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Abstract: The thermal lubrication of an entangled polymeric liquid in wall-driven shear flows
between parallel plates is investigated by using a multiscale hybrid method, coupling molecular
dynamics and hydrodynamics (i.e., the synchronized molecular dynamics method). The temperature
of the polymeric liquid rapidly increases due to viscous heating once the drive force exceeds a
certain threshold value, and the rheological properties drastically change at around the critical drive
force. In the weak viscous-heating regime, the conformation of polymer chains is dominated by
the flow field so that the polymers are more elongated as the drive force increases. However,
in the large viscous-heating regime, the conformation dynamics is dominated by the thermal
agitation of polymer chains so that the conformation of polymers recovers more uniform and random
structures as the drive force increases, even though the local shear flows are further enhanced.
Remarkably, this counter-intuitive transitional behavior gives an interesting re-entrant transition in
the stress–optical relation, where the linear stress–optical relation approximately holds even though
each of the macroscopic quantities behaves nonlinearly. Furthermore, the shear thickening behavior
is also observed in the large viscous-heating regime—this was not observed in a series of previous
studies on an unentangled polymer fluid. This qualitative difference of the thermo-rheological
property between the entangled and unentangled polymer fluids gives completely different velocity
profiles in the thermal lubrication system.
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1. Introduction

Polymeric fluids exhibit complicated flow behaviors because the microscopic dynamics of polymer
chains are highly correlated with global hydrodynamic transport [1]. In particular, in high-speed
devices, the microscopic dynamics are significantly affected by viscous heating because the polymeric
fluid has a large Prandtl number, so the microscopic dynamics and the hydrodynamic heat and
momentum transports are mutually correlated. Predicting the microscopic dynamics and the
macroscopic thermal flows in high-speed devices is challenging from both scientific and engineering
points of view. Computer simulations are expected to be useful to solve these mutually correlated
multiscale systems.

Multiscale simulations to tackle the flow behaviors of complex fluids have been developed
by various researchers. The pioneering research was carried out by Laso and Öttinger [2–4].
They proposed the CONNFFESSIT approach for polymeric liquids, where the local stress in the fluid
solver is calculated by a microscopic simulation without using any constitutive relations. The strategy
exploited in the CONNFFESSIT approach was also introduced into heterogeneous multiscale modeling
(HMM), which was first put forward by E and Enquist [5]. The HMM method has been applied to
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various problems [6–8]. The equation-free method proposed by Kevrekids et al. is also based on a
similar idea and has been applied to various problems [9,10].

The scale-bridging method to reproduce the memory effect of polymer dynamics was first
developed by De et al. [11]. They succeeded in reproducing the nonlinear viscoelastic behavior of a
polymeric liquid in terms of the slab and cylindrical geometries [11,12]. The multiscale simulation
of polymeric flows with the advection of memory in two and three dimensions was developed by
Murashima and Taniguchi [13–15]. Noise reduction algorithms, filtering the microscopic particle-based
simulation data in hybrid multiscale modeling, were also investigated in Ref. [16].

We have also developed multiscale simulations which couple the molecular dynamics and
hydrodynamic transports. The method was first developed for a simple Lennard-Jones fluid [17] and
subsequently extended to polymeric liquids with the memory effect [18–21]. Recently, we proposed the
synchronized molecular dynamics (SMD) method for thermal lubrication flows of polymeric liquids,
in which the local viscous heating is autonomously generated in the local MD cell according to the
local shear flow. The local MD cells are also synchronized to satisfy the global heat and momentum
transports [22].

The SMD method assumes that the molecular states are homogeneous in local fluid elements and
the momentum and energy transports between the fluid elements are described by the hydrodynamic
equations. Although this assumption discards some part of the accuracy of a full molecular description,
it gives a great advantage in computational efficiency when one considers, for example, the thermal
flows of locally homogeneous polymer fluids at a macroscopic scale far beyond the molecular size.

In this paper, we tackle the thermal lubrication of entangled polymer chains by using the SMD
method. This study is the extension of a series of previous studies on an unentangled polymer
fluid [22–24] to the entangled polymer fluid. In the previous studies, a counter-intuitive transitional
behavior induced by viscous heating was discovered in the dynamics of polymer conformation.
The robustness of the linear stress-optical relation was also confirmed even in the complicated
transitional behavior. It is well known that the entangled polymer fluid has distinctive features
in the relaxation dynamics and rheological property [25–28]. In this study, the common properties
observed both in entangled and unentangled polymer fluids and some particular properties of the
entangled polymer fluid are clarified.

In the following, we first describe the problem and the model polymeric liquid considered in
this paper. Here, we also clarify the intrinsic properties in the relaxation dynamics of the entangled
polymer chains in comparison to those described by the reptation theory [25]. The SMD method is
described in Section 3 and the results are presented and discussed in Section 4. Finally we give a
brief summary.

2. Problem

2.1. Geometry

We consider a polymeric liquid confined between parallel walls, as in Figure 1. The upper wall
starts to move in the x–direction at time t = 0 by an applied shear stress pw, while the temperature of
the walls Tw is kept constant.

The polymeric liquid is initially in a quiescent state with uniform density ρ0 and temperature
T0, where the initial temperature of the polymeric liquid is the same as the wall temperature (i.e.,
T0 = Tw).
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The polymeric liquid starts to deform the uniform quiescent state at t = 0 and forms non-uniform
distributions of velocity and temperature via the heat and momentum transfers described by

ρ0
∂vx

∂t
=

∂pxy

∂y
, (1a)

ρ0
∂e
∂t

= pxyγ̇ + λ
∂2T
∂y2 , (1b)

where vα is the velocity, pαβ is the stress tensor, e is the internal energy per unit mass, and γ̇ is the
shear rate (i.e., γ̇ = ∂vx/∂y). Hereafter, the subscripts α, β, and γ represent the index of Cartesian
coordinates (i.e., {α, β, γ} ∈ {x, y, z}). Here, we assume the one-dimensional incompressible flow,
where the macroscopic quantities are uniform in the x– and z–directions, ∂/∂x = ∂/∂z = 0, and the
density of the polymeric liquid is constant. Fourier’s law for heat flux with a constant and uniform
thermal conductivity λ is also considered in Equation (1b).

We also consider the non-slip and non-jump boundary conditions of velocity and temperature for
Equation (1). That is, the velocity and temperature of the polymeric liquid on the wall are the same as
those of the wall.

(a) (b)

Figure 1. Schematics of (a) the geometry of the problem and (b) the time schedule scheme of
synchronized molecular dynamics simulation.

2.2. Model Polymeric Liquid

The polymeric liquid is composed of so-called Kremer–Grest chains of 250 beads, where each
bead particle interacts via the repulsive part of the Lennard-Jones potential,

ULJ(r) =

{
4ε
[(

σ
r
)12 −

(
σ
r
)6
]
+ ε, (r ≤ 21/6σ),

0, (r ≥ 21/6σ),
(2)

and consecutive beads on each chain are connected by an anharmonic spring potential,

UF(r) = −
1
2

kcR2
0 ln

[
1−

(
r

R0

)2
]

, (3)

where kc = 30ε/σ2 and R0 = 1.5σ [26]. Hereafter, unless otherwise stated, we measure the physical
quantities with the units of length σ, time

√
mσ2/ε, and temperature ε/kB, where m is the mass of the

bead particle and kB is Boltzmann’s constant.
In this study, we only consider a polymeric liquid with the initial density ρ0 = 0.85 and initial

temperature T0 = 0.4. Please note that the wall temperature Tw = 0.4 and the number of beads in
each polymer chain Nb = 250 are fixed. With this bead number Nb = 250, the model polymeric liquid
shows the characteristic behaviors of entangled polymer chains in the relaxation dynamics.
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Figure 2 shows the normalized time-correlation function of the end-to-end vector of polymer
chain C(τ), which is calculated as

C(τ) =

〈
P(τ + t0) · P(t0)

〉
〈
|P(t0)|2

〉 , (4)

and the stress relaxation function G(τ), which is calculated as

G(τ) =
T0

V
pxy(τ + t0)pxy(t0) (5)

for the present model polymeric liquid. Here, P(t) represents end-to-end vectors of each polymer
chain, pxy(t) is the macroscopic shear stress, which is the average of the microscopic shear stresses of
each bead particle in the simulation box, and V is the volume of the simulation box. We also write
X(t0) as the average of X with respect to t0 and 〈X〉 as the ensemble average of X over all chains.

In Figure 2a , our numerical result of C(τ) is compared with a theoretical formalism, which is
obtained in both the Rouse dynamics and the reptation dynamics,

Cr(τ) = ∑
oddp

8
π2 p2 exp(−p2τ/τd), (6)

where the summation is over odd p and 1 ≤ p ≤ Nb − 1 [25].
The relaxation time τd = 4.4× 105 is measured by fitting Equation (6) with our numerical result at

τ = τd (i.e., C(τ = τd) = Cr(τd)). We note that the relaxation time τd corresponds to the disengagement
time τd of entangled polymer chains if we assume that the time correlation function is described by the
reptation dynamics.

In Figure 2b, the numerical result of the stress relaxation function G(τ) is compared with the
theoretical formalism for the Rouse dynamics GR(τ) and for the reptation dynamics Grep(τ) which are
written, respectively, as

GR(τ) =
ρ0T0

Nb

Nb−1

∑
p=1

exp(−p2t/τRN2
b ), (7)

and
Grep(τ) =

ρ0T0

Ne
Cr(τ). (8)

Here, the Rouse relaxation time τR = 1.0 × 105 and the average number of beads between
entanglements Ne = 175 are estimated from our numerical results. Numerical results of τd and Ne for
the Kremer–Grest chains with different parameters can be found in Ref. [28] and the references therein.

The average number of beads between entanglements is measured by fitting the formula
Equation (8) with our numerical result at τ = τd. The Rouse relaxation time τR is calculated by
the formula τd/τR = 3Nb/Ne. In Figure 2, it can be seen that the relaxation dynamics of the model
polymeric liquid is well-described by the reptation dynamics for entangled polymer chains at long
times (i.e., τ > τr). The transition of the Rouse dynamics to the reptation dynamics can also be clearly
observed in the stress relaxation function. Incidentally, the oscillation of G(τ) in τ . 1 in Figure 2b is
due to the spring potential between the consecutive bead particles in the same polymer chain.

The viscosity of the model polymeric liquid in the quiescent state η0 = 980 is calculated from the
stress relaxation function G(τ) as η0 =

∫ τ∞
0 G(τ)dτ. The integral with respect to τ is almost saturated

at τ∞ = 2× 106 and the deviation of η0 in the period for τ∞ = 2× 106 to 5 ×106 is at most 8%.
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Figure 2. (a) The time-correlation function of the end-to-end vector of polymer chain C(τ) defined in
Equation (4) and (b) the stress relaxation function G(τ) defined in Equation (5). In (a), the blue dashed
line shows the theoretical formalism of the reptation dynamics with the relaxation time τd = 4.4× 105.
In (b), the theoretical formalism of the stress relaxation function for the Rouse dynamics, GR(τ) in
Equation (7), and for the reptation dynamics, Grep(τ) in Equation (8), are also plotted.

3. Simulation Method

We investigate the thermal lubrication of the polymeric liquid composed of entangled chains by
using the synchronized molecular dynamics (SMD) simulation [22]. In the SMD method, the gap
between the upper and lower walls is uniformly divided into M mesh intervals with ∆y = H/M, and
small sub cells are assigned to each mesh interval, where the molecular dynamics of local fluid elements
are calculated. (See Figure 1) In each sub-MD cell, the nonequilibrium molecular dynamics (NEMD)
simulations are performed independently in the time interval ∆t, using the SLLOD algorithm [29,30]
according to the local shear rate γ̇ = ∂vx

∂y , which is calculated by the global momentum transport
Equation (1a). In the NEMD simulations, the viscous heating due to the local shear flow (i.e., the first
term of the right-hand side of Equation (1b)) is autonomously calculated without using any thermostat
algorithms. Thus, the local temperatures increase in each sub-MD cell in the time interval ∆t.

Because each NEMD simulation is performed independently, the sub-MD cells have to be corrected
to satisfy the global heat and momentum transports including the boundary conditions at certain
times. In the SMD method, at every time interval ∆t, the local sub-MD cells are synchronized via the
global heat and momentum transport Equations (1).

Using the time average of the instantaneous shear stress Pxy calculated in each sub-MD cell,
the local shear stress at time t = n∆t, γ̇n(y) is calculated by the following equation,

vn
x(y) = vn−1

x (y) +
1
ρ0

∂

∂y

∫ n∆t

(n−1)∆t
Pxy(s; γ̇n−1(y))ds, (9)

and γ̇n(y) = dvn
x(y)/dy. Here, the superscript n represents the time step number, Pxy(s; γ̇n−1(y)) is

the instantaneous shear stress in the NEMD simulation with the shear rate γ̇n−1(y), and s is the time
in the NEMD simulation.

The kinetic energies of each sub-MD cell are also corrected according to the heat fluxes between
neighbor MD cells to satisfy the global energy transport Equation (1b). That is, by using the heat flux
calculated by

δK =
λ

ρ0

∂2

∂y2

∫ n∆t

(n−1)∆t
T (s)ds, (10)
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where T is the instantaneous temperature of the sub-MD cell, the molecular velocities in each sub-MD
cell are rescaled according to the corrected temperature T ′, i.e.,

T ′ = T +
2
3

δK, (11)

at every time interval ∆t. (See also Figure 3).

MD cell

Global mesh

T n T ′n✲

∫
T ds

calculate δK

δK
ds

∆t

T n−1 T n+1

rescaling

Figure 3. The time schedule scheme for the calculation of the temperature in the SMD method.
The upper side represents the progress on the global mesh system, and the lower side represents the
progress in the sub-MD cell. The time interval of the synchronization ∆t = 1 and the time-step size of
the MD simulation ds = 0.0025 are fixed.

Then, the local MD simulations are resumed by using the rescaled molecular velocities and the
new local shear rate γ̇n(y) for s = [n∆t, (n + 1)∆t]. Please note that the molecular conformation
obtained in the previous time interval is succeeded in the new time interval. Thus, the temporal
evolution of the microscopic configuration is traced at the microscopic level with time-step size ds to
reproduce the memory effect due to the slow dynamics of polymer chains.

Without using the thermostat algorithm, the increase in the local temperature due to the viscous
heating, which is significant for polymer fluids, is autonomously calculated in the MD simulation.
This is an important advantage of the SMD method because the equation of the time evolution
of temperature is unknown for polymer fluids in general since the second term of the right-hand
side of Equation (1b), pxyγ̇ contributes to both temperature and free energy related to the polymer
conformation. In the SMD method, the increase in temperature and the change of the conformation
of polymers are autonomously generated in the molecular dynamics simulations without using
any constitutive equations. Furthermore, local heat generation is conducted to the surrounding
fluid to satisfy the global energy transport although the Fourier law of the heat conduction is
artificially assumed.

The validity of the SMD method was investigated in the previous study [19,22], where the effects
of the time interval ∆t, the mesh interval ∆x, and the number of particles in each MD cell were
investigated in detail. It was clarified that (i) the time interval ∆t must be smaller than the viscous
diffusion time ∆x2/2η, where η is the local viscosity and (ii) the temperature profile is strongly affected
by the noise arising from the local MD cell; in order to reduce the noise, one has to increase the number
of particles in each MD cell NMD and keep the ratio of the mesh interval ∆x to the size of MD cell lMD,
∆x/lMD not too large. The SMD method gives a good balance between the accuracy and computational
efficiency when the number of particles in each MD cell is sufficiently large, say NMD & 103 and the
ratio of the mesh interval to the size of MD cell is set as, say, 5 . ∆x/lMD . 10.

4. Results and Discussion

The SMD simulation is performed for the geometry shown in Figure 1. At time t = 0, the shear
stress pw is applied on the upper wall and the upper wall starts to move in the x–direction. The upper
wall drives the polymeric liquid, and spatial profiles of the velocity vx(y), temperature T(y), and
polymer conformation (i.e., the bond-orientation tensor) Qαβ(y) are created between the walls.
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The local bond-orientation tensors Qαβ(y) are calculated in each MD cell as

Qαβ =
1

Np
∑

chains

1
Nb − 1

Nb−1

∑
j=1

bjα

bmin

bjβ

bmin
, (12)

where Np is the number of polymer chains in each MD cell, bj for 1 ≤ j ≤ Nb − 1 is the bond vector
between consecutive beads in the same chain, and bmin is the distance at which the sum ULJ(r) +UF(r)
has a minimum (i.e., bmin ' 0.97).

The initial density and temperature, ρ0 = 0.85 and T0 = 0.4, the wall temperature Tw = 0.4, and
the channel width H = 5000 are fixed, while the drive force on the upper wall is varied as pw = 0.0005,
0.001. 0.002. 0.005, 0.01, 0.02, 0.03, 0.05, 0.07, and 0.09. Hereafter, the notations pw and pxy denote the
drive force and shear stress divided by the density ρ0, respectively.

In the numerical scheme, the number of mesh intervals M = 32, that is, ∆y = 156.25, the time
interval in Equation (9) ∆t = 1, the time-step size of MD simulation ∆tMD = 0.0025, and the number
of polymer chains in each MD cell Np = 32 are also fixed. Thus, Nb × Np = 8000 bead particles are
included in each MD cell with the side length lMD = 21 and the ratio of the mesh interval ∆y to the
side length lMD is ∆y/lMD = 7.4. We also fix the thermal conductivity in Equation (10) as λ/ρ0 = 100.

4.1. Spatial Heterogeneity

Figure 4 shows the spatial distribution of the velocity, temperature, shear stress, and bond
orientation in the stationary state. The local quantities are time-averaged over t = [1× 106, 1.5× 106]

for pw < 0.01 and t = [1.3× 106, 1.5× 106] for pw ≥ 0.01.
It can be seen that the local shear stresses are spatially uniform and coincide with the drive forces

pw on the upper wall. This confirms that the momentum transport is balanced so that the macroscopic
quantities are in the stationary state.

For small drive forces (i.e., pw ≤ 0.01), the temperature and bond orientation are almost uniform
and the velocity is linear. On the contrary, for large drive forces (i.e., pw ≥ 0.03), the spatial variations
of the temperature and bond orientation become remarkable and the velocity profile becomes S-shaped.
This velocity profile indicates that the shear thinning occurs near the walls.

The temperature rises in the middle of the channel due to viscous heating, and this affects the
local polymer conformation in the bond orientation. Interestingly, the local bond orientation Qxy

monotonically increases with the drive force pw in the vicinities of walls, while in the middle of the
channel, it behaves non-monotonically against the drive force.

Figure 5 shows the snapshots of local polymer conformation at the middle of the channel and near
the bottom wall at time t = 1.5× 106 for different drive forces. For small drive forces, i.e., pw = 0.005
and 0.01 (Figure 5a,b), the local polymer conformation does not significantly change between the
middle of the channel and the vicinity of the wall. The polymer chains are spatially uniformly
elongated in the x–direction as the drive force increases. It is also seen that for the small drive forces,
the distribution of end-to-end distances of polymer chains |P| does not change significantly in space
for each drive force, but it slightly broadens as the drive force increases.

On the other hand, when the drive force is large, i.e., pw = 0.03 and 0.09 (Figure 5c,d), the local
polymer conformation becomes spatially heterogeneous. The polymer chains are more elongated in the
vicinity of the wall than the middle of the channel. Interestingly, comparing Figure 5c,d, it is seen that
the polymer chains are less elongated in the middle of the channel for the larger drive force pw = 0.09
than the smaller drive force pw = 0.03, while they are more elongated near the wall for pw = 0.09 than
pw = 0.03. This can also be confirmed quantitatively from the distribution of end-to-end distances of
polymer chains, i.e., the number of elongated polymers with |P| ≥ 70 is 9 for pw = 0.03, while it is 5 for
pw = 0.09. This counter-intuitive behavior will be addressed in the following subsections.
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Figure 4. Spatial distributions of the (a) velocity, (b) temperature, (c) shear stress, and (d) bond
orientation in the stationary state. The results for the different drive forces pw = 0.005, 0.01, 0.03, and
0.05 are shown. On the vertical axis, y = 5000 corresponds to the wall that is in motion, while y = 0
corresponds to the wall that is at rest. In each figure, the local quantities are time-averaged in the
stationary state.

These behaviors of the local conformation of polymer chains are related to the spatial distributions
of the temperature and bond orientation tensor, which are shown in Figure 4b,d, respectively. Thus,
the spatial heterogeneity is generated both in the microscopic and macroscopic quantities due to the
viscous heating in high-speed lubrication.

It should be noted that the increase in temperature in the middle of channel δT is enhanced when
the channel width H becomes larger. For the Newtonian fluid with viscosity η0, the relation between
δT and H is written as δT = p2

wH2/(8η0). Thus, the effect of the viscous heating and the generated
spatial heterogeneity become significant when the channel width is sufficiently large for a fixed drive
force. The results given above clearly demonstrate that the SMD method makes it possible to address
the microscopic dynamics occurring in such macroscopic-scale flow problems.
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Figure 5. The snapshots of polymer conformation and the distributions of end-to-end distances |P|
of each polymer chain in local MD cells located in the middle of the channel (y = 2421) and near the
bottom wall (y = 78) at time t = 1.5× 106 for different drive forces, i.e., (a) pw = 0.005, (b) pw = 0.01,
(c) pw = 0.03, and (d) pw = 0.09. Half of the total polymer chains contained in each MD cell, i.e.,
sixteen polymer chains, are plotted in each snapshot. The different colors are used to distinguish each
polymer chain.

4.2. Gross Rheological Properties

In this subsection, we consider the gross rheological properties of the lubrication system (i.e.,
the apparent viscosity η̄), which can be measured from the upper-wall velocity and drive force,
the spatial average of the temperature T̄, and the spatial average of the bond orientation Q̄αβ.

We define the gross shear rate Γ̇ by Γ̇ = vw/H, where vw is the upper-wall velocity. Because
we consider the non-slip boundary condition, the upper-wall velocity is obtained from the velocity
of polymeric liquid at y = H (i.e., vw = vx(y = H)). Then, the apparent viscosity is calculated as
η̄ = pw/Γ̇.

Figure 6 shows the apparent viscosity η̄ and the spatial averages of temperature T̄ and bond
orientation of polymer chains Q̄αβ. The apparent viscosity approaches the intrinsic viscosity η0 in
the quiescent state as the gross shear rate Γ̇ decreases. When the gross shear rate exceeds the inverse
of the disengagement time of the entangled polymer chains (i.e., Γ̇ > τ−1

d ), shear thinning behavior
is observed, where the index of the power-law approximation is −0.6. However, the shear thinning
behavior ends at Γ̇ ' 5× 10−4 and, unexpectedly, even a weak shear thickening behavior is observed
for Γ̇ > 10−3. The weak shear thickening behavior is obviously related to the rapid temperature rise
due to the viscous heating in the large Γ̇ regime.
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Figure 6. (a) The apparent viscosity η̄ and the spatial average of the local temperature T̄ against the
gross shear rate Γ̇, which is defined by the ratio of the upper-wall velocity vw to the channel width H,
Γ̇ = vw/H. (b) The spatial average of the local bond-orientation tensor Q̄αβ against the gross shear rate
Γ̇. The viscosity of the model polymeric liquid in the quiescent state η0 is also shown in (a). The rate of
disengagement of entangled polymer chains in the reptation dynamics τ−1

d is also shown in (a,b).

Please note that the shear thickening behavior was not observed in the previous study for a
super-cooled polymeric liquid composed of short chains, where Nb = 10, T0 = 0.2, and ρ0 = 1.0 were
considered [22]. For the short polymer fluid, the shear thinning behavior is further enhanced in
the large-viscous heating regime. Interestingly, this qualitative difference of the thermo-rheological
property between the present entangled polymer fluid and the previous short polymer fluid gives
completely different velocity profiles between them.

Figure 7 shows a comparison of the spatial profiles of shear rate γ̇(y) between the present
entangled polymer fluid and the short polymer fluid studied in Ref. [22] in the strong viscous-heating
regime. It is seen that, for the present polymer fluid, the local shear rate decreases in the middle of
the channel because the local viscosity increases related to the increase in temperature in the strong
viscous-heating regime. On the contrary, for the unentangled polymer fluid, the local shear rate
increases in the middle of the channel because the local viscosity decreases related to the increase in
temperature. Thus, completely different velocity profiles are generated between the present entangled
polymer fluid and the short polymer fluid in the strong viscous-heating regime even in the simple
one-dimensional lubrication system.

It should be noted that in previous studies [22–24], a severely jammed state of polymers was
considered, so that the difference of the thermo-rheological property between the present entangled
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polymer fluid and the previous unentangled polymer fluid may be related to the initial condition of
the density ρ0 and temperature T0. The molecular mechanism behind the different thermo-rheological
property remains an open question.

0 0.001 0.002 0.003 0.004
0

0.25

0.5

0.75

1

Unentangled

Entangled

Figure 7. Comparison of the spatial profiles of local shear rate γ̇(y) between the present entangled
polymeric liquid and the unentangled polymeric liquid studied in Ref. [22]. For the entangled one,
the result for the drive force pw = 0.05 is plotted, while for the unentangled one, the result obtained
for pw = 0.08, Tw = 0.2, ρ0 = 1.0 and H = 2500 is plotted. Please note that the vertical axis shows the
normalized distance from the wall at rest to the wall in motion.

The transitional behavior triggered by the viscous heating is also observed in the bond orientation
of polymer chains. It can be seen from the bond-orientation tensor that polymer chains are stretched
in the x–direction, and the xy component of the bond-orientation tensor linearly increases with the
gross shear rate when the gross shear rate is in the regime Γ̇ . 5× 10−4. However, when Γ̇ > 10−3,
the anisotropic conformation of polymer chains starts to be recovered to the uniform random
conformation.

Figure 8 shows the stress–optical relation for the present problem. When the drive force pw is
small, the bond orientation Q̄xy is linearly proportional to the drive force pw, while the temperature is
almost constant. Thus, a linear stress–optical relation is observed for Q̄xy < 0.005. As the drive force
pw increases, the results deviate from the linear relation.
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Figure 8. The stress–optical relation pw/T̄ vs. Q̄xy. The drive force pw increases in the direction of
the arrow. The re-entrant transition of the linear stress–optical relation is observed at large gross
shear rates.
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However, surprisingly, the re-entrant transition of the linear stress–optical relation is observed at
large drive force, where the temperature T̄ rapidly increases and the bond orientations are recovered to
be uniform and random. We note that the re-entrant transition of the linear stress–optical relation was
also observed in the previous study for short polymer chains [22]. These results confirm the robustness
of the linear stress–optical relation of the polymeric liquid.

The transitional behaviors stem from the competition of the effects of the flow and temperature
on the polymer conformation. In the small viscous-heating regime, the temperature does not change
significantly so that the conformation of polymers is only dominated by the shear flow. On the other
hand, in the large viscous-heating regime, the temperature rapidly increases with the shear rate so that
the thermal agitation of bead particles dominates the stretching motion of polymer chains due to the
shear flow.

4.3. Time Evolution

Figure 9 shows the time evolutions of local velocities vx, temperatures T, shear stresses pxy, and
bond orientations Qxy at different positions for the drive force pw = 0.01. The local shear stress and
local bond orientation start to increase in the order of upper (near the moving wall) to lower (near the
wall at rest) positions because the momentum is conducted from upper to lower positions, and they
reach the local maxima at t ∼ 105.
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Figure 9. Time evolutions of (a) local velocity, (b) temperature, (c) shear stress, and (d) bond orientation
for the drive force pw = 0.01. The upper-wall velocity vw and local velocities at y = 2500 and 625
are shown in (a). The local temperatures, local shear stresses, and local bond orientations at the
upper (y = 4453), middle (y = 2423), and lower (y = 547) regions between the walls are shown in (b–d),
respectively. The vertical dashed line on the horizontal axis shows the disengagement time of entangled
polymer chains in the quiescent state.
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Yielding behaviors are clearly observed in the local shear stresses and bond orientations in
105 . t . τd. After the yielding, the velocity and temperature increase rapidly, while the shear stress
and bond orientation only vary slightly. It should be noted that the behaviors of the shear stress and
bond orientation are quite similar to each other at each local position.

The yielding behaviors of the shear stress and bond orientation and the rapid increase of the
velocity and temperature after the yielding of the shear stress and bond orientation are also observed
for the large drive force pw = 0.05 in Figure 10. In particular, remarkable yielding behaviors are
observed in the shear stress and bond orientation at the upper and lower positions (i.e., near the walls),
where the local shear rates are very large (see also Figure 4). The local maxima are reached in the order
of upper to lower positions, and the times to reach the local maxima are shorter than those in the case
pw = 0.01 (see Figure 9).
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Figure 10. Time evolutions of (a) local velocity, (b) temperature, (c) shear stress, and (d) bond orientation
for the drive force pw = 0.05. See also the caption in Figure 9.

However, the yielding behaviors of the shear stress and bond orientation are quite different
between pw = 0.01 (Figure 9) and 0.05 (Figure 10). For pw = 0.05, the local shear stresses increase
even after the yielding, and converge to the uniform value pxy = pw, while the local bond orientation
decreases at the upper and middle positions but increases at the lower position.

The increase in shear stress after the yielding is highly correlated with the increase in temperature.
This can be seen from Figure 11, where the time evolutions of the local shear stress divided by the local
temperature pxy/T are shown. Surprisingly, it can be seen in comparison with Figure 10d that the time
evolutions of pxy/T are similar to those of the bond orientations Qxy at each position.

Figure 12 shows the relations between p̄xy/T̄ and Q̄xy, where the spatial averages are considered,
for different drive forces pw. It can be seen that for small drive forces (i.e., pw ≤ 0.01), both behaviors
are almost synchronous. Even for large drive forces, the behaviors of p̄xy/T̄ and Q̄xy are similar to each
other. In fact, it is seen from Figure 12c that the relation between p̄xy/T̄ and Q̄xy is almost linear before
the yielding occurs even for large drive forces. Here, the dashed line shows the linear stress-optical
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relation obtained in Figure 8 (where only the stationary states are considered). Interestingly, for the
large drive force pw = 0.05, the linear relation between p̄xy/T̄ and Q̄xy has a different coefficient
from that of the linear stress-optical relation for t . 2× 105. However, it gradually approaches the
linear stress-optical relation in a long time period t ∼ 106. These facts demonstrate that the linear
stress–optical relation shown in Figure 8 approximately holds, even locally and instantaneously, at the
hydrodynamic level.
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Figure 11. Time evolution of the local shear stress (shown in Figure 10c) divided by the local
temperature (shown in Figure 10b), pxy/T for pw = 0.05.
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Figure 12. (a) Time evolutions of the spatial averages of the local shear stresses divided by the
temperatures p̄xy/T̄, (b) time evolutions of the spatial averages of the local bond orientations Q̄xy, and
(c) the time evolution of the relation p̄/T̄ vs. Q̄xy for different drive forces pw = 0.005, 0.01, 0.02, 0.03,
and 0.05.
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5. Summary

We investigated the thermal lubrication of an entangled polymeric liquid in wall-driven shear
flows between parallel plates by using the SMD method. The model polymeric liquid shows the
characteristic behaviors of entangled polymer chains in the relaxation dynamics. That is, the transient
behavior from the Rouse dynamics to the reptation dynamics is clearly observed in the stress relaxation
function, as can be seen in Figure 2.

In the lubrication system, the temperature of the polymeric liquid increases in the middle of the
channel due to viscous heating. The spatial profiles of both macroscopic quantities and microscopic
conformation of polymers also become heterogeneous. The viscous heating becomes rapidly significant
once the drive force exceeds a certain threshold value (i.e., pw & 0.02), as can be seen in Figure 4.

The gross rheological properties are also affected by the viscous heating. As can be seen in
Figure 6a that the shear viscosity shows shear thinning behavior in the weak viscous-heating regime,
while in the strong viscous-heating regime, it shows a weak viscous thickening behavior related
to the rapid temperature rise. This behavior is quite different from that observed in the previous
studies [22,24], where a supercooled polymeric liquid composed of short chains was considered.
For the unentangled polymer fluid, the shear thinning behavior was further enhanced when the
temperature rapidly increased in the strong viscous-heating regime.

Although the molecular mechanism for the qualitatively different behaviors of the
thermo-rheological properties between the entangled and unentangled polymer fluids in the thermal
lubrication system has yet to be clarified, it is demonstrated that the qualitative difference of the
thermo-rheological property gives remarkably different velocity profiles between them. For the
unentangled polymer fluid, the velocity gradient becomes larger in the middle of the channel than near
the wall because the shear thinning is enhanced due to the increase in temperature. On the contrary,
for the entangled polymer fluid, the velocity gradient becomes smaller in the middle of the channel
than near the wall because the shear thickening occurs due to the increase in temperature.

Another remarkable observation is the transitional behavior of the conformational dynamics of
polymer chains shown in Figure 6b. The transition is also triggered by the viscous heating. In the
weak viscous-heating regime, the conformation of polymer chains is dominated by the local shear
flow, so that the anisotropy of the bond orientation grows as the drive force increases. In the strong
viscous-heating regime, except in the vicinities of walls, the conformation dynamics of polymer chains
is dominated by the thermal agitation of bead particles rather than the local flow field, so that the bond
orientation tensor recovers the less elongated structure as the drive force increases, even though the
local shear flow is further enhanced.

This counter-intuitive transitional behavior produces an interesting re-entrant transition in the
stress–optical relation shown in Figure 8. The linear stress–optical relation shown in Figure 8 also
approximately holds, even locally and instantaneously, at the hydrodynamic level. The robustness of
the linear stress–optical relation can be observed in Figures 9–12.

The transitional behavior of the polymer conformation against the drive force and the robustness
of the stress-optical relation in the thermal lubrication system was also observed in previous studies
on the unentangled polymer fluid [22,24]. In order to clarify the microscopic mechanism behind those
behaviors, the investigation on the spatio-temporal dynamics of entanglement for large polymers
(i.e., Nb �250) by using the direct measurement of entanglement, as reported in Ref. [31,32], should
represent an important future research direction.
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