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Abstract
Purpose Various aberrations in the fibroblast growth factor receptor genes FGFR1, FGFR2, and FGFR3 are found in dif-
ferent cancers, including breast cancer (BC). This study analyzed the impact of FGFR amplification on the BC prognosis.
Methods The study included 894 BC patients. The amplification rates of FGFR1, FGFR2, and FGFR3 were evaluated on 
tissue microarrays using fluorescence in situ hybridization (FISH). Associations between these parameters and prognosis 
were analyzed using multivariate Cox regression analyses.
Results FGFR1 FISH was assessable in 503 samples, FGFR2 FISH in 447, and FGFR3 FISH in 562. The FGFR1 amplifica-
tion rate was 6.6% (n = 33). Increased FGFR2 copy numbers were seen in 0.9% (n = 4); only one patient had FGFR3 ampli-
fication (0.2%). Most patients with FGFR1 amplification had luminal B-like tumors (69.7%, n = 23); only 32.6% (n = 153) 
of patients without FGFR1 amplification had luminal B-like BC. Other patient and tumor characteristics appeared similar 
between these two groups. Observed outcome differences between BC patients with and without FGFR1 amplification did 
not achieve statistical significance; however, there was a trend toward poorer distant metastasis-free survival in BC patients 
with FGFR1 amplification (HR = 2.08; 95% CI 0.98 to 4.39, P = 0.05).
Conclusion FGFR1 amplification occurs most frequently in patients with luminal B-like BC. The study showed a nonsignifi-
cant correlation with the prognosis, probably due to the small sample size. Further research is therefore needed to address the 
role of FGFR1 amplifications in early BC patients. FGFR2 and FGFR3 amplifications are rare in patients with primary BC.
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RFS  Relapse-free survival
RSK  Ribosomal S6 kinase
RTK  Receptor tyrosine kinase
TKI  Multikinase inhibitor
TMA  Tissue microarray
VEGFR1  Vascular endothelial growth factor receptor 1

Introduction

Breast cancer (BC) is the most common malignant tumor in 
women [17]. Treatment decisions in breast cancer patients 
are based on tumor predictive markers [estrogen receptor 
(ER), progesterone receptor (PR), human epidermal growth 
factor receptor 2 (HER2)], some of which are also prognos-
tic markers (ER, PR, HER2, Ki-67).

The prognostic and predictive values of many different 
biomarkers in relation to breast cancer have been evalu-
ated in recent years. The discovery of HER2 amplification/
overexpression as a therapeutic target and the development 
of the first anti-HER2 agent, trastuzumab, were pioneering 
advances [53]. In the era of personalized medicine, more and 
more genetic aberrations in potentially targetable oncogenic 
driver genes, such as copy number variations of CCND1 
and PIK3CA mutations, are now being investigated [9, 40].

Another promising biomarker in breast cancer is the 
fibroblast growth factor receptor 1 gene (FGFR1, chromo-
somal region: 8p11.2-p12). It belongs to a family of recep-
tor tyrosine kinases, activated by fibroblast growth factors, 
that influence the downstream MAPK, PI3K-AKT-mTOR, 
and STAT pathways. Stimulation of FGFR1 physiologically 
leads to proliferation, survival, migration, and angiogenesis 
[14, 59]. Amplification of FGFR1 is found in several types 
of cancer (e.g., nonsmall cell lung carcinoma, head and neck 
tumors, breast cancer, ovarian cancer, bladder cancer, and 
rhabdomyosarcoma) [10, 11, 22, 38, 52], with a frequency 
of up to 10% in breast cancer [61]. Chromosomal aberration 
has been found to be associated with FGFR1 overexpres-
sion, luminal B subtype (16–27%), negative PR expression, 
and high Ki-67 protein expression [61]. In addition, breast 
cancer cell lines with FGFR1 amplification harbor endo-
crine resistance that can be reversed by RNA silencing, and 
FGFR1-amplified breast cancers have been reported to be 
associated with a poorer prognosis [13].

In addition to FGFR1, fibroblast growth factor receptor 
2 (FGFR2 gene, chromosome 10) and fibroblast growth 
factor receptor 3 (FGFR3 gene, chromosome 4) belong to 
the same family of receptor tyrosine kinases and are linked 
to breast cancer susceptibility. Single-nucleotide polymor-
phisms (SNPs) in FGFR2 locus 10q26 have been reported 
to have the strongest association with breast cancer risk 
in genome-wide association studies [12, 15, 28, 35–37]. 
FGFR2-amplified breast cancer was found with frequencies 

of up to 4.4% [7]. Wein et al. [63] reported the case of a 
patient with FGFR2-amplified metastatic hormone receptor-
positive breast cancer, who benefited from therapy with the 
mTOR inhibitor everolimus and exemestane. The authors 
also carried out an analysis of the METABRIC (Molecular 
Taxonomy of Breast Cancer) dataset [9] and found a 1.8% 
rate of FGFR2 amplification in breast cancer, associated 
with a poorer prognosis and resistance to endocrine therapy 
[63]. FGFR3 has also been linked to an influence on endo-
crine resistance [57] and the risk of breast cancer (e.g., via 
SNPs) [1], but the amplification rate has been reported to be 
less than 1% [26].

Since fibroblast growth factor receptor (FGFR) altera-
tions are found in a variety of cancers [64], several FGFR 
inhibitors—both pan-FGFR and also selective FGFR inhibi-
tors—have been developed and tested in clinical trials [30, 
62]. The results of these studies will show whether cancer 
patients are able to benefit from this targeted therapy. How-
ever, assuming that there is an association between FGFR1 
amplification and prognostically unfavorable luminal B 
breast cancer, it may be hypothesized that FGFR inhibitors 
may improve the prognosis, particularly in patients who are 
suffering from highly proliferative, hormone receptor-posi-
tive breast cancer with FGFR1 amplification.

The aim of this study was to investigate the amplification 
rates of FGFR1, FGFR2, and FGFR3 in patients with breast 
cancer and their impact on prognosis.

Materials and methods

Patient cohort

The Bavarian Breast Cancer Cases and Control (BBCC) 
study, described in detail elsewhere [16], was a case–con-
trol study that initially included 1538 women with breast 
cancer, who received various treatments in accordance 
with University Breast Center guidelines at the University 
Breast Center for Franconia, which is part of the Univer-
sity Hospital Erlangen (Bavaria, Germany). Tumor samples 
were collected from 1997 to 2007 [65, 66]. Approval for 
the study was obtained from the local ethics committee at 
the University of Erlangen (ref. numbers 2700 and 297_17 
Bc). The study was conducted in concordance to “Report-
ing recommendations for tumor marker prognostic studies 
(REMARK)” [34].

Collection of clinical and histopathological data

Clinical and follow-up data were obtained from the 
patients’ records. Data for histopathological parameters—
TNM, grading, ER status, PR status, HER2 status, and pro-
liferation rate measured with Ki-67 immunohistochemistry 
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(IHC)—were obtained from the original pathology files. 
The detailed methods of assessing these parameters have 
been described elsewhere [16]. Molecular-like breast can-
cer subtypes were defined as follows:

• Luminal A-like: ER-positive and/or PR-positive, in 
at least 10% of tumor cell nuclei (through December, 
2009) or in at least 1% of tumor cell nuclei (since Janu-
ary, 2010); HER2-negative, Ki-67 < 14%

• Luminal B-like (HER2-negative): ER-positive and/or 
PR-positive, HER2-negative, Ki-67 ≥ 14% [4];

• HER2-enriched: HER2 + by either immunohistochem-
istry (IHC 3 +) [45] or fluorescence in situ hybridiza-
tion (FISH) or both [43, 44, 46].

• Basal-like or triple-negative: ER-negative, PR-negative, 
and HER2-negative.

Fluorescence in situ hybridization of FGFR1, FGFR2, 
and FGFR3

After tissue microarrays (TMAs) of formalin-fixed, par-
affin-embedded tumor tissue had been built [16], fluo-
rescence in situ hybridization (FISH) was performed in 
accordance with the manufacturer’s recommendations 
and in-house standards. The FISH probes used were Zyto-
Light SPEC FGFR1/CEN8 Dual Color Probe, ZytoLight 
SPEC FGFR2/CEN10 Dual Color Probe, and ZytoLight 
SPEC FGFR3/4p11 Dual Color Probe (all from ZytoVi-
sion GmbH, Bremerhaven, Germany). These each con-
tained a green-labeled probe that targeted the FGFR gene 
locus (FGFR1, FGFR2, or FGFR3) and an orange-labeled 
probe that targeted the centromeric region of the particu-
lar chromosome (CEN8, CEN10, 4p11, respectively). For 
each TMA core, the green signal (FGFR gene locus) and 
orange signal (centromeric region) were counted in 20 
tumor nuclei each, and the FGFR/CEN ratio was calcu-
lated. An FGFR/CEN ratio ≥ 2.0 was defined as amplifi-
cation of each fibroblast growth factor receptor. To verify 
the validity of FISH staining positively (amplification) and 
negatively (no amplification), the following cell lines were 
used for validation: MDA MB-134, SUM-190, MFM-223, 
SNU-16, Kato III, HCC-70, MDA MB-361, BT-20, and 
MCF-7.

In order to rule out intratumoral heterogeneity of 
FGFR1 amplification, additional FGFR1 FISH analyses for 
a subgroup (n = 149) of the initial TMA cohort (TMA_1) 
were done. For the subcohort, FISH analyses were per-
formed using two more TMAs (TMA_2 and TMA_3) that 
included each one further area of the tumor area unrelated 
to the tumor spot that was investigated initially in TMA_1. 
Results were shown with cross tabulations.

Statistical analysis

Due to small numbers of FGFR2-amplified and FGFR3-
amplified cases, statistical analysis was limited to FGFR1 
gene status. Disease-free survival (DFS) was defined as the 
time from the date of diagnosis to the earliest date of dis-
ease progression (distant metastasis, local recurrence, death 
from any cause) or the date of censoring. Patients who were 
lost to follow-up before the maximum observation period of 
10 years, or who were disease-free after the maximum obser-
vation time, were censored at the last date they were known to 
be disease-free or at the maximum observation time. Distant 
metastasis-free survival (DMFS), overall survival (OS), and 
local recurrence-free survival (LRFS) were defined similarly.

The primary objective was to study the impact of FGFR1 
on DFS. For this purpose, a simple Cox regression analysis 
with FGFR1 amplification (yes/no) as predictor was per-
formed in order to obtain an unadjusted hazard ratio (HR) with 
95% confidence intervals (CI) and corresponding P values. 
Survival rates were estimated using the Kaplan–Meier product 
limit method. An adjusted HR for FGFR1 amplification was 
estimated using a multiple Cox regression model with FGFR1 
amplification as predictor, along with well-known prognostic 
characteristics of DFS: age at diagnosis (continuous), body 
mass index (BMI, continuous), tumor stage (ordinal, T1 to 
T4), tumor grade (ordinal, 1 to 3), ER status (positive versus 
negative), PR status (positive versus negative), HER2 status 
(positive versus negative), and Ki-67 (continuous, 0–100%). 
Lymph-node stage was incorporated into the model as a 
stratification factor (N0, N +) rather than a predictor, as the 
proportional hazards assumption was violated. Patients with 
missing information on FGFR1 gene status were excluded. 
Missing predictor values were imputed, and continuous pre-
dictors were used as natural cubic spline functions [50]. The 
proportional hazards assumptions were checked using the 
Grambsch–Therneau method [24].

Similar analyses were performed for the secondary objec-
tives DMFS, OS, and LRFS. The association between immu-
nohistochemical ER, PR, Ki-67 expression (0–100%), and 
FGFR1 amplification was also analyzed using summary sta-
tistics (median; interquartile range, IQR), box plots and Wil-
coxon rank-sum tests. P values were not corrected for multiple 
testing.

All of the tests were two-sided, and a P value < 0.05 was 
regarded as statistically significant. Calculations were carried 
out using the R system for statistical computing (version 3.4.1; 
R Development Core Team, Vienna, Austria, 2017).
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Results

Amplification of FGFR1 in invasive breast cancer

FGFR1 amplification rate in breast cancer

A total of 894 patients with breast cancer were initially 
included in the FGFR1 analysis. Patients with contralateral 
breast cancer, breast cancer with distant metastasis at diag-
nosis, missing FGFR1 data, and those without a positive 
observation time were excluded (n = 391; see Supplementary 
Table S1), resulting in a final sample size of 503 patients.

In this final cohort, amplification of the FGFR1 gene was 
observed in 6.6% (33 of 503).

Missing tissue cores were the most common reason for 
nonassessable cases. Cases with no signals, or barely visible 
signals, were then excluded.

In Fig. 1, one breast cancer case with FGFR1 amplifica-
tion as well as one tumor without amplification but normal 
FGFR1 gene status are illustrated.

Intratumoral homogeneity of FGFR1 amplification

When comparing different intratumoral areas that were not 
lying close to each other, we did not find intratumoral het-
erogeneity of FGFR1 amplification but perfect agreement 
regarding FGFR1 gene status (TMA_1 vs. TMA2: agree-
ment in 64 of 64 cases; TMA_1 vs. TMA_3: agreement in 
42 of 42 cases; see Supplementary Table S2).

However, it has to be noted that 3 of 64 cases (4.7%, 
TMA_1 vs. TMA2) and 2 of 42 cases (4.8%, TMA_1 vs. 
TMA_3), respectively, harbored slightly increased FGFR1 
gene copy numbers with a FGFR1/CEN8 ratio each that was 
very close to the defined cut-off (≥ 2.0), but did not surpass 
1.99 (data not shown).

Association of FGFR1 gene status and clinical 
and pathological parameters

The mean age of the patients with FGFR1-amplified breast 
cancer was 60 years, and they had a mean BMI of 27 kg/m2. 
More than half of these patients had pT1 tumors (54.5%) and 
36.4% had positive lymph-node stages.

Most breast cancer patients with FGFR1 amplification 
showed moderate differentiation (G2, 69.7%) and a luminal 
subtype with positive hormone receptor status and predomi-
nantly HER2- negative status (ER+, 90.9%; PR+, 78.8%; 
HER2+, 9.1%). The mean proliferation rate assessed using 
Ki-67 expression amounted to 24.8%. Table 1 lists the char-
acteristics of the patients and tumors relative to FGFR1 
amplification.

Patients with breast cancer who had normal FGFR1 copy 
numbers showed lower expression rate measurements (IHC) 
for the estrogen receptor (median, 70%; IQR, 10% to 80%) 
than patients with FGFR1 amplification (median, 80%; IQR, 
60% to 90%; Fig. 2a). Such associations were not seen for 
the progesterone receptor (Fig. 2b) or Ki-67 IHC (Fig. 2c).

There were no cases of increased copy numbers in more 
than one of the FGFR genes (i.e., FGFR1 and FGFR2 and/
or FGFR3 amplification).

Survival rates in FGFR1-amplified breast cancer.

Disease‑free survival

The median follow-up period for the primary study aim 
of DFS was 10.0 years for patients both with and with-
out FGFR1 amplification. No significant differences were 
observed between breast cancer patients with and without 
FGFR1 amplification in relation to DFS. The unadjusted 
HR was 1.60 (95% CI 0.88 to 2.89) and the adjusted HR was 
1.25 (95% CI 0.67 to 2.32). The 5-year and 10-year survival 
rates are shown in Table 2.

Fig. 1  Illustration of FGFR1 
fluorescence in situ hybridiza-
tion (FISH). Tumor nuclei are 
marked using DAPI, the FGFR1 
gene is depicted as green signal, 
the centromere (CEN8) is 
labeled with an orange signal 
(×1000, oil). One breast cancer 
case harbors FGFR1 amplifica-
tion, whereas the other breast 
tumor shows normal gene copy 
number of FGFR1, respectively
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Distant metastasis‑free survival, overall survival, and local 
recurrence‑free survival

Breast cancer patients with FGFR1 amplification had 
a poorer DMFS than patients without amplification 
(P = 0.04, unadjusted analysis); however, this differ-
ence in DMFS outcome did not achieve significance in 
the adjusted analysis (P = 0.05). No significant impact of 
FGFR1 amplification on the other secondary outcomes, 
OS and LRFS, was observed. Survival rates and HRs are 
presented in Tables 2 and 3. Kaplan–Meier curves are 
shown in Fig. 3.

FGFR2 and FGFR3 amplification in breast cancer

The evaluation of FGFR2 and FGFR3 gene status only 
revealed a very low frequency of copy number aberrations 
for each gene in the FISH analysis. FGFR2 was amplified 
in 0.9% (four of 447 cases assessable using FGFR2 FISH); 
only one case harbored FGFR3 amplification (0.2%, one of 
562 cases assessable using FGFR3 FISH). Due to the low 
numbers of amplified cases, FGFR2 and FGFR3 gene status 
was excluded from further survival analysis.

Discussion

This study investigated the amplification rates of the fibro-
blast growth factor receptor genes FGFR1, FGFR2, and 
FGFR3 in patients with breast cancer. In view of the very 
small numbers of FGFR2-amplified and FGFR3-ampli-
fied cases, the analyses were on outcomes in patients with 
FGFR1 amplification. Amplification of FGFR1 was seen in 
6.6% of assessable BC cases. Earlier studies have reported 
higher amplification rates of FGFR1 and the corresponding 
chromosomal region 8p11-12 (8.7–13.2%) [7, 13, 19, 54]. 
The fact that the frequency of FGFR1 amplification in the 
present study was lower might be due to different methods 
of evaluating gene status (e.g., multiplex ligation-dependent 
probe amplification), a different composition of the cohort 
(e.g., varying distribution of intrinsic subtypes), and the fact 
that the FGFR1 gene was not always included in the ampli-
fication unit in the earlier studies. The present study did not 
investigate variations in gene copy numbers for other genes 
included in the previously described 8p11.2-p12 amplicon 
[9].

In this study, BC patients with FGFR1 amplification 
showed a trend toward poorer outcomes, especially DMFS 
and LRFS. FGFR1 amplification was not an independent 
predictor of shorter DFS or OS. Thus, the study does not 
fully confirm the findings of an earlier report that FGFR1-
amplified BC was associated with poorer OS in the overall 
cohort and that FGFR1 amplification was predictive of 
poor DFS, OS, and DMFS in ER-positive patients with BC 
[13]. Cuny et al. reported a shorter DFS in FGFR1-ampli-
fied BC in comparison with nonamplified carcinomas. 
Intriguingly, co-amplification of FGFR1 and the cyclin D1 
gene (CCND1) showed even poorer DFS than increased 
FGFR1 copy numbers without CCND1 amplification [8]. 
It may be presumed that varying distributions of intrinsic 
subtypes contribute to these different findings. It should 
also be mentioned that the survival analyses in the present 
study were limited, as the cohort investigated included 
only 33 cases of FGFR1-amplified BC. In another study, 
FGFR1 amplification was not associated with relapse-
free survival (RFS) or BC-specific survival. Instead, 

Table 1  Patient and tumor characteristics relative to FGFR1 amplifi-
cation status

BMI body mass index, ER estrogen receptor, FGFR1 fibroblast 
growth factor receptor 1, HER2 human epidermal growth factor 
receptor 2, PR progesterone receptor
Means and standard deviation (SD) are shown for continuous charac-
teristics, frequency and percentage for categorical characteristics

Characteristic No FGFR1 amplifica-
tion (n = 470)

FGFR1 amplification 
(n = 33)

Mean or n SD or % Mean or n SD or %

Age (years) 57.5 12.7 60 10.4
BMI (kg/m2) 26 4.8 27 4.1
Ki-67 (%) 22.7 20.5 24.8 17.0
Tumor stage
 T1 261 55.5 18 54.5
 T2 165 35.1 12 36.4
 T3 22 4.7 2 6.1
 T4 22 4.7 1 3.0

Lymph-node stage
 N0 287 61.1 21 63.6
 N+ 183 38.9 12 36.4

Grade
 G1 44 9.4 1 3.0
 G2 312 66.4 23 69.7
 G3 114 24.3 9 27.3

ER status
 ER− 100 21.3 3 9.1
 ER+ 370 78.7 30 90.9

PR status
 PR− 123 26.2 7 21.2
 PR+ 347 73.8 26 78.8

HER2 status
 HER2− 424 90.2 30 90.9
 HER2+ 46 9.8 3 9.1

Molecular subgroup
 TNBC 70 14.9 2 6.1
 Luminal A-like 201 42.8 5 15.2
 Luminal B-like 153 32.6 23 69.7
 HER2-positive 46 9.8 3 9.1
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protein expression predicted shorter RFS in ER-positive/
HER2-negative BC [56]. Further comprehensive studies 
are therefore needed in order to investigate the impact of 
FGFR1 amplification on survival in BC patients.

Estrogen receptor-positive BC [7] and luminal B BC 
[61] have been reported to show the highest frequency 
of FGFR1 amplifications. In one study, the amplifica-
tion rates were 21.0% for luminal B, 12.7% for basal-like, 
10.4% for luminal A, and 7.1% for HER2-positive invasive 
BC [29]. Interestingly, luminal A BC that expressed high 
levels of FGFR1 has been found to behave more aggres-
sively, with a prognosis similar to that in luminal B tumors 
[51]. In the present study, most FGFR1-amplified tumors 

were ER-positive (90.9%), a finding that is consistent with 
the results published by Moelans et al. [39]. The present 
study showed that 69.7% of BCs with FGFR1 amplifica-
tion harbored a luminal B phenotype, whereas the other 
intrinsic subtypes were only found at lower frequencies, up 
to 15.2%. However, due to the small numbers of FGFR1-
amplified cases in the study, survival analysis of intrinsic 
subtypes relative to FGFR1 copy number status was not 
feasible.

Inhibition of FGFR1 has been regarded as a potential 
therapeutic target. On the assumption that the receptor 
tyrosine kinase (RTK) FGFR1 is the driver of the 8p11.2-
p12 amplicon and represents a potential drug target in a 

Fig. 2  a Distribution of estrogen receptor (ER) expression relative 
to FGFR1 amplification status (P < 0.01). b Distribution of proges-
terone receptor (PR) expression relative to FGFR1 amplification sta-

tus (P = 0.16). c Distribution of Ki-67 expression relative to FGFR1 
amplification status (P = 0.11)
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variety of cancers, RTK-targeting small-molecule inhibi-
tors against FGFR1 such as ponatinib, dovitinib, PD173074, 
and SU5402 were designed, and knockdown and preclini-
cal pharmaceutical inhibition studies were carried out [2, 5, 
10, 23, 31, 47, 62]. Multikinase inhibitors (TKIs), such as 
lucitanib (E-3810, NCT01283945), dovitinib (TKI258), nin-
tedanib, and ponatinib [42], and selective FGFR inhibitors, 
such as AZD4547 [18] (NCT00979134, NCT01202591), 
BGJ398 (NCT01004224), LY2874455 (NCT01212107), and 
JNJ-42756493 (NCT01703481), have been tested in several 
phase I and II trials in cancers with FGFR1 aberrations [10]. 
In patients with advanced BC, the overall response rate was 
up to 50% and progression-free survival up to 10.9 months 
when the agents were combined with fulvestrant, but over-
all, the desired efficacy of FGFR inhibitors has not been 
achieved in (pre-)clinical studies [41, 42]. Administration 
of multi-TKIs was accompanied by asthenia, gastrointestinal 
symptoms, hypertension, and lymphopenia, whereas selec-
tive FGFR inhibitors led to hyperphosphatemia, gastrointes-
tinal symptoms, nail toxicity, and stomatitis [2, 42]. Ampli-
fication of FGFR1 was seen in up to 43% of patients with 
invasive lobular cancer (ILC) of the breast, and it was asso-
ciated with expression. FGFR1 inhibition has been found 
to reduce the viability of the BC cell line MDA-MB-134, 
which has similarities to ILC in relation to some copy num-
ber variations (including FGFR1) and protein expression 

[49]. In FGFR1-amplified ILC, ribosomal S6 kinase (RSK) 
inhibitors may be another potential drug target, as Xian 
et al. observed an effect of RSK on FGFR1-transformed 
cells [68]. In addition, simultaneous inhibition of FGFR1 
and vascular endothelial growth factor receptor 1 (VEGFR1) 
may lead to anti-angiogenic effects in vivo [21]. ODM-203 
acts as a selective dual blockade of FGFR and VEGFR, 
but may cause hyperphosphatemia and bilirubinemia [27]. 
There is evidence that high levels of FGFR1 expression are 
associated with resistance to anti-HER2 therapy in patients 
with HER2-positive BC [25]. It needs to be tested whether 
a combination of anti-HER2 therapy and FGFR inhibition 
might help to resolve this issue. In addition, FGFR inhibi-
tion may reverse resistance to endocrine therapy and anti-
CDK4/6 therapy, and since 26.4% of FGFR1-amplified BC 
has been found to have PIK3CA alterations [26], it may be 
combined with inhibitors of the PI3K pathway. However, 
further investigation of the efficacy and safety of the inhibi-
tors and combinations of these agents is needed [42].

FGFR1 amplification is associated with increased expres-
sion [33, 61]. However, it needs to be borne in mind that 
increased copy numbers may not always predict high levels 
of FGFR1 protein expression [48], so that inhibition might 
fail if treatment were to be selected on the basis of FGFR1 
amplification. This may be related to the quality of the 
FISH assay and IHC assay used. Measurement of protein 

Table 2  Numbers of events and survival rates for survival outcomes

CI confidence interval(s), FGFR1 fibroblast growth factor receptor 1

Survival outcome Patient group At risk Events 5-year survival rate 
(95% CI)

10-year survival 
rate (95% CI)

Disease-free survival No FGFR1 amplification 470 124 0.85 (0.82, 0.88) 0.72 (0.68, 0.77)
FGFR1 amplification 33 12 0.72 (0.59, 0.90) 0.62 (0.47, 0.82)

Overall survival No FGFR1 amplification 470 83 0.92 (0.89, 0.94) 0.81 (0.78, 0.85)
FGFR1 amplification 33 9 0.82 (0.69, 0.96) 0.71 (0.57, 0.89)

Distant disease-free survival No FGFR1 amplification 470 66 0.90 (0.87, 0.93) 0.82 (0.78, 0.86)
FGFR1 amplification 33 8 0.75 (0.61, 0.93) 0.70 (0.55, 0.90)

Local recurrence-free survival No FGFR1 amplification 470 38 0.95 (0.93, 0.97) 0.89 (0.86, 0.93)
FGFR1 amplification 33 5 0.84 (0.71, 1.00) 0.79 (0.64, 0.98)

Table 3  Unadjusted and 
adjusted hazard ratios for 
FGFR1 amplification versus 
nonamplification

CI confidence interval(s), HR hazard ratio
a Hazard ratios were adjusted for age at diagnosis, body mass index, tumor stage, tumor grade, lymph-node 
stage, estrogen receptor status, progesterone receptor status, HER2 status, and Ki-67

Survival outcome Unadjusted HR (95% CI) P value Adjusted  HRa (95% CI) P value

Disease-free survival 1.60 (0.88, 2.89) 0.12 1.25 (0.67, 2.32) 0.48
Overall survival 1.72 (0.87, 3.43) 0.12 1.18 (0.56, 2.47) 0.66
Distant disease-free survival 2.15 (1.03, 4.48) 0.04 2.08 (0.98, 4.39) 0.05
Local recurrence-free survival 2.25 (0.88, 5.71) 0.09 2.29 (0.89, 5.91) 0.09
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or mRNA expression may lead to better prediction of the 
response to FGFR inhibitors in head and neck cancer [20], 
but this issue has yet to be investigated in BC [42]. One 
limitation of our study is that, up to date, we did not analyze 
the association between FGFR1 amplification and protein 
expression of FGFR1. Further investigations have to show 
whether the copy number gain of the gene lead to increased 
expression of this growth factor receptor in our breast cancer 
cohort and whether FGFR1 overexpression might predict 
prognosis.

The 8p11-12 amplicon was significantly associated 
with DFS and distal recurrence [6]. However, it is still 

controversial whether FGFR1 itself is the driver oncogene, 
or whether another gene in the 8p11.2-p12 amplicon is 
responsible for the oncogenic potential [7, 13, 19]. FGFR1 
amplification is apparently not always associated with 
FGFR1 overexpression, and the oncogenic amplicon 8p11.2-
p12 is not always accompanied by FGFR1 amplification and 
sensitivity to FGFR inhibition [48, 55]. It therefore remains 
unclear whether FGFR1 is the appropriate drug target, or 
another gene in the amplicon, and this has led to ongoing 
discussion and investigation of this issue.

In addition to FGFR1 copy number aberrations, an 
FGFR1 SNP (rs17182023) has been investigated and was 
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Fig. 3  a Kaplan–Meier curves for disease-free survival (DFS) relative 
to FGFR1 amplification status with log-rank test P value. b Kaplan–
Meier curves for overall survival (OS) relative to FGFR1 amplifica-
tion status with log-rank test P value. c Kaplan–Meier curves for dis-

tant metastasis-free survival (DMFS) relative to FGFR1 amplification 
status with log-rank test P value. d Kaplan–Meier curves for local 
recurrence-free survival (LRFS) relative to FGFR1 amplification sta-
tus with log-rank test P value
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found to be associated with a reduced risk of BC and lower 
FGFR1 expression. By contrast, high levels of FGFR1 were 
associated with a poor outcome [67].

The FGFR2 locus has been shown to be one of the 
regions associated most strongly with the risk of BC in 
genome-wide association studies [12, 15, 35–37]. Rather 
than increased gene copy numbers, SNPs in the FGFR2 risk 
locus appear to be associated with the development of BC. 
Campbell et al. reported reduced FGFR2 expression and 
consequently—due to less influence of FGFR2 on the estro-
gen regulon—increased responsiveness to estrogen if one of 
three FGFR2 variants existed [3]. Copy number aberrations 
appear to be less important in BC. The FGFR2 gene was 
amplified in only 0.9% of the patients with BC in the present 
study, which is lower than the rate of 4.4% described in the 
literature [7]. This might be due to the composition of the 
cohort, since Turner et al. reported FGFR2 amplification in 
4.0% of triple-negative BCs, but not in any other subtype 
[60]. In view of the poor prognosis for patients with TNBC 
without treatment and the current lack of an approved tar-
geted therapy, FGFR inhibitors may be a treatment option 
in FGFR2-amplified/FGFR2-overexpressing TNBC. Initial 
preclinical data are promising [58], but this has yet to be 
confirmed in clinical studies.

The receptor tyrosine kinase FGFR3 may influence hor-
mone receptor-positive BC that is resistant to tamoxifen 
[57]. However, amplification of FGFR3 is fairly exceptional 
in BC, as it was found in 0.2% of the present cohort and in 
0.8% of BC cases investigated by Helsten et al. [26]. The 
SNP FGFR3_rs743682 was found to be associated with the 
risk of BC, but did not reach the same association level as 
the SNP FGFR2_ rs2981582 [1].

It is not only copy number variations and SNPs in the 
FGFR genes that can lead to high expression of the respec-
tive fibroblast growth factor receptor and up-regulated FGFR 
pathways. Mutations, rearrangements, post-transcriptional 
regulation, and isoform switching/alternative splicing, as 
well as stimulation via fibroblast growth factors from tumor 
or stromal cells, can also have an impact on the system 
[62]. For instance, the FGFR1 splice variant IIIb has been 
reported to inhibit cell growth [32]. These numerous changes 
should be borne in mind when FGFR-targeted therapy is 
being tested.

In conclusion, fibroblast growth factor receptor alterations 
(e.g., FGFR1 copy number variations and FGFR2 SNPs) 
influence the risk and prognosis in patients with breast can-
cer. Further investigations of the dysregulated FGFR path-
ways and the effects of FGFR inhibitors are needed. Due to 
the complexity of the FGFR1 amplicon itself, and because 
of the results that have been published so far, clarification of 
the driver gene of the FGFR1 amplicon 8p11.2-p12 is war-
ranted in order to identify the potential target gene.
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