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Metafounders are pseudo-individuals that act as proxies for animals in base populations.
When metafounders are used, individuals from different breeds can be related through
pedigree, improving the compatibility between genomic and pedigree relationships. The
aim of this study was to investigate the use of metafounders and unknown parent groups
(UPGs) for the genomic evaluation of a composite beef cattle population. Phenotypes
were available for scrotal circumference at 14 months of age (SC14), post weaning gain
(PWG), weaning weight (WW), and birth weight (BW). The pedigree included 680,551
animals, of which 1,899 were genotyped for or imputed to around 30,000 single-
nucleotide polymorphisms (SNPs). Evaluations were performed based on pedigree
(BLUP), pedigree with UPGs (BLUP_UPG), pedigree with metafounders (BLUP_MF),
single-step genomic BLUP (ssGBLUP), ssGBLUP with UPGs for genomic and pedigree
relationship matrices (ssGBLUP_UPG) or only for the pedigree relationship matrix
(ssGBLUP_UPGA), and ssGBLUP with metafounders (ssGBLUP_MF). Each evaluation
considered either four or 10 groups that were assigned based on breed of founders and
intermediate crosses. To evaluate model performance, we used a validation method
based on linear regression statistics to obtain accuracy, stability, dispersion, and bias of
(genomic) estimated breeding value [(G)EBV]. Overall, relationships within and among
metafounders were stronger in the scenario with 10 metafounders. Accuracy was
greater for models with genomic information than for BLUP. Also, the stability of (G)EBVs
was greater when genomic information was taken into account. Overall, pedigree-
based methods showed lower inflation/deflation (regression coefficients close to 1.0) for
SC14, WWM, and BWD traits. The level of inflation/deflation for genomic models was
small and trait-dependent. Compared with regular ssGBLUP, ssGBLUP_MF4 displayed
regression coefficient closer to one SC14, PWG, WWM, and BWD. Genomic models
with metafounders seemed to be slightly more stable than models with UPGs based on
higher similarity of results with different numbers of groups. Further, metafounders can
help to reduce bias in genomic evaluations of composite beef cattle populations without
reducing the stability of GEBVs.
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INTRODUCTION

Single-step genomic BLUP (ssGBLUP) has been widely used for
genomic evaluation in domestic species such as dairy and beef
cattle, swine, and chicken (Chen et al., 2011; Tsuruta et al.,
2013; Lourenco et al., 2015b; Song et al., 2017). The main
advantage of this method is the combination of genotyped and
non-genotyped animals in the same analysis, possibly providing
less biased and more accurate predictions than multistep methods
(Chen et al., 2011; Legarra et al., 2014). However, the realized
relationship matrix (H) used in ssGBLUP was developed under
assumptions that may not hold in practice and may result in
biased genomic estimated breeding value (GEBV), especially
when pedigree information is missing for genotyped animals
(Misztal et al., 2013). In such a case, incompatibilities between the
genomic (G) and pedigree (A) relationship matrices are observed
(Misztal et al., 2013). Incompatibilities are also related to different
base population assumptions for each source of information.
While the base population for A is assumed to be the founders of
the pedigree, the base for G is frequently the current genotyped
population because G is most often centered using current
allele frequencies (Vitezica et al., 2011). Several approaches have
been proposed to solve the incompatibility between G and A
in ssGBLUP, namely, truncation of pedigree to the most recent
generations (Lourenco et al., 2014), scaling parameters for G and
A (Aguilar et al., 2010), and different ways to construct G (Chen
et al., 2011; Simeone et al., 2012).

The incompatibility between G and A may be intensified
in crossbred or multibreed populations because the allele
frequencies used to center and scale G are usually based on
means across genotyped animals in the population (Lourenco
et al., 2016). An additional problem arises in composite breeds
that are formed of two or more breeds, and sometimes their
crossbreds, causing the base population to be heterogeneous.
Correctly modeling differences in base populations can result in
less biased genomic predictions and more appropriate selection
decisions for such populations (Macedo et al., 2020).

In practice, pedigrees used in genetic evaluations may trace
back to several base populations that are assumed to be unrelated
because this information is unavailable. However, base animals
may be related in G because of its identity-by-state nature. If
this is the case, G and A will have unbalanced information,
causing GEBV to be biased (Legarra et al., 2015). In addition
to missing information at the “beginning” of the pedigree,
animals from different generations may have missing pedigree
information (Tsuruta et al., 2019). If not correctly modeled,
founders, and animals with missing pedigree will have their
breeding values regressed toward zero, which is not realistic
because populations are under selection (Legarra et al., 2015).
Quaas (1988) and Westell et al. (1988) proposed the use of
unknown parent groups (UPGs) to overcome problems related
to missing pedigree information. The UPGs permit modeling
differences in genetic merit across classes of missing parents such
as year of birth, sex, and country of origin. Additionally, UPGs
may be used to account for differences among breeds (Legarra
et al., 2007). However, the UPG approach still assumes that the
base populations are unrelated, which is often not true.

To solve this issue, Legarra et al. (2015) recently proposed the
concept of metafounders (MFs), which are pseudo-individuals
that act as proxies for animals in base populations. When MFs
are used, base individuals can be related though the pedigree,
improving the compatibility between G and A. Metafounders can
be interpreted as a generalization of UPGs, but with relationships
among animals within and across base populations (Legarra et al.,
2015). According to Garcia-Baccino et al. (2017), the inclusion
of MFs in the model reduces the bias of genomic predictions
without loss of accuracy. The assumption that pedigree founders
are fully unrelated is voided in the MF approach. There are a
few studies evaluating the performance of ssGBLUP with MFs
in real crossbred populations (Xiang et al., 2017), but none in
composite populations.

Montana is a beef cattle composite breed where the base
population is composed primarily of four different biological
types, defined as the NABC system. Biological type N refers
to animals from Bos taurus indicus breeds, A to animals from
Bos taurus taurus breeds adapted to the tropics, B to British
Bos taurus taurus animals, and C to taurine animals from
continental Europe (Ferraz et al., 2002). The current genomic
evaluation system for Montana beef cattle does not account for
a heterogeneous base population, but it fits breed proportions
as covariates in the model, which should be at least in theory
equivalent to models with UPGs in A matrices. Thus, the
objective of this study was to evaluate the use of MFs and UPGs
to model the base population used for genomic evaluations in a
Montana composite beef cattle population.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not obtained
for this study because the dataset was obtained from an
existing database.

Phenotypic and Genomic Data
Data for this study were from the Montana Composto
Tropical R©—CFM Leachman Pecuária Ltda. breeding program.
The dataset included phenotypes for scrotal circumference and
growth traits. Pedigree information was available for 680,551
purebred, intermediate crossbred, and composite animals. A total
of 4,212 sires and 192,619 dams were the founders of this breed
according to the Montana breed association. Traits included
scrotal circumference at 14 months of age (SC14, cm), post
weaning weight gain (PWG, kg; calculated as the difference
between yearling weight adjusted to 420 days of age and weaning
weight adjusted to 205 days of age), weaning weight (WW,
kg; weaning weight adjusted to 205 days of age), and birth
weight (BW, kg). Phenotypic records deviating from the mean of
contemporary groups±3 standard deviations and contemporary
groups with less than five records were removed. Contemporary
groups for BW and WW were based on farm, year and season of
birth, sex, and management group classes. Contemporary groups
for SC14 and PWG were defined using farm, year of birth,
and weaning management group classes. After data editing, a
total of 49,541 phenotypic records for SC14, 96,994 for PWG,
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325,014 for WW, and 264,981 for BW were available. The
heritability estimates were 0.25 for SC14, 0.09 for PWG, 0.23
for WW, and 0.22 for BW. Heritabilities for all models were
estimated using a BLUP model without UPGs or MFs because
UPGs had a minor influence on estimated genetic parameters
(Theron et al., 2002). The MF approach required the use of
scaled variance components. This was accomplished within the
BLUPF90 program.

A total of 1,899 animals were genotyped for 30k, 35k
and 770k, respectively single-nucleotide polymorphism (SNPs).
Subsequently, all genotypes were imputed to the Neogen
Gene Seek R© Genomic Profiler (GGP) commercial panel with
approximately 30k SNP markers using the FImpute software
(Sargolzaei et al., 2014). After SNPs with minor allele frequencies
below 5%, call rates lower than 90%, and departures from the
Hardy–Weinberg equilibrium (difference between expected and
observed frequencies of heterozygous) greater than 0.15 and
with unknown position or located on sex chromosomes were
removed, the edited genotype file contained 27,373 SNPs from
1,797 animals born between 1999 and 2016.

Statistical Analysis
Both UPGs and MFs were used to model the heterogeneous
Montana base population. A four-trait model was applied
to the pedigree BLUP (BLUP); pedigree BLUP with UPGs
(BLUP_UPG); pedigree BLUP with MFs (BLUP_MF);
ssGBLUP; single-step GBLUP with UPGs for A,G, and the
pedigree relationship matrix for genotyped animals (A22)
(ssGBLUP_UPG) or only for A and A22(ssGBLUP_UPGA);
and single-step GBLUP with MFs (ssGBLUP_MF). The model
without UPGs was as follows:

y = Xb+ Z1u+ Z2m+ Z3c+ e,

where y is the vector of phenotypes for each trait (SC14, PWG,
WW, and BW); b is the vector of contemporary group and
age of dam classes, and biological type composition covariates
for models without UPGs or MFs, non-additive effects for total
maternal heterozygosity (Hm), non-additive effects for direct
heterozygosity (N × A, N × B, N × C, A × B, A × C, and
B × C), and age at recording for SC14; u is the vector of direct
additive genetic effects for SC14, PWG, WW (WWD), and BW
(BWD); m is the vector of maternal additive genetic effects for
WW (WWM) and BW (BWM); c is the vector of maternal
permanent environmental effects for WW and BW; e is the vector
of residuals; and X, Z1,Z2, and Z3 are incidence matrices relating
phenotypic records in vector y to effects in vectors b, u, m, and
c, respectively.

When UPGs were added to pedigree-based BLUP and
ssGBLUP evaluations, a Z1Qg term was added to the model, as
follows:

y = Xb+ Z1u+ Z2m+ Z3c+ Z1Qg+ e,

where Q is an incidence matrix relating animals in vector u to
UPGs in vector g. Traditional EBV and GEBV for UPG models
were calculated as follows:

(G)EBV = Qg+ u.

The UPGs for ssGBLUP were modeled in two different ways.
Firstly, UPGs were applied to all pedigree-based and genomic
relationship matrices that compose H (Misztal et al., 2013). The
resulting model was defined as ssGBLUP_UPG. Matrix H−1 for
ssGBLUP_UPG (H∗UPG) was constructed as follows:

H∗UPG = A∗ +


0 0 0

0 G−1
− A−1

22 −(G−1
− A−1

22 )Q

0 −Q′(G−1
− A−1

22 ) Q′(G−1
− A−1

22 )Q

 ,

where A∗ is the inverse of the pedigree relationship matrix
with UPGs constructed with the QP transformation (Quaas,
1988), and G is the genomic relationship matrix computed as
in Van Raden (2008) with allele frequencies from the current
genotyped population. Relationships in G are identical by state;
thus, G is unaffected by missing pedigree (Tsuruta et al., 2019).
Because of this, a second formulation used UPGs only in A
and A22; this model was called ssGBLUP_UPGA. The H−1for
ssGBLUP_UPGA (H∗UPGA) was constructed as follows:

H∗UPGA = A∗ +


0 0 0

0 G−1
− A−1

22 −A−1
22 Q

0 −Q′A−1
22 Q′A−1

22 Q

 .

A third approach used to model the heterogeneous Montana base
population was MFs (Legarra et al., 2015). The model with MFs
was defined as ssGBLUP_MF. Matrix A in ssGBLUP_MF was
modified to be compatible with G centered with allele frequencies
of 0.5 (G05).The H−1 for ssGBLUP_MF (H0−1) was computed as
follows:

H0−1
= A0−1

+


0 0 0

0 G−1
05 − A0−1

22 0

0 0 0

 ,

where A0−1 and A0−1
22 are A−1 and A−1

22 modified with 0, the
matrix of relationships among MFs that accounts for similarities
across base populations (Legarra et al., 2015). The 0 matrix
included pedigree and SNP markers and was computed using
a generalized least squares (GLS) approach (Garcia-Baccino
et al., 2017) with the gammaf90 program of the BLUPF90
software suite (Misztal et al., 2014). All other computations in
this study were also done with programs from the BLUPF90
software suite.

Assignment of Metafounders to Montana
Composite Cattle
The MFs and UPGs were assigned based on the biological
type of the animals (N, A, B, and C).The Montana composite
beef cattle is formed by biological type clusters according
to likeness, physiology, production, and reproduction levels
using a combination of both B. taurus indicus and B. taurus
taurus animals. The base population is mainly composed of
the four biological types (N, A, B, and C). Intermediate
crosses between base animals can also be used in different
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TABLE 1 | Numbers of missing parents, pedigree animals, and genotyped animals per genetic group.

Genetic group GG41 GG102 Number of animals in the pedigree3 Number of genotyped animals

N 367,737 257,939 178,845 0

A 62,753 7,214 3,658 0

B 43,568 31,572 14,978 0

C 7,058 17,370 712 0

NA, AB, AC, BC – 8,588 6,151; 1,797; 33; 3,197 1; 6; 0; 0

NB – 25,583 98,377 0

NC – 20,590 53,504 0

NAB, NAC, ABC – 39,319 99,447; 31,369; 3,035 217;31; 18

NBC – 22,316 29,231 0

NABC – 59,625 155,876 1,626

Without breed information 340 0

MF, metafounder; UPG, unknown parent group.
1Genetic group four is based on the main biological types (N, A, B, and C).
2Genetic group 10 is based on the main biological types (N, A, B, and C) and intermediate crossbreds (NA, AB, AC, BC, NB, NC, NAB, NAC, ABC, NBC, and NABC,
where NA, AB, AC, and BC were combined into one group, as well as NAB, NAC, and ABC).
3Number of animals in the raw dataset before the addition of MF or UPG.

proportions to generate composites. Table 1 presents numbers
of missing parents, pedigree animals, and genotyped animals
for each genetic group defined based on the biological types
of Montana cattle.

Two genetic group definitions were used for both MFs and
UPGs. Firstly, only four groups (GG4) that traced animals back
to their N, A, B, and C founders were assigned. Missing parents
of animals with a higher proportion of a particular biological type
were assumed to be from that biological group. For example,
a missing parent of an animal with a higher proportion of N
was assigned to biological group N. Breed composition of almost
all animals in the dataset was either known or estimated. Even
when one parent was unknown, its breed proportion was inferred
through the breed composition of its progeny. Further, when
the two parents of an animal with known breed composition
were unidentified, breed composition of the animal was assigned
to both parents.

In the second group definition, 10 groups (GG10) that traced
animals back to their main biological type and their two-way,
three-way, and four-way crossbreds were assigned. Initially,
groups were represented by N, A, B, C, NA, AB, AC, BC,
NB, NC, NAB, ABC, NAC, NBC, and NABC. However, the
number of genotyped animals in the Montana population is
small; thus, groups with only a few animals were merged to
avoid computational problems when estimating group effects.
Groups NA, AB, AC, and BC were merged into a single group,
as well as NAB, NAC, and ABC. The breed proportion of an
animal and its known parents were taken into account when
assigning groups. Thus, if an animal of biological type NA
had a known parent of biological type A, its missing parent
was assigned to group N. When both parents were unknown,
only the breed proportion of animal was taken into account
for group assignments. For example, if the biological type of
an animal with unknown parents was NA, one parent was
assumed to come from group N and the other parent from
group A. Numbers of animals in GG4 and GG10 are shown in
Table 1.

Evaluation of Model Performance
The linear regression (LR) validation method (Legarra and
Reverter, 2018) was used to evaluate model performance. The
validation group was composed of 436 genotyped animals born
from June to December of 2016 (year of the youngest genotyped
animals with complete data), which had their phenotypes
removed from the evaluation together with phenotypes from
contemporaries. This will be referred to as the reduced dataset
and will be represented by subscript r. The total number of
phenotypic records per trait in the reduced dataset was 47,949
for SC14, 93,701 for PWG, 317,703 for WW, and 257,368
for BW. The complete dataset, identified with subscript c,
included 49,541 phenotypes for SC14, 96,994 for PWG, 325,014
for WW, and 264,981 for BW. This dataset was used as a
benchmark for validations. All evaluation models were run
with both reduced and complete datasets, and all computations
were done with programs from the BLUPF90 software suite
(Misztal et al., 2014).

The estimators of the LR method were calculated based on
Legarra and Reverter (2018) and Macedo et al. (2020). The
accuracy of (G)EBV for validation animals was calculated as

ρc,r =

√
cov(̂uc ,̂ur)

(1−F)σ2
u

, where cov is the sample covariance, û is the

vector of (G)EBV, F is the average inbreeding coefficient for
validation animals, and σ2

u is the additive genetic variance.
The correlation between ûc and ûr , i.e., corc,r = cor(̂uc, ûr),
which assesses the association between (G)EBVs obtained with
the complete and reduced datasets, was used as a measure
of consistency between subsequent evaluations. A high corc,r
indicates that adding more data will result in few (G)EBV
changes; thus, the reduced dataset is a good predictor of the
complete dataset in this case. Inflation/deflation of (G)EBV was
assessed as the deviation of the regression coefficient (b1) from 1,
where b1 was obtained from the regression of ûc on ûr :

ûc = b0 + b1ûr.
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Another estimator used to measure the model performance was
bias, calculated as µcr = ûr − ûc, where µcr has an expected value
of zero if the evaluation is unbiased.

RESULTS

Unknown Parent Group Solutions and
Descriptive Statistics of Genomic
Matrices With and Without Metafounders
Table 2 presents UPG solutions for all genomic models and traits.
Overall, the UPG solutions for models with 10 groups were higher
than for models with four groups. In addition, UPG solutions
from models where UPGs were only taken into account in A
matrices (ssGBLUP_UPGA) were higher than those from models
with UPGs in all relationship matrices (ssGBLUP_UPG).

Table 3 presents descriptive statistics for diagonal and off-
diagonal elements from G and A22 with and without MFs. The
inclusion of MFs in the pedigree-based relationship matrix and
the assumption of allele frequencies equal to 0.5 causes an upward
shift in the means of A22 and G. Noticeably, diagonal and off-
diagonal element values for A22 and G were virtually identical
when the number of MFs was increased from four to 10.

Relationships Within and Across
Metafounders (0)
The relationships within MFs (diagonals of the 0 matrix) were
smaller than one, and those between MFs (off-diagonals of the
0 matrix) were different from zero in both scenarios (GG4 and
GG10). Relationships within MFs in GG4 are presented in 04
below and ranged from 0.15 to 0.38, whereas the relationship
across MFs ranged from 0.09 to 0.18.

04 =


0.19 0.11 0.09 0.09

0.15 0.13 0.13
0.24 0.18

0.38

 .

Overall, relationships within MFs in GG10 were greater than
those in GG4 and ranged from 0.15 to 0.65 (see 010 below).
Relationships across MF for GG10 ranged from −0.11 to 0.23 as
opposed to all positive values for GG4. In particular, relationships
between MFs1 and 3 (biological types N and B) and between 1
and 4 (biological types N and C) showed negative values in GG10.
The relationship between MFs1 and 2 (biological types N and A)

TABLE 2 | Unknown parent group (UPG) solutions from complete (c) and reduced (r) data for genomic models with four or 10 groups added to all ssGBLUP relationship
matrices (ssGBLUP_UPG) and to only pedigree-based relationship matrices (ssGBLUP_UPGA).

UPG solutions

UPG Model SC14c SC14r PWGc PWGr WWc WWr BWc BWr

1 ssGBLUP_UPG4 0.07 −0.46 0.45 −0.66 −0.72 −1.59 −0.41 0.20

1 ssGBLUP_UPG10 −0.90 −0.39 −0.13 −0.02 −3.30 −2.30 0.37 −0.16

1 ssGBLUP_UPGA4 −1.03 −0.28 0.39 12.57 2.90 9.70 −0.12 1.27

1 ssGBLUP_UPGA10 −1.43 −0.24 2.80 0.39 −4.76 −0.88 0.63 −0.53

2 ssGBLUP_UPG4 0.51 −0.07 1.16 −0.29 −1.04 −1.25 −0.69 0.10

2 ssGBLUP_UPG10 −0.12 −0.36 −1.89 −1.81 3.09 2.80 −0.09 0.24

2 ssGBLUP_UPGA4 −0.97 −0.28 −0.80 16.69 2.11 9.27 −0.68 −1.97

2 ssGBLUP_UPGA10 −4.09 −0.53 14.87 23.30 −5.72 −12.35 0.72 1.78

3 ssGBLUP_UPG4 1.01 0.37 1.57 0.09 −0.03 −0.03 −1.09 −0.15

3 ssGBLUP_UPG10 1.03 0.47 −0.96 −1.35 −0.18 −0.44 −1.04 0.02

3 ssGBLUP_UPGA4 −0.06 0.43 0.98 13.49 2.58 10.73 −1.05 −2.10

3 ssGBLUP_UPGA10 −0.18 −0.01 8.46 3.78 −5.11 −3.16 −1.12 0.79

4 ssGBLUP_UPG4 0.80 0.14 0.00 −1.59 1.02 0.83 −1.17 0.14

4 ssGBLUP_UPG10 1.33 0.87 −3.58 −3.80 9.75 8.16 0.48 1.41

4 ssGBLUP_UPGA4 −0.45 0.06 −0.17 14.35 6.27 11.09 −1.53 −2.23

4 ssGBLUP_UPGA10 −0.06 0.40 6.51 2.18 5.90 5.01 0.43 1.79

5 ssGBLUP_UPG10 −0.32 −0.81 −0.83 −1.54 −1.99 −3.39 −0.48 −0.19

5 ssGBLUP_UPGA10 −0.93 −1.20 5.34 −0.12 −4.71 −2.64 −0.26 −0.13

6 ssGBLUP_UPG10 0.16 0.03 −3.44 −3.70 −0.28 −1.04 0.16 0.15

6 ssGBLUP_UPGA10 −0.58 −0.23 3.09 −1.81 −2.70 −1.41 0.34 0.02

7 ssGBLUP_UPG10 0.21 0.17 −2.19 −2.31 −2.56 −2.39 0.76 0.62

7 ssGBLUP_UPGA10 −0.58 −0.01 3.66 0.51 −7.29 −2.39 1.12 0.46

8 ssGBLUP_UPG10 −0.21 −0.59 1.29 1.29 −0.64 −1.65 0.18 0.37

8 ssGBLUP_UPGA10 −0.74 0.90 6.83 2.83 −3.88 −2.30 0.35 0.40

9 ssGBLUP_UPG10 0.02 −0.19 −2.18 −2.03 −2.77 −5.78 0.33 0.42

9 ssGBLUP_UPGA10 −0.57 −0.46 4.39 −0.97 −6.08 −6.85 0.59 0.24

10 ssGBLUP_UPG10 −0.15 −0.58 2.71 2.83 0.05 −1.22 0.17 0.34

10 ssGBLUP_UPGA10 −0.58 −0.86 8.09 3.93 −3.01 −1.68 0.34 0.33
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TABLE 3 | Descriptive statistics for diagonal and off-diagonal elements of genomic matrices required for genomic evaluations with and without metafounders.

Matrix1 Parameter

Mean Minimum Maximum Variance Correlation between all elements of G and A

Diagonal

A22 1.01 1.00 1.28 0.00

A22 (04) 1.07 1.00 1.33 0.00

A22 (010) 1.07 1.00 1.34 0.00

G 1.01 0.47 1.23 0.00 0.10

G (04) 1.18 0.46 1.43 0.00 0.65

G (010) 1.18 0.46 1.43 0.00 0.67

Off-diagonal

A22 0.03 0.00 0.75 0.00

A22 (04) 0.15 0.00 0.83 0.00

A22 (010) 0.15 0.00 0.83 0.00

G 0.03 −0.14 0.94 0.00 0.79

G (04) 0.35 0.00 1.13 0.02 0.79

G (010) 0.35 0.00 1.13 0.02 0.81

MF, metafounder.
1A22, numerator relationship matrix for genotyped animals; G, genomic relationship matrix; 04, matrix of relationships among MF using data from 4 MF; 010, matrix of
relationships among MF using data from 10 MF.

in GG10 was close to zero.

010 =



0.59 0.02 −0.11 −0.08 0.02 0.09 0.18 0.08 0.07 0.10
0.21 0.15 0.12 0.15 0.10 0.09 0.14 0.13 0.13

0.39 0.23 0.20 0.20 0.11 0.15 0.21 0.13
0.65 0.16 0.15 0.07 0.13 0.17 0.13

0.48 0.16 0.13 0.14 0.16 0.13
0.48 0.15 0.15 0.20 0.12

0.57 0.12 0.16 0.12
0.19 0.14 0.13

0.35 0.13
0.15



.

Accuracy and Stability of (Genomic)
Estimated Breeding Value
Table 4 shows accuracies of direct and maternal (G)EBV for
the 436 validation animals. Accuracies of direct (G)EBV were
largely similar across pedigree-based models and across genomic
models for all traits. On the other hand, accuracies of maternal
(G)EBV were higher for pedigree-based models with UPGs or
MFs. Adding UPGs to A and A22 (ssGBLUP_UPGA) showed
greater changes in accuracy for PWG when compared with
other genomic models. The accuracy of (G)EBVs ranged from
0.38 to 0.50 for SC14, 0.10 to 0.79 for PWG, 0.35 to 0.51 for

TABLE 4 | Accuracies of direct and maternal (G)EBV and correlations between direct and maternal (G)EBV for validation animals from the complete and reduced
datasets using various models with and without genetic groups.

Accuracy1 Correlation2

Model SC14 PWG WWD WWM BWD BWM SC14 PWG WWD WWM BWD BWM

BLUP 0.39 0.45 0.35 0.30 0.47 0.31 0.64 0.75 0.48 0.88 0.66 0.90

BLUP_UPG4 0.39 0.45 0.36 0.56 0.51 0.35 0.64 0.75 0.50 0.96 0.66 0.90

BLUP_UPG10 0.39 0.40 0.36 0.57 0.48 0.37 0.64 0.71 0.50 0.96 0.67 0.86

BLUP_MF4 0.38 0.44 0.35 0.51 0.50 0.44 0.64 0.75 0.48 0.95 0.68 0.93

BLUP_MF10 0.38 0.40 0.36 0.49 0.49 0.39 0.66 0.74 0.50 0.95 0.70 0.93

ssGBLUP 0.48 0.43 0.44 0.62 0.57 0.34 0.74 0.74 0.67 0.94 0.81 0.92

ssGBLUP_UPG4 0.48 0.43 0.44 0.62 0.57 0.38 0.75 0.75 0.67 0.98 0.81 0.92

ssGBLUP_UPG10 0.50 0.43 0.44 0.62 0.58 0.37 0.75 0.74 0.67 0.97 0.81 0.86

ssGBLUP_UPGA4 0.50 0.10 0.51 0.61 0.56 0.40 0.75 0.02 0.72 0.79 0.69 0.72

ssGBLUP_UPGA10 0.50 0.79 0.46 0.64 0.58 0.37 0.67 0.87 0.60 0.81 0.81 0.83

ssGBLUP_MF4 0.45 0.46 0.40 0.55 0.51 0.36 0.75 0.81 0.63 0.98 0.79 0.93

ssGBLUP_MF10 0.43 0.43 0.39 0.54 0.50 0.32 0.76 0.81 0.66 0.97 0.80 0.87

SC14, scrotal circumference at 14 months of age; PWG, post weaning gain; WWD, weaning weight direct; WWM, weaning weight maternal; BWD, birth weight direct;
BWM, birth weight maternal.
1Accuracy of direct and maternal (G)EBV for validation animals was calculated as ρc,r =

√
cov(̂uc ,̂ur )(

1−F
)
σ2

u
, where cov is the sample covariance; û is the vector of (G)EBV; c

and r are subscripts to denote complete and reduced datasets, respectively; F is the average inbreeding coefficient for validation animals; and σ2
u is the direct or maternal

additive genetic variance.
2Correlation between ûc and ûr .
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WWD, 0.30 to 0.64 for WWM, 0.47 to 0.58 for BWD, and
0.31 to 0.44 for BWM. Higher accuracies were observed when
genomic information was added to the model, except for PWG
that exhibited mostly minor changes. Inclusion of either four
or 10 MFs in ssGBLUP models decreased accuracies (0.02 to
0.08); however, accuracies were still higher than corresponding
values in BLUP models for all traits, except for PWG and
ssGBLUP_MF10. Conversely, addition of UPGs to BLUP and
ssGBLUP models yielded maternal (G)EBV accuracies that were
either similar or higher than those from the original models,
except for ssGBLUP_UPGA4 and WWM.

Table 4 also contains stabilities or correlations between
(G)EBVs from two successive evaluations (̂ur and ûc).
Correlations ranged from 0.64 to 0.76 for SC14, 0.02 to
0.87 for PWG, 0.48 to 0.72 for WWD, 0.79 to 0.98 for WWM,
0.66 to 0.81 for BWD, and 0.72 to 0.93 for BWM. Adding
genomic information to the model tended to increase the
stability of direct and maternal GEBV compared with EBV
particularly for SC14, WWD, and BWD. Stabilities were similar
for ssGBLUP_UPG4 and ssGBLUP_UPG10 and mostly lower
for ssGBLUP_UPGA10 than for ssGBLUP. Further, fitting either
four or 10 MFs to ssGBLUP helped increase the stability of GEBV
for PWG. Overall, fitting genetic groups had a small impact on
the stability of GEBV in the Montana population, except fitting
four UPGs to ssGBLUP_UPGA.

Slope or Dispersion
The slope (b1) of the regression of (G)EBVs from the complete
dataset on (G)EBVs from the reduced dataset measures the
degree of dispersion of (G)EBV estimated under a given model
(Table 5). This regression coefficient should be close to one
to ensure that there is no inflation or deflation in (G)EBV for
validation animals. Regression coefficients ranged from 0.95 to
1.08 for SC14, 0.01 (ssGBLUP_UPG4) to 0.88 for PWG, 0.60 to
0.96 for WWD, 0.51 to 1.15 for WWM, 0.78 to 1.08 for BWD,
and 0.79 to 0.99 for BWM. Overall, pedigree-based methods
showed no inflation (b1 values close to 1.0) for SC14, WWM,
and BWD. Conversely, most of the genomic models showed a

slight deflation (b1values greater than 1) for SC14 and BWD.
Overall, PWG showed similar dispersion in models with and
without genomic information. Lastly, the inclusion of genomic
information considerably reduced the inflation for WWD.

Dispersion differences between pedigree-based models
(traditional BLUP, BLUP with UPGs, and BLUP with MFs)
were small for all traits (Table 5). Addition of four or 10 UPGs
to A, G, and A22 in ssGBLUP models (ssGBLUP_UPG4
and ssGBLUP_UPG10) showed only slight changes on
inflation (0.01 to 0.04), regardless of the number of added
UPGs. When UPGs were added only to A and A22 in
ssGBLUP (ssGBLUP_UPGA4 and ssGBLUP_UPGA10),
regression coefficients deviated from 1.0, especially for
PWG that had b1 equal to 0.01 for ssGBLUP_UPGA4 and
0.65 for ssGBLUP_UPGA10. Those values were both 0.84
when UPGs were fit to A, G, and A22. Inflation values
for ssGBLUP and ssGBLUP_MF models were very similar
(differences of 0.01 to 0.07), except for WWD, which exhibited
higher inflation in ssGBLUP_MF models. The MF models
(ssGBLUP_MF4 and ssGBLUP_MF10) yielded the smallest
dispersions among all ssGBLUP models for PWG, WWM,
and BWD. Conversely, the dispersion for BWM was similar
across models, except for BLUP_UPG10, which had the
greatest inflation.

Bias
Table 6 shows biases and standard errors of direct and maternal
(G)EBV using pedigree-based and genomic models. Biases were
calculated as differences between direct and maternal mean
(G)EBVs from reduced and complete datasets. These differences
have an expected value of zero if (G)EBV are unbiased. The
(G)EBV had usually negative biases, indicating that the (G)EBV
means for validation animals from the reduced dataset were lower
than those from the complete dataset. The (G)EBV biases for
maternal traits ranged from −5.34 to 1.92 for WWM and −0.21
to 0.59 for BWM. Most of genomic models with UPGs tended to
overestimate maternal (G)EBVs from reduced datasets, resulting
in positive biases for WWM.

TABLE 5 | Regression coefficients of direct and maternal (G)EBV from the complete dataset on direct and maternal (G)EBV from the reduced dataset for validation
animals and their standard errors (in parentheses) using various models with and without genetic groups.

Model SC14 PWG WWD WWM BWD BWM

BLUP 0.95 (0.05) 0.85 (0.04) 0.60 (0.05) 0.92 (0.02) 0.92 (0.05) 0.83 (0.02)

BLUP_UPG4 0.99 (0.06) 0.85 (0.03) 0.62 (0.05) 0.97 (0.01) 0.92 (0.05) 0.83 (0.02)

BLUP_UPG10 0.98 (0.05) 0.85 (0.04) 0.62 (0.05) 0.92 (0.01) 0.93 (0.05) 0.79 (0.02)

BLUP_MF4 0.97 (0.05) 0.84 (0.03) 0.60 (0.05) 0.93 (0.01) 0.93 (0.05) 0.84 (0.01)

BLUP_MF10 0.98 (0.05) 0.84 (0.04) 0.61 (0.05) 0.93 (0.01) 0.94 (0.05) 0.85 (0.01)

ssGBLUP 1.05 (0.05) 0.84 (0.04) 0.96 (0.05) 0.94 (0.02) 1.05 (0.04) 0.95 (0.02)

ssGBLUP_UPG4 1.07 (0.04) 0.84 (0.03) 0.96 (0.05) 0.96(0.01) 1.05 (0.04) 0.97 (0.02)

ssGBLUP_UPG10 1.08 (0.05) 0.84 (0.04) 0.95 (0.05) 0.93 (0.01) 1.08 (0.04) 0.91 (0.02)

ssGBLUP_UPGA4 1.08 (0.04) 0.01 (0.02) 0.93 (0.04) 1.15 (0.04) 0.78 (0.04) 0.99 (0.05)

ssGBLUP_UPGA10 1.03 (0.05) 0.65 (0.02) 0.71 (0.04) 0.51 (0.02) 1.02 (0.03) 0.80 (0.02)

ssGBLUP_MF4 1.04 (0.04) 0.87 (0.03) 0.77 (0.04) 0.99 (0.01) 1.00 (0.04) 0.93 (0.02)

ssGBLUP_MF10 1.06 (0.04) 0.88 (0.03) 0.82 (0.04) 0.96 (0.01) 1.03 (0.04) 0.88 (0.00)

SC14, scrotal circumference at 14 months of age; PWG, post weaning gain; WWD, weaning weight direct; WWM, weaning weight maternal; BWD, birth weight direct;
BWM, birth weight maternal.
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TABLE 6 | Biases and standard errors of (G)EBV estimated as differences between direct and maternal mean (G)EBV from reduced and complete datasets using various
models with and without genetic groups.

Model SC14 PWG WWD WWM BWD BWM

BLUP −0.13 (0.03) 0.02 (0.09) −1.29 (0.28) −0.32 (0.04) −0.07 (0.05) −0.05 (0.00)

BLUP_UPG4 −0.15 (0.03) −0.01 (0.09) −1.36 (0.28) −0.17 (0.04) −0.09 (0.05) −0.02 (0.00)

BLUP_UPG10 −0.49 (0.03) −0.19 (0.09) −1.78 (0.27) −0.22 (0.04) −0.09 (0.05) −0.17 (0.01)

BLUP_MF4 −0.15 (0.03) 0.03 (0.09) −1.50 (0.28) −0.21 (0.04) −0.11 (0.05) −0.00 (0.00)

BLUP_MF10 −0.17 (0.03) 0.07 (0.08) −1.45 (0.27) −0.28 (0.04) −0.10 (0.04) −0.03 (0.00)

ssGBLUP −0.18 (0.03) −0.08 (0.09) −1.53 (0.25) −0.25 (0.04) −0.07 (0.04) −0.01 (0.00)

ssGBLUP_UPG4 −0.15 (0.03) 0.01 (0.09) −1.49 (0.25) 1.92 (0.04) −0.09 (0.04) 0.59 (0.00)

ssGBLUP_UPG10 −0.48 (0.03) −0.29 (0.09) −2.31 (0.25) 0.15 (0.04) 0.01 (0.04) −0.14 (0.00)

ssGBLUP_UPGA4 0.16 (0.03) 1.16 (0.30) 3.73 (0.25) 0.51 (0.16) −0.35 (0.05) −0.18 (0.01)

ssGBLUP_UPGA10 −0.84 (0.04) −5.66 (0.12) 2.65 (0.28) −5.34 (0.02) −0.36 (0.04) 0.00 (0.01)

ssGBLUP_MF4 −0.16 (0.03) −0.05 (0.08) 1.40 (0.23) −0.04 (0.03) −0.25 (0.03) −0.03 (0.00)

ssGBLUP_MF10 −0.48 (0.03) −0.09 (0.07) −2.31 (0.21) 0.36 (0.03) 0.05 (0.04) −0.21 (0.00)

SC14, scrotal circumference at 14 months of age; PWG, post weaning gain; WWD, weaning weight direct; WWM, weaning weight maternal; BWD, birth weight direct;
BWM, birth weight maternal.

Overall, genomic models were more biased than pedigree-
based models for both direct and maternal traits; however,
MF models tended to have similar biases without genomic
information. Biases tended to increase when 10 UPGs were
added to pedigree-based models. Slight differences in biases for
direct traits were observed when four UPGs (ssGBLUP_UPG4)
were added to A, G, or A22 compared with ssGBLUP.
The ssGBLUP_UPGA4 model tended to overestimate (G)EBV
for direct traits shown positive bias for SC14, PWG, and
WWD. The ssGBLUP_UPGA10 model produced the greatest
biases for SC14, PWG, WWM, and BWD but no bias for
BWM. The least biased models for WWM and BWM were
ssGBLUP_MF4 and BLUP_MF4 or ssGBLUP_MF4, respectively.
Overall, biases of genomic models with four MFs were similar to
pedigree-based BLUP, lower than ssGBLUP models and genomic
models with UPGs.

Increasing the number of UPGs from 4 to 10 in models
without genomic information led to larger biases for almost all
traits (Table 6). Alternatively, when more UPGs were added to A,
G, and A22, biases increased for all direct traits, but BWD and the
magnitude depended on the trait (e.g., larger biases were observed
for SC14 and WWD). Conversely, biases decreased for maternal
traits (WWM and BWM). In contrast, models with UPGs in A
and A22 showed almost no changes in biases for BWD, although
bias decreased for WWD and BWM and increased for SC14,
PWG, and WWM. Biases also increased when the number of MFs
increased from four to 10, except for BWD.

Correlations Between (Genomic)
Estimated Breeding Values From
Different Models and Distribution of
(Genomic) Estimated Breeding Value
Pearson’s correlation coefficients between (G)EBVs of young
animals predicted with various models are presented in Figure 1
for SC14, Figure 2 for PWG, Figure 3 for WWD, Figure 4 for
WWM, Figure 5 for BWD, and Figure 6 for BWM. Pearson’s
correlation coefficients were used to measure the degree of
similarity between (G)EBVs computed using different models.

Overall, correlations between (G)EBVs from different models
were positive and high, except for (G)EBV from PWG and
ssGBLUP_UPGA models. Correlations between (G)EBVs from
different models ranged from 0.57 to 1.0 for SC14 (Figure 1).
Higher correlations were observed between (G)EBVs within
pedigree-based (>0.97) and within genomic models (>0.93).
Correlations between pedigree-based EBVs and GEBVs were
lower (0.57 to 0.74). Correlations between (G)EBVs from
different models ranged from −0.15 to 0.99 for PWG (Figure 2).
Correlations between EBVs from pedigree-based models ranged
from 0.93 to 1.0, whereas correlations between GEBVs from
genomic models fluctuated between −0.03 and 0.99. The lowest
correlations were between (G)EBVs from ssGBLUP_UPGA and
other models (close to zero). Correlations between (G)EBVs from
different models ranged from 0.17 to 1.0 for WWD (Figure 3).
The lowest correlations were observed between EBVs from
pedigree-based BLUP and GEBV from ssGBLUP_UPGA4. High
correlations (∼0.80) between EBVs from pedigree-based and
GEBV from genomic models were obtained when MFs were
taken into account.

Correlations between (G)EBVs from different models ranged
from 0.40 to 0.98 for WWM (Figure 4).The correlations between
EBVs from pedigree-based models were higher than 0.70 (0.70
to 0.98), whereas correlations between GEBVs from genomic
models ranged from 0.44 to 0.96, and correlations between
EBVs from pedigree-based and GEBV from genomic models
fluctuated between 0.40 to 0.93. Among genomic models,
ssGBLUP_UPGA4 had the lowest correlation with most of
models. Correlations between (G)EBVs from different models
fluctuated between 0.69 and 1.0 for BWD (Figure 5).The
correlations between EBVs from pedigree-based models were
close to 1.0 (0.97 to 1.0), correlations between GEBVs from
genomic models ranged from 0.71 to 1.0, and correlations
between EBVs from pedigree-based and GEBVs from genomic
models were around 0.80, except for ssGBLUP_UPA4. Overall,
the GEBV from ssGBLUP with MFs had the highest correlations
with (G)EBV from other models. Correlations between (G)EBVs
from different models ranged from 0.62 to 0.97 for BWM
(Figure 6). The correlations between EBVs from pedigree-based

Frontiers in Genetics | www.frontiersin.org 8 August 2021 | Volume 12 | Article 678587

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-678587 August 17, 2021 Time: 14:58 # 9

Kluska et al. Metafounders for Composite Cattle

FIGURE 1 | Correlations between breeding values for scrotal circumference at 14 months of age estimated using various models with and without genetic groups.

models were high (0.85 to 0.97), whereas correlations between
GEBVs from genomic models ranged from 0.83 to 0.96, and
correlations between pedigree-based and GEBVs from genomic
models ranged from 0.62 to 0.82.

The (G)EBV distribution of validation animals predicted with
various models is presented in Figure 7 for SC14, Figure 8 for
PWG, Figure 9 for WWD, Figure 10 for WWM, Figure 11
for BWD, and Figure 12 for BWM. Overall, violin plots of
(G)EBV for SC14 across models were very similar (Figure 7).
Conversely, GEBV had more variation than EBV since the
frequency of EBV around the median was higher than GEBV
around the median. Additionally, more variation of median value
was observed among genomic models. The (G)EBV of young
animals for PWG (Figure 8) was similar across all models,
except for ssGBLUP_UPGA (4 or 10) that produced animals with
extreme low GEBV. These models (pedigree-based, ssGBLUP,
ssGBLUP_UPG, and ssGBLUP_MF) had most of the (G)EBV
values clustered around the median.

The (G)EBV for WWD (Figure 9) had similar distribution
among all models, except for ssGBLUP_UPGA10 where animals

with extreme high GEBV were reported. Also, the number
of UPGs or MFs had almost no impact on the (G)EBV of
young animals. Lastly, genomic models with UPGs just in
A matrices (ssGBLUP_UPGA4 or ssGBLUP_UPGA10) showed
more thin distributions and higher median. Among all traits,
higher variation of (G)EBV across models was observed for
WWM (Figure 10). Overall, EBV had most of the values
clustered around the median, whereas GEBV showed more
variation within models. Extreme (low or high) (G)EBVs were
reported for almost all models, but the frequency of extreme
values was higher for ssGBLUP_UPGA models; therefore, these
distributions were thinner.

Similar distributions of (G)EBV across models were observed
for BWD (Figure 11). Additionally, similar variation across
EBV and GEBV themselves, with higher frequency of values
around the median for ssGBLUP_MF models, was noticed.
Extreme (low or high) (G)EBV values were reported for all
models, especially for ssGBLUP_UPGA. Lastly, the median
across models was similar. The median of (G)EBV for BWM
differed considerably across models (Figure 12). Extreme
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FIGURE 2 | Correlations between breeding values for post weaning weight gain estimated using various models with and without genetic groups.

(G)EBV values were observed for all models. Overall, a higher
frequency of (G)EBV around the median was observed for
all models, except for ssGBLUP_UPGA4, which had more
extreme low values.

DISCUSSION

Animals in the Montana population must be composed of at
least three breeds with a minimum of 12.5% of biological type
A and a minimum of 25% of combined biological types N and
A. In addition, the maximum percentage of each biological type
allowed is 37.5% for group N, 87.5% for group A, and 75% for
groups B and C (Santana et al., 2013).

Currently, the genetic evaluation program for the Montana
population does not account for missing pedigree. Unfortunately,
unless missing pedigree is accounted for, animals with missing
parents will have their breeding values regressed toward zero
and will likely not be selected as parents of future generations.

Unknown genetic groups and MFs can be used to account for
missing pedigree and breed structure in base populations. Thus,
it is important to assess the ability of UPGs and MFs to account
for missing pedigree and breed structure in complex multibreed
populations such as the Montana beef cattle population.

Relationships Within and Across
Metafounders (0)
Missing pedigree and uncertainty regarding the structure of the
base population may be accounted for by adding genetic groups
called UPGs based on criteria such as year of birth, generation,
breed, line, sex, or a combination of these factors. Recently,
Legarra et al. (2015) proposed the use of MFs to account for
relationships within and among base populations that are ignored
by UPGs. Therefore, the main difference between UPGs and
MFs is that the latter accounts for relationships between UPGs,
including inbreeding.

Relationships within MFs that are lower than one indicate
negative inbreeding, which implies a higher frequency of
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FIGURE 3 | Correlations between breeding values for weaning weight direct estimated using various models with and without genetic groups.

heterozygotes relative to the average of the population. This
also means that the base population has a large amount of
genetic variability. Conversely, when these values are higher than
one, they indicate that base populations are inbred (Legarra
et al., 2015). Additionally, positive relationships between MFs
indicate that ancestor populations overlap, negative values
indicate population divergence, and zero values indicate that
base populations are unrelated. Estimates of 0 different from
zero permit full consideration of MFs in genetic evaluation,
whereas a zero 0 is equivalent to having UPGs for A and A22
(Bradford et al., 2019).

Relationships within MFs were lower than one, whereas
relationships between MFs were different from zero in the
Montana population. Similar findings were reported in simulated
and real datasets (Xiang et al., 2017; van Grevenhof et al.,
2018; Bradford et al., 2019). We found negative relationships
between purebred MFs (N and B, and N and C) when using
10 MF groups. This could be explained by the fact Montana is
composed of two subspecies of Bos taurus, i.e., B. taurus indicus

in group N and B. taurus taurus in groups A, B, and C. However,
negative relationships were not observed when using only four
MF groups, possibly because intermediate crosses were implicitly
nested within the four biological types. This created stronger ties
among the biological types based on SNP information, hence the
positive relationship coefficients between MF groups.

The relationship coefficients within MFs in our study were
similar to those reported by other authors. In a simulation study,
van Grevenhof et al. (2018) reported relationships within MFs of
0.17 for related parental lines and of 0.74 for unrelated parental
lines. Bradford et al. (2019) obtained relationships within MFs
ranging from 0.54 to 0.71 in a simulated dairy cattle population.
Colleau et al. (2017) found relationships within MFs of 0.47 in
sheep, and Legarra et al. (2015) computed relationships of 0.55
for Holsteins and 0.77 for Jerseys. In general, the relationships
within groups in MF10 were higher than in MF4, implying more
variability in the latter. This could be explained by the method
used to form groups in each scenario. Animals in MF4 with a
higher proportion of a certain biological type (N, A, B, and C)
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FIGURE 4 | Correlations between breeding values for weaning weight maternal estimated using various models with and without genetic groups.

were allocated to a purebred group in such a way that these
purebred groups were not homogeneous (i.e., MF4 groups were
composed of purebred and crossbred animals).Conversely, the
strategy for MF10 was to assign purebred and crossbred animals
to various groups that were more homogeneous.

Accuracy and Stability of (Genomic)
Estimated Breeding Value
Adding genomic information increased the accuracy of GEBV
for all traits, except for PWG. Genomic information increases
the accuracy of estimation of relationship coefficients between
animals as well as the accuracy of estimation of Mendelian
sampling terms, which is not possible through the pedigree-based
relationship matrix (A). For instance, two unrelated individuals
in A will be related through H if these animals are related through
the G matrix, even if the pedigree does not show it (Legarra et al.,
2014). When animals have neither phenotypes nor progeny, their
GEBV is composed of the sum of one half of the (G)EBV of
their parents, genomic information coming from G, and pedigree
information coming from A22 (Lourenco et al., 2015a). On the

other hand, the EBV of ungenotyped young animals without
phenotypes and progeny is composed of the sum of one half of
the (G)EBV of their parents plus the Mendelian sampling (Quaas,
1988). Thus, taking genomic information into account permits
the inclusion of more information to estimate breeding values
for young animals without records and progeny. How much this
additional information contributes to the improvement of EBVs
can be measured through their increase in accuracy by using
models with marker information.

Increases in accuracy of models’ prediction by using genomic
information were reported in numerous studies, supporting the
benefits of genomic selection in livestock breeding programs
(Aguilar et al., 2010; Chen et al., 2011; Baloche et al., 2014;
Garcia et al., 2018). However, increases in accuracy of prediction
depend on a variety of factors that can differ among traits.
Genomic information produced either low or no increase in
accuracy for PWG, perhaps due to the small size of the
Montana reference population and the number of sires with
progenies in the reference population. These factors need to
be taken into account when establishing genomic selection
schemes in livestock populations. A good way to choose
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FIGURE 5 | Correlations between breeding values for birth weight direct estimated using various models with and without genetic groups.

genotyping strategies aiming to increase GEBV accuracies would
be to include older animals with high EBV accuracies and
large numbers of progeny (Lourenco et al., 2015b). This
was a limiting factor in the Montana population because its
reference population contained only a few animals with low EBV
accuracies, particularly for PWG.

The inclusion of either four or 10 UPGs in all ssGBLUP
relationship matrices was unable to markedly increase
GEBV accuracies; thus, only slight differences among these
genetic evaluation models and ssGBLUP were observed. The
ssGBLUP_UPGA4 model yielded higher GEBV accuracies than
other genomic models for WWD, and ssGBLUP_UPGA10
yielded higher GEBV accuracies than other genomic models for
PWG and WWM. In addition, increasing the number of UPGs
may not always be the best approach because UPG estimates
are related to numbers of animals and phenotypes in each UPG
group (Tsuruta et al., 2014).

The GEBV accuracies were more stable when UPGs were
added to A, G, and A22matrices (ssGBLUP_UPG). The number
of UPGs appeared to have a higher impact on GEBV accuracies

when they were not added to the G matrix. There is some
evidence that it is not necessary to add UPGs to G in purebred
populations because this matrix is not affected by missing
pedigree. However, matrix G can be affected by line or breed
differences (Plieschke et al., 2015); thus, UPGs should be included
in the G matrix used in composite populations such as the
Montana beef cattle population.

The main reason to account for UPGs in genetic evaluation
is that genetic trends could have large biases when genetic
differences among groups are ignored, particularly in strongly
selected populations. Conversely, poor definition and incorrect
assignment of UPGs can also introduce biases. Therefore, UPGs
need to be estimated accurately with sufficient information to
avoid these issues (Tsuruta et al., 2019). However, when the
goal is to predict the EBVs of animals from the youngest
generation, removing UPGs from the model should not have a
large impact on EBV accuracies when genotyped animals have
no missing parents (Misztal et al., 2013) as reported in our study
[minor differences in (G)EBV accuracy between models with
and without UPGs].
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FIGURE 6 | Correlations between breeding values for birth weight maternal estimated using various models with and without genetic groups.

Our results indicated that MFs may not improve GEBV
accuracies. Similar results were reported in previous studies with
simulated and real datasets. In a simulation study, Bradford et al.
(2019) showed that GEBV accuracies were more related to trait
heritabilities than inclusion of MFs or UPGs in ssGBLUP. These
authors indicated that traits with higher heritabilities had higher
(G)EBV accuracies than traits with lower heritabilities even with
pedigree-based models. This occurs because accuracy of (G)EBV
is a function of heritability. These authors also found a slight
increase in GEBV accuracies in ssGBLUP with MFs (0.01 to 0.04
for traits with a heritability of 0.3 and 0.01 to 0.03 for traits
with a heritability of 0.1). In contrast, we found lower GEBV
accuracies for ssGBLUP models with MFs, although GEBVs from
these models were still accurate.

Two separate simulation studies found either a small increase
in GEBV accuracy (0.02; Garcia-Baccino et al., 2017) or no
difference in GEBV accuracy between ssGBLUP models with and
without MFs (van Grevenhof et al., 2018). Xiang et al. (2017),
using data from purebred and crossbred Landrace and Yorkshire
pigs, showed that the inclusion of MFs in ssGBLUP performed as

well as ssGBLUP with breed of origin of alleles, which requires
phasing genotypes and can be done in a simple way. MFs were
developed to make the G and A matrices compatible. MFs are
only applied to the A matrix; thus, incompatibilities between the
G and A matrices are related to differences in base populations.
However, this issue is more related to bias than to accuracy or
stability of GEBVs.

The stability of GEBV was measured as the correlation
between GEBVs from two consecutive evaluations, one with
the complete dataset and another one with a reduced dataset.
Stability can be interpreted as the ability of the reduced dataset
to predict the complete dataset. Overall, the inclusion of genomic
information in ssGBLUP models helped increase the correlations
between GEBVs from the reduced and complete data, except for
PWG. No changes in stability were expected by adding MFs to
ssGBLUP models. However, slight differences in stability between
GEBVs from ssGBLUP_MF and ssGBLUP were observed for
SC14, WWD, and BWD. Conversely, the inclusion of MFs helped
to get higher correlations for PWG in ssGBLUP models than
in pedigree-based models. These results indicate that MFs could
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FIGURE 7 | (G)EBVs for validation animals for scrotal circumference at 14 months of age estimated using various models with and without genetic groups. (G)EBVs,
(genomic) estimated breeding values.

FIGURE 8 | (G)EBVs for validation animals for post weaning weight gain estimated using various models with and without genetic groups. (G)EBVs, (genomic)
estimated breeding values.
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FIGURE 9 | (G)EBVs for validation animals for weaning weight direct estimated using various models with and without genetic groups. (G)EBVs, (genomic) estimated
breeding values.

FIGURE 10 | (G)EBVs for validation animals for weaning weight maternal estimated using various models with and without genetic groups. (G)EBVs, (genomic)
estimated breeding values.

Frontiers in Genetics | www.frontiersin.org 16 August 2021 | Volume 12 | Article 678587

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-678587 August 17, 2021 Time: 14:58 # 17

Kluska et al. Metafounders for Composite Cattle

FIGURE 11 | (G)EBVs for validation animals for birth weight direct estimated using various models with and without genetic groups. (G)EBVs, (genomic) estimated
breeding values.

FIGURE 12 | (G)EBVs for validation animals for birth weight direct estimated using various models with and without genetic groups. (G)EBVs, (genomic) estimated
breeding values.
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help increase GEBV accuracies for traits when ssGBLUP models
without MFs yield accuracies and correlations similar to those of
pedigree-based models.

Slope or Dispersion
When the slope of the regression of (G)EBV from the complete
dataset on (G)EBV from the reduced dataset is equal to 1, both
sets of (G)EBVs are on a similar scale. Inflation occurs when
b1 is lower than 1, and deflation happens when b1 is larger
than 1. The scale of (G)EBV is a key component in selection
schemes because it permits a fair comparison of (G)EBV among
animals, and consequently proper selection decisions (Piccoli
et al., 2018). Inflation causes over dispersion, which is detrimental
to genomic predictions, especially when selection candidates
are from different generations or have different amounts of
information (Neves et al., 2012).

Inclusion of genomic information helped reduce the inflation
of GEBV for WWD. However, inclusion of UPGs in all
relationship matrices (ssGBLUP_UPG) or MFs (except for
WWD) had only a small impact on GEBV dispersion across traits.
Bradford et al. (2019) showed that the dispersion of EBV from
BLUP models that did not account for missing pedigree could be
greater than that of genomic models. Inflation ingenomic models
is likely caused by a mismatch between the scale of the pedigree
and genomic relationship matrices (Misztal et al., 2017). Vitezica
et al. (2011) showed that inflation is related to the heritability
of the trait and selection pressure. According to Tsuruta et al.
(2019), the inflation of GEBV can be reduced by weighting A−1

22
by a factor smaller than 1.0 or by reducing the additive genetic
variance of the trait. Dispersion of GEBV from ssGBLUP may
also be observed when the pedigree is deep but incomplete,
and when inbreeding is not considered in A. Consequently,
inflation/deflation can be reduced by a combination of pedigree
truncation, incorporation of inbreeding in A, and accounting for
inbreeding of unknown parents (Misztal et al., 2017).

Our results showed a small or no change in inflation/deflation
of (G)EBV when UPGs were added to BLUP and ssGBLUP
models, except when those were removed from G matrix
(ssGBLUP_UPGA), especially for PWG regression coefficients
that deviated from 1.0, especially for PWG that had b1 equal to
0.01 for ssGBLUP_UPGA4. This occurs because UPG solutions
for PWG and ssGBLUP_UPGA4 from reduced and complete
data are very different (Table 2). Conversely, the inclusion
of genomic information eliminated the inflation for WWD.
Animals with and without phenotypes sharing the same UPGs
must be related to appropriately estimate UPG effects. Similarly,
if animals in A22 (block of A−1for genotyped animals) and
A11(block of A−1 for non-genotyped animals) are unrelated (i.e.,
A12
= 0), H−1 will not contribute to the estimation of UPG

effects (Tsuruta et al., 2019). The inclusion of MFs in genomic
models helped to alleviate the inflation of (G)EBV for PWG,
WWM, and BWD. The estimation of MFs effects relies on 0

and, consequently, on the number of genotyped animals with
phenotypes connected to each MF.

The inflation/deflation of GEBVs from ssGBLUP_UPG was
lower than that of GEBVs from ssGBLUP_UPGA. This raises
the question of whether UPGs should be added to G, given

that genomic relationships do not rely on pedigree missingness.
Matrix G accounts for line and breed differences (Plieschke et al.,
2015); thus, adding UPGs to this matrix may be beneficial in
crossbred and multibreed populations. Results from this study
indicate that addition of UPGs to G is important to obtain
(G)EBVs with the smallest inflation/deflation in the Montana
composite beef cattle population. However, this study was based
on a small number of genotyped animals; thus, additional
research witha larger Montana dataset would be needed to
confirm our findings.

Bias
Bias is defined as the ability to correctly predict the mean
breeding value of selection candidates (Granado-Tajada et al.,
2020). Nonzero biases compromise our ability to correctly
estimate genetic trends and genetic gains (Legarra and Reverter,
2018). Negative biases indicate underestimation of (G)EBV from
the reduced dataset. Negative biases existed for all models and
traits in our study, with overall stronger biases for ssGBLUP
models with and without UPGs than for BLUP models. Bias
estimates were similar for BLUP and ssGBLUP_MF models for
all traits, except for WWD. For SC14, PWG, and BWM, the
ssGBLUP_MF4 was similar to BLUP. Conversely, for BWD, the
BLUP and ssGBLUP_MF10 models yielded similar bias, while
for WWM, the ssGBLUP_MF4 model yielded the lowest biased
GEBV. This indicates that the inclusion of four MFs in ssGBLUP
models would likely reduce biases in genomic models to the
same extent or even more than BLUP models, although the
latter could still yield biased EBV due to model artifacts and
preselection of animals. A way to eliminate GEBV biases in
ssGBLUP models in composite populations would likely involve a
minimally biased pedigree-based model, and addition of genomic
information together with MFs to model heterogeneity in the
base population. Because artificial selection can generate biases
due to an increase in the genetic level and a reduction in the
additive genetic variance, finding an unbiased model could be
challenging (Legarra and Reverter, 2018).

Bradford et al. (2019) found no (G)EBV biases in pedigree-
based and genomic models with complete pedigree in a
simulation study. These authors also reported an increase in EBV
biases from pedigree-based models when UPGs were used to
account for missing pedigree, in agreement with our findings in
the Montana population. Biases resulting from the inclusion of
UPGs are primarily due to inaccurate estimates of UPG effects,
which reinforces the importance of a robust group definition.
Tsuruta et al. (2014) showed that combining groups with small
amounts of information helped to reduce GEBV biases in the US
Holstein population.

Bradford et al. (2019) found larger biases in pedigree-based
models than in genomic models when missing pedigree was
unaccounted for in a simulation study, in contrast to results from
the Montana population. However, our results are in agreement
with those of Garcia-Baccino et al. (2017), who found larger
GEBV biases in ssGBLUP than in BLUP models; the latter was
in fact unbiased. However, these authors used simpler models
than the ones with direct and maternal additive genetic effects,
maternal permanent environmental effects, and multiple fixed
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effects used in this study. In addition, GEBV biases in this study
were likely influenced by the complex structure of the Montana
composite beef cattle population.

Correlations Between (Genomic)
Estimated Breeding Values From
Different Models and Distribution of
(Genomic) Estimated Breeding Value
Correlations between (G)EBVs from different models represent
the degree of similarity between (G)EBVs across models. The
high degree of similarity between EBVs from the various
pedigree-based models for all traits indicates that the inclusion of
UPGs and MFs produced minor changes in EBV values. Overall,
correlations between GEBVs from genomic models were lower
than correlations between EBVs from BLUP models, indicating
larger changes in GEBV than in EBV. Correlations between
(G)EBVs from BLUP and ssGBLUP_MF models were greater
than between (G)EBVs from BLUP and ssGBLUP models with
or without UPGs. The (G)EBV from UPGs and MF models
included group effects; thus, changes in (G)EBV from these
models depended on the accuracy of group effect estimates. The
low correlations between (G)EBVs from ssGBLUP_UPGA and
(G)EBV from other models, particularly for PWG and WWD,
indicate inaccurate estimates of UPG effects for these traits.
Additionally, when animals with and without phenotypes in the
same group are unrelated, group effects are not estimable; thus,
the ssGBLUP_UPGA model becomes equivalent to the ssGBLUP
model without UPGs. Furthermore, if genotyped animals are
not related to non-genotyped animals (animals in A22 and
A11, respectively), H−1 will not contribute to the estimation
of group solutions, which is also equivalent to ignoring UPGs
(Tsuruta et al., 2019). Lastly, because estimates of UPG effects
are trait-dependent, changes in (G)EBV from pedigree-based and
genomic UPG models also depend on the evaluated traits.

CONCLUSION

Genomic information helped improved the accuracy and
persistence of predictions in the Montana composite beef cattle
population. Addition of UPGs either to only the pedigree
relationship matrix or to both the pedigree and genomic
relationship matrices in ssGBLUP models to account for missing
pedigree and base population heterogeneity did not improve
accuracy, inflation/deflation, and bias of genomic predictions.

Thus, addition of UPGs to relationship matrices in ssGBLUP
models is not recommended in this population. Although the
addition of MFs to ssGBLUP models was unable to increase the
accuracy, this model yielded GEBV with lower inflation/deflation
for some traits and the least biased genomic predictions.
Therefore, this model could be recommended for genomic
evaluation in small composite beef cattle populations.
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