repeats in the HO-1 gene promoter than patients with
atherosclerosis or healthy subjects, suggesting short GT repeats facilitate upregulation of HO-1 and
serve a protective function against the development of AAA [52].

Genetic mutations also contribute to the development of aortic aneurysm. For example, Marfan
syndrome is an inherited autosomal dominant disorder of connective tissue, affecting the cardiovascular
system [53] and has an incidence of approximately 1 in 9800 in England [54]. Marfan syndrome is
often caused by mutations in the fibrillin-1 gene, resulting in abnormalities of fibrillin metabolism
and altered elastic microfibril and ECM assembly in the aorta in most patients [55]. Progressive
dilatation of the aorta with subsequent dissection or rupture is the main cause of mortality. In addition
to fibrillin-1 mutations, transforming growth factor β receptor 2 (TGFBR2) and TGFBR1 also cause
Marfan syndrome and these pathways regulate ECM synthesis and homeostasis [56–58]. Elastic fiber
fragmentation, paucity of VSMCs, deposition of collagen, and mucopolysaccharide between the cells of
the medial layer are found in both Marfan syndrome patients and those with AAA. Thus, therapeutic
strategies may relieve symptoms of AAA and Marfan syndrome.

Although prophylactic operative repair is the only option for of larger aneurysms, developing
pharmacological therapies to attenuate or stop AAA progression, and therefore avoiding the need for
surgical repair, still has great potential [59]. Therein, HO-1 acts as a stress response protein and plays
an important cytoprotective role against injury with its antioxidative and anti-inflammatory properties
in cardiovascular disease [35,60]. Accordingly, various studies have investigated the influence of
HO-1 on AAA. From a biofluiddynamics perspective, sustained shear stress dramatically increased
HO-1 expression and inhibited elevation of ROS and enlargement of the aortic wall in a rat pancreatic
elastase-induced AAA model [61], implicating a protective function of HO-1 in AAA formation.
Haploinsufficient HO-1 in mice (one allele of HO-1 gene is mutated or deleted) were more prone to
elastase-induced AAA than wild type mice and exhibited higher levels of macrophage recruitment
and inflammatory cytokines in the blood [62]. Further supporting a critical role of HO-1 in AAA
development, we demonstrated unequivocally that HO-1 expression was crucial in AAA growth and
severity. We showed that in the angiotensin II-induced AAA model, complete loss of HO-1 exacerbated
AAA incidence and rupture rate in mice, concomitant with increased ROS level, VSMC apoptosis,
severe elastin degradation, macrophage infiltration, and MMP activation [63].

On account of the aforementioned reasons, numerous studies attempted to pharmacologically
inhibit inflammation, ROS generation, and ECM degradation to prevent aneurysm formation and/or
progression through modulating HO-1 expression. Given that macrophages are a prominent cell type
in AAA and that omega-3 polyunsaturated fatty acids (n-3 PUFA) have been suggested to attenuate
adverse outcomes associated with inflammation, oxidative stress and disturbed antioxidant status,
thus, it was hypothesized that n-3 PUFA and docosahexaenoic acid (DHA) might provide a therapeutic
strategy for AAA [64]. Incubation of monocyte-derived macrophages obtained from male patients
that had small AAA (3.0–4.5 cm diameter) with DHA-suppressed LPS-induced ROS and inflammatory
cytokine levels. Importantly, DHA increased HO-1 mRNA levels and glutathione peroxidase activity in
macrophages [64], indicating DHA is a promising target for further investigation in patients with AAA.
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MMP-9 expression in macrophages also has a potential role in AAA development. Doxycycline, a safe
and commonly used antibiotic, inhibits MMP-9 expression and activity [65]. In an angiotensin II-induced
AAA model, doxycycline markedly reduced the incidence and severity of AAA [66]. Doxycycline also
had a preventive and therapeutic effect on AAA in a mouse elastase-induced AAA model, in part,
interestingly, through upregulating HO-1 expression [67]. In a prospective, double-blind, randomized,
placebo-controlled study, doxycycline significantly decreased the expansion rate of AAA [68]. A further
prospective phase II multicenter study showed that prolonged administration of doxycycline (twice
daily for 6 months) was safe and well tolerated in patients with small AAAs and was associated with
a gradual reduction in plasma MMP-9 levels [69]. It appears that doxycycline also reduces vascular
inflammation and selectively depletes neutrophils and cytotoxic T cells in the aortic wall of AAA
patients [70]. Although not measured in these clinical studies, it is likely that doxycycline’s effects
might be mediated through HO-1-dependent pathways. Licochalcone A, a compound extracted from
the Glycyrrhiza species, has a strong potential to ameliorate angiotensin II-induced AAA via elevating
HO-1 expression [71]. Probucol is a cholesterol-lowering drug and antioxidant and clinically used
for the treatment of restenosis. Probucol induces HO-1 expression, inhibits VSMC proliferation and
reduces restenosis [72]. A recent study demonstrated that probucol attenuates the development of
AAA through HO-1 upregulation and protects against elastin degradation while facilitating elastin
synthesis [73]. These HO-1 regulators and their effects on the pathophysiology of AAA are depicted in
Figure 2.
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Figure 2. Effects of HO-1 induction on abdominal aortic aneurysm (AAA). The pathophysiology
of AAA includes enhanced inflammation, oxidative stress, extracellular matrix (ECM) remodeling,
elastin degradation, and vascular smooth muscle cell (VSMC) apoptosis in the media, and macrophage
infiltration into the aneurysmal site. Upregulation of HO-1 by inducers including docosahexaenoic acid
(DHA), doxycycline, licochalcone A, probucol, and simvastatin may alleviate some of the pathological
outcomes of AAA.

Statins are a widely used cholesterol-lowering drug that also reduce the generation of ROS and
proinflammatory cytokines [74]. The pleiotropic effects of statins seem to be advantageous in AAA
disease through the promotion of HO-1 [62]. In a mouse elastase model, treatment with simvastatin
suppressed the formation of experimental AAAs in both normal and hypercholesterolemic mice,
independent of its lipid-lowering effects. Simvastatin preserved medial elastin and VSMC content,
reduced MMPs, and increased MMP inhibitor tissue inhibitor of metalloproteinase 1 (TIMP-1) in the
aortic wall in these mouse studies [75]. Corroborating with the results from this animal study, statins
may attenuate AAA growth [76] and reduce the ROS level in the human AAA aortic wall via NF-κB
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signaling [77]. A more recent study also showed that statin therapy may reduce AAA progression,
rupture, and lower rates of perioperative mortality following elective AAA repair [78]. Intriguingly,
administration of statins significantly upregulated HO-1 expression in both endothelial cells (ECs) and
VSMCs of AAAs in patients [79].

Taken together, numerous studies support the concept that HO-1 exhibits multiple protective
functions in the vasculature. Therefore, activation of HO-1 expression clinically might be a promising
therapeutic strategy for prevention or treatment of AAA.

3. HO-1 in Intracranial Aneurysm

Intracranial aneurysm is a cerebrovascular disorder also known as a brain aneurysm. Similar to
atherosclerotic lesion, IA usually occurs at branch points along the intracranial arteries. However, in contrast
to the luminal occlusion present in atherosclerosis, hemodynamic stress on the intracranial arterial wall
between the two exiting branches weakens that region, resulting in IA formation [13,80]. The similarity in
risk factors and pathological elements of IAs and AAAs suggests a shared pathophysiology and therefore
HO-1 induction might also limit the severity of IAs by reducing these pathogenic cellular processes.
Data from recent animal studies with activators of nuclear factor erythroid 2-related factor 2 (Nrf2),
the major transcriptional activator of HO-1 [81], further emphasized a potential protective role of HO-1
against IA formation and progression. In a rat IA model with elastase treatment and ligation of unilateral
common carotid artery, the Nrf2 agonist tert-butylhydroquinone (tBHQ) reduced incidence and severity
of IAs. Nrf2 activation also prevented oxidative stress-induced switching of VSMCs from a contractile
to a synthetic phenotype and apoptosis. Nrf2 activation also promoted the expression of antioxidant
enzymes and VSMC-specific marker genes and decreased proinflammatory cytokine levels [82]. Dimethyl
fumarate (DMF), which exhibits immunomodulatory properties, partly via activation of the Nrf2-mediated
oxidative responses, also reduced the formation of IA in mouse models [83]. These studies indicate an
essential protective role of HO-1 in IAs.

In addition to tBHQ and DMF, several HO-1 enhancing agents appear to be beneficial at least
in IA animal models. Erythropoietin (EPO) attenuates pulmonary vascular remodeling through
mobilizing endothelial progenitor cells (EPCs) and activating HO-1 [84]. In a rat IA model with
ligation of carotid and renal arteries, EPO increased circulating EPCs, reduced the formation and
progression of IAs, and reduced the expression of inducible nitric oxide synthase (iNOS) and MMPs [85].
Dipeptidyl peptidase-4 (DPP-4) inhibitors including sitagliptin have been shown to have beneficial
effects in alleviating vascular remodeling and cardiac infarction by reducing ROS via the Nrf2/HO-1
pathway [86,87]. Consistent with this notion, the DPP-4 inhibitor anagliptin inhibited the accumulation
of macrophages in IAs and prevented IA growth. Further, anagliptin reduced the production of
proinflammatory cytokines monocyte chemotactic protein 1 (MCP-1), TNF-α, and IL-6. These results
indicate that anagliptin prevents the growth of IAs via its anti-inflammatory effects on macrophages [88].
The suppressive functions of EPO and anagliptin in IAs may be attributed in part to HO-1 expression,
although further studies are needed. Some evidence indicates that statins provide protection for
AAAs in animal models and also in humans. However, the effects of statins on IAs are controversial.
Some statins, such as atorvastatin [89], simvastatin [90], pitavastatin [91], and pravastatin [92] showed
protective effects in animal IA models. In contrast, statins have been reported to promote the growth of
experimentally-induced IAs in estrogen-deficient rats, although a low dose of pravastatin does reduce
the incidence of IA [93], suggesting a possibility of differential effects by statins, particularly in older
female patients with low estrogen levels. An additional study showed that in contrast to a positive
correlation between statins and a reduction of IA formation in animal models, statins may have no
significant beneficial effect on IA suppression in humans [94].

Endovascular coil embolization treatment for IAs has a high rate of recurrence [28]; as such,
prevention of recurrence following embolization has become one of the essential issues of aneurysm
intervention. Endothelialization at the aneurysmal neck and fundus is crucial in sealing off the aneurysm
from the arterial circulation and stopping blood flow into the aneurysm [95]. Indeed, endothelialization
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has been observed in both clinical cases [96] and animal models [97]. Although the biological processes
of postembolization healing and recurrence of the treated aneurysm are still far from fully understood,
recruitment of ECs to the site of the aneurysmal neck and subsequent endothelialization are thought
to be essential in ensuring adequate healing and preventing recanalization [98]. Evidence suggests
that bone marrow derived-EPCs contribute to endothelialization of grafts and denuded arteries [99].
Interestingly, overexpression of HO-1 facilitates re-endothelialization of denuded vessels by promoting
mobilization of EPCs while HO-1-deficiency hampers EPC mobilization and re-endothelialization [100].
Compared with wild type mice, bone marrow cells from HO-1 knockout mice generate fewer
endothelial colony-forming cells [101]. Collectively, these findings implicate that HO-1 inducers may
serve as a novel therapeutic option in postembolization management against aneurysm recurrence by
enhancing endothelialization.

DPP-4 inhibitors not only prevent IA growth and alleviate vascular remodeling via Nrf2/HO-1
pathway as discussed above, but the DPP-4 inhibitor sitagliptin facilitates EPC mobilization and
endothelialization in aneurysmal necks, likely through Nrf2 signaling by promoting proliferation,
migration, invasion, and angiogenic abilities of EPCs [102]. EPO not only reduces IA development [85],
it also stimulates EPCs to endothelialize the aneurysmal neck after coil embolization by modulating
vascular endothelial growth factor [103]. The role of statins in IA recanalization is less clear; both positive
and negative results were reported from animal and clinical studies. Rosuvastatin was shown to
enhance endothelialization of the coiled aneurysm neck via induction of EPCs in rats [104], whereas
systemic simvastatin administration following platinum coil embolization of unruptured IAs did
not improve aneurysm occlusion in rabbits [105]. In one human study, statins were associated with
a lower rate of aneurysm recurrence following endovascular coiling of small- and medium-sized
ruptured aneurysms [106]. Two other studies found a lack of association between statin use and
angiographic and clinical outcomes after Pipeline embolization for IAs [107,108]. Taken together,
enhancing HO-1 expression might protect against IA development, attenuate pathophysiological
outcomes, and decrease recurrence after endovascular interventions (Figure 3).
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Figure 3. Effects of HO-1 induction on intracranial aneurysm (IA). The pathophysiology of IA includes
enhanced inflammation, oxidative stress, extracellular matrix (ECM) remodeling, denudation of
endothelium, phenotypic modulation of vascular smooth muscle cells (VSMCs) from a contractile to a
synthetic phenotype, loss of VSMCs in the media, and macrophage infiltration into the aneurysmal
site. Upregulation of HO-1 by inducers tert-butylhydroquinone (tBHQ), dimethyl fumarate (DMF),
erythropoietin (EPO), anagliptin, sitagliptin, and atorvastatin attenuates development of IA and
alleviates associated pathological effects.
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Given that Pipeline embolization is often used on large aneurysms with wide necks it remains to
be determined whether these medical devices used for intervention and/or characteristics of IAs affect
the outcomes. Nonetheless, re-endothelialization provides an additional therapeutic opportunity for
IAs following interventional procedures. Additional studies are needed to adequately evaluate the
safety and efficacy of the potential targets for recurrence prevention after endovascular interventions.
Further investigation and clinical trials would be required to determine the safety and efficacy of
inducing agents to suppress or prevent human IA recurrence prevention.

4. HO-1 in Subarachnoid Hemorrhage

Following initial bleeding in SAH, blood accumulates within the subarachnoid space and penetrates
into the brain parenchyma via paravascular pathways, including into areas remote from the initial
bleeding site [109,110]. Blood-derived products such as hemoglobin and free heme have been implicated
as key mediators of brain injury following SAH. Neurotoxicity of erythrocyte lysis, particularly
hemoglobin, has been demonstrated in cortical cell culture assays [110–112]. Free heme, one major
breakdown product of hemoglobin, can act as a potent cytotoxic prooxidant and proinflammatory
molecule, causing cellular oxidative damage, cytotoxicity, and inflammation [113]. Neurotoxicity of
hemin, the oxidized form of heme, has been reported in rat brain organotypic slices [114]. In primary
cultures of rat cerebellar granule neurons treated with hemin, pretreatment of curcumin increased
HO-1 expression and glutathione levels, attenuated ROS production and neuronal death, suggesting
the protective effects of curcumin is likely mediated through HO-1 and glutathione [115]. In a
rat model using lysed blood, whole blood, or oxyhemoglobin injection to mimic SAH, HO-1 was
induced predominantly in microglia throughout the brain [116]. It was proposed that the microglial
HO-1 response could be protective against hemoglobin-induced lipid peroxidation and vasospasm
by increasing the clearance of heme, sequestrating iron, and by increasing the production of the
antioxidant bilirubin [116]. In a murine model of SAH, expression of HO-1 in microglia was necessary
to attenuate neuronal cell death, vasospasm, impaired cognitive function, and clearance of cerebral
blood burden [117]. Therefore, it was concluded that microglial HO-1 and the generation of its reaction
product CO are essential for effective elimination of blood and heme after SAH. A recent study showed
that HO-1 is induced in microglia following blood exposure [118]. Importantly, neuronal cells are
protected from cell death by microglia cell medium conditioned with blood [118], further supporting a
critical role of microglial HO-1 induction in protecting against neuronal damage after SAH. Microglia
are resident immune cells of the brain, and as such microglial HO-1 may exert its protective actions
against SAH-induced neuronal injuries by modulating neuroinflammatory processes. These studies
emphasize the importance of blood clearance in the injury response to SAH and a crucial protective
function of microglial HO-1 upregulation in SAH.

Posthemorrhage administration of Nrf2 activator, sulforaphane, tBHQ, or DMF, enhances
expression of both Nrf2 and HO-1, reduces oxidative stress, and ameliorates early brain damage,
including brain edema, blood-brain barrier (BBB) impairment, cortical necrosis and apoptosis, motor
deficits, and cognitive dysfunction following SAH in animal models [119–121]. Microglial-specific HO-1
overexpression in mice further confirmed the protective function of HO-1 in neuronal injuries following
SAH [117]. Further supporting the critical importance of microglial HO-1, HO-1 deficiency in neurons
and astrocytes did not influence vasospasm or neuronal apoptosis following SAH, while HO-1 deficiency
in microglia caused aggravated neuronal apoptosis, hematoma volume, vasospasm, and cognitive
deficits post SAH. Moreover, CO inhalation after SAH rescued the absence of microglial HO-1,
demonstrating the necessity of microglial HO-1/CO in injury responses to SAH, at least for the acute
and subchronic phases [117]. The neuroprotective action of HO-1 may also involve its modulatory
effects on inflammatory responses, which have been clearly demonstrated in AAA [62,63]. HO-1 may
modulate inflammatory response by its reaction products, such as CO and bilirubin, or its action of
heme clearance. In organotypic rat brain slice cultures, hemin has been shown to induce neuronal
death through enhancing IL-1α-related signaling pathways [114]. Further implicating the therapeutic
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potential of HO-1 activators, as with AAAs, patients with SAH are frequent carriers of long GT repeats
(>36) in the HO-1 gene promoter, with decreased inducibility of HO-1 expression [122].

HO-1 inducers that are derived from natural sources, including quercetin, curcumin,
and resveratrol, may have therapeutic application to immune-mediated diseases [40]. In animal
models of SAH, many HO-1-enhancing agents are therapeutically beneficial, by reducing post-SAH
mortality, improving functional outcomes, and attenuating SAH-induced learning deficits. Several
natural products or their derivatives exhibit a beneficial effect in SAH. Recombinant human milk
fat globule-EGF factor 8 (rhMFGE8) administration alleviates brain edema and neurological deficits
by decreasing brain water content and improving neurological functions following SAH. rhMFGE8
attenuates oxidative stress and increases expression of extracellular signal-regulated kinase (ERK),
Nrf2, and HO-1 while the HO inhibitor tin protoporphyrin (SnPP IX) abolished this effect, suggesting
the protective effect might be mediated via the Nrf2-HO-1 pathway [123]. As such, rhMFGE8 may
be a potential therapeutic target to ameliorate early brain injury for SAH patients. Oleanolic acid,
a natural plant triterpenoid, has been shown to activate Nrf2/HO-1 signaling in kidney injury induced
by cyclosporine and reduces renal pathology by providing beneficial effects on inflammation and
oxidative stress [124]. Interestingly, it has been shown that prophylactic administration of oleanolic acid
could prevented BBB disruption in an autoimmune encephalomyelitis mouse model [125]. Given that
disruption of BBB is the main cause of vasogenic brain edema induced by SAH, it was proposed that
oleanolic acid may play a neuroprotective role by protecting the integrity of BBB and reducing vasogenic
cerebral edema after SAH. Indeed, oleanolic acid effectively alleviates SAH-induced vasogenic brain
edema, reduces BBB permeability, and decreases SAH severity, by increasing HO-1 expression in SAH
rats [126].

Apoptosis and inflammation contribute to early brain damage following SAH [127]. Mangiferin,
a natural glucosyl xanthone found in both mango and papaya, has anti-inflammatory effect via
upregulation of HO-1 in a mouse sepsis-induced lung injury model [128]. In a rat perforation model of
SAH, post-SAH administration of mangiferin alleviated early brain injury and decreased mortality
after SAH [127]. Mangiferin exerts neuroprotective effect by attenuating oxidative stress, reducing
mitochondria-related apoptosis and inflammasome activation, and lessening NF-κB activation and
production of proinflammatory cytokines via the Nrf2/HO-1 pathway [127]. In addition to protective
effects on some neurological diseases, rhynchophylline has been reported to alleviate early brain
injury following SAH, including attenuation of brain edema, neurological deficits, BBB disruption,
hippocampal apoptosis, inflammation, and oxidative stress, at least in part via activation of HO-1
pathway [129]. Resveratrol, a plant-derived polyphenolic compound and a scavenger of a number of
free radicals, increases expression of various antioxidant enzymes, including HO-1, and has antioxidant
properties [130]. Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating the
expression of Nrf2 and HO-1 in rats [131]. Resveratrol has been shown to have antiapoptotic effects in
an early brain injury model [132], implicating a potential protective role in SAH. Consistent with this
observation, resveratrol reduces brain injury after SAH by inhibiting oxidative stress and endoplasmic
reticulum stress [133].

In response to pathophysiological stress, heat shock proteins are upregulated and serve as
the endogenous defense mechanisms. HO-1 is also known as heat shock protein 32. Interestingly,
paeoniflorin, one of the major constituents of an herbal medicine derived from Paeonia lactiflora, is a heat
shock protein-inducing compound [134]. Thus, paeoniflorin might protect against SAH-induced injuries
via upregulating heat shock protein expression, including HO-1. Indeed, post-SAH administration
of paeoniflorin leads to improvement of neuronal deficits and BBB integrity, reduction of neuronal
apoptosis and pro-inflammatory cytokines, attenuation of microglia activation, decreases of oxidative
stress, and enhancement of Nrf2/HO-1 pathway [135]. The diabetes drug rosiglitazone has been
shown to induce HO-1 expression in human pulmonary alveolar epithelial cells and protects against
lung inflammation [136]. Given the HO-1-inducing ability of rosiglitazone, it is not surprising that
rosiglitazone attenuates early brain injury after experimental SAH [137,138], suggesting a possibility of
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drug repositioning. These HO-1-inducing agents support the concept that HO-1 induction is beneficial
in protecting against SAH (Figure 4). A recent review also suggests a neuroprotective role of the Nrf2
pathway in SAH and its therapeutic potential [139].Antioxidants 2020, 9, x FOR PEER REVIEW 11 of 21 
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Figure 4. Effects of HO-1 induction on subarachnoid hemorrhage (SAH). The pathophysiology
of SAH includes enhanced inflammation, oxidative stress, BBB permeability, brain water content,
cellular apoptosis, glial activation, endoplasmic reticulum (ER) stress, vasospasm, reactive astrocytes,
extracellular glutamate, and neuronal degeneration. Upregulation of HO-1 by inducers recombinant
human milk fat globule-EGF factor 8 (rhMFGE8), oleanolic acid, mangiferin, rhynchophylline,
resveratrol, paeoniflorin, simvastatin, and rosiglitazone attenuates SAH and alleviates some of the
associated pathological effects.

Many HO-1-inducing agents have shown promise in improving the outcomes after SAH in animal
models. However, human clinical studies are somewhat controversial, as some show promise while
others do not. A preliminary clinical study showed that EPO therapy decreased the incidence of severe
vasospasm, shortened the duration of impaired cerebral autoregulation, reduced delayed ischemia
deficits, and resulted in more favorable outcome at discharge [140]. In a small case of seven patients
with severe SAH, EPO treatment resulted in an increase in brain tissue oxygen tension significantly
over baseline [141]. Nevertheless, another trial with 73 patients did not show conclusive beneficial
effects of EPO in patients with SAH [142]. For statins, a pilot randomized clinical trial showed that the
use of simvastatin as prophylaxis against delayed cerebral ischemia after aneurysmal SAH was safe
and well-tolerated intervention [143]. In contrast, another trial did not detect any benefit in the use
of simvastatin for long-term or short-term outcomes in patients with aneurysmal SAH [144]. A trial
with pravastatin showed that acute treatment with pravastatin after aneurysmal SAH was safe and
ameliorated cerebral vasospasm, improved cerebral autoregulation, and reduced vasospasm-related
delayed ischemic deficits. Unfavorable outcomes at discharge was reduced primarily because of
a reduction in overall mortality [145]. Another trial found that atorvastatin decreased CT and
S100-assessed brain ischemia after SAH [146]. In contrast, a hospital-based case-control study in Japan
suggested that there is an inverse relationship between the use of statins and IA rupture [147]. As such,
it is not clear whether racial background is related to the effect of statins on IA progression. Therefore,
the clinical effects of statins on IA remain uncertain. These clinical trials suggest that different statins
may not be equivalent and large trials are needed to yield more definitive conclusion.

Another HO-1 inducer that could be clinically used is cilostazol, a potent type 3 phosphodiesterase
inhibitor. Interestingly, the length polymorphism of GT-repeat in human HO-1 promoter determines
the effect of cilostazol in VSMCs [148], further emphasizing the critical function of HO-1 inducibility
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in the therapeutic effect. Studies investigating the effects of cilostazol on aneurysmal SAH showed
that cilostazol was safe and effective, and reduced the incidence of severe angiographic vasospasm,
symptomatic vasospasm, new cerebral infarction, and poor outcomes [149–151]. The mechanisms
underlying the therapeutic improvement by cilostazol are not yet fully elucidated. Besides vasospasm,
one recent randomized clinical study with 55 aneurysmal SAH patients showed that cilostazol decreased
the duration of spreading depolarization and spreading ischemia after SAH, suggesting repair of the
neurovascular response to spreading depolarization by cilostazol [152]. These studies highlight the
need for further large multicenter randomized clinical trials before cilostazol could be widely adopted
in clinical practice. Altogether, animal and clinical studies have pointed to a therapeutic potential of
HO-1 induction in SAH.

5. Conclusions

Aneurysm is a vascular disease with few obvious symptoms and is difficult to detect in the early
stages. However, large aneurysms can cause serious illness and result in devastating consequences.
Aneurysms are caused by specific genetic mutations, environmental factors, and enhanced inflammation
and ROS levels which lead to medial VSMC loss and ECM degradation, resulting in progressive
weakening of arterial structures. Rupture of aneurysms in the aorta has an extremely high mortality
while rupture of IAs causes subarachnoid hemorrhage and stroke. To date, surgical intervention for
severe aneurysms is the only option. Hence, preventing aneurysmal progression and/or regressing
existing aneurysms is still an unmet medical need. Developing pharmacological means for aneurysmal
diseases would also benefit patients and society from a socioeconomic aspect.

Numerous studies have identified the crucial protective role of HO-1 in multiple organs and
cell types under pathological conditions. Given that HO-1 is expressed at low levels (except for a
few select tissues) under basal physiological conditions, upregulation of HO-1 in response to injury
and/or stress becomes an important therapeutic strategy. As such, many HO-1 activators, including
natural products and their derivatives, statins, and current drugs that could be repositioned, have been
identified and the protective function demonstrated in various animal models and in some small-scale
clinical studies. Accumulating evidence suggests that a number of HO-1 inducers are effective in
protecting against vascular-related diseases including AAA, IA, and SAH through inhibiting oxidative
stress and inflammation (Figure 5).

Several clinical trials have been performed to investigate the therapeutic efficacy of HO-1 inducers
in these disease settings. Although the results are mostly encouraging, conflicting findings suggest
larger clinical trials may be needed to unequivocally establish clinical safety and therapeutic efficacy of
a select HO-1 inducer. Given the intense investigation in this area, it is hopeful that the pharmacological
use of HO-1 inducers in managing aneurysmal diseases could be realized in the near future.
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Figure 5. Schematic illustration of HO-1 in protecting against abdominal aortic aneurysm (AAA),
intracranial aneurysm (IA), and subarachnoid hemorrhage (SAH). A number of pathophysiological
effects of AAA, IA, and SAH, such as extracellular matrix (ECM) remodeling, matrix metalloproteinase
(MMP) activation, macrophage infiltration, vascular smooth muscle cell (VSMC) phenotypic modulation,
and cell apoptosis are linked to oxidative stress and inflammation. HO-1 possesses antioxidative and
anti-inflammatory capacities, and thus upregulation of HO-1 reduces oxidative stress and inflammation,
resulting in attenuation of the development and progression of these serious arterial diseases.
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