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Abstract: Heat shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone in a
variety of cells including osteoblasts. We previously showed that insulin-like growth factor-I (IGF-I)
elicits migration of osteoblast-like MC3T3-E1 cells through the activation of phosphatidylinositol
3-kinase/Akt and p44/p42 mitogen-activated protein (MAP) kinase. In the present study,
we investigated the effects of HSP70 inhibitors on the IGF-I-elicited migration of these cells and the
mechanism involved. The IGF-I-stimulated osteoblast migration evaluated by a wound-healing assay
and by a transwell cell migration was significantly reduced by VER-155008 and YM-08, which are
both HSP70 inhibitors. VER-155008 markedly suppressed the IGF-I-induced phosphorylation of
p44/p42 MAP kinase without affecting that of Akt. In conclusion, our results strongly suggest that
the HSP70 inhibitor reduces the IGF-I-elicited migration of osteoblasts via the p44/p42 MAP kinase.
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1. Introduction

It is firmly established that bone metabolism is regulated cooperatively by bone-forming
osteoblasts and bone-resorbing osteoclasts and that bone tissue is consistently regenerated through
bone remodeling [1,2]. The process of bone remodeling is initiated with osteoclastic bone resorption and
osteoblasts subsequently migrate to the resorbed sites, which leads to bone formation. Adequate bone
mass is maintained by the orchestrated cooperation of osteoclasts and osteoblasts [2]. Thus, the impairment
of bone remodeling causes metabolic bone diseases such as osteoporosis. Evidence is accumulating that
osteoblast migration is essential not only for physiological bone metabolism but also for pathological
bone processes including bone-fracture healing [1,3–5]. However, the exact mechanism behind osteoblast
migration has not yet been clarified.

Insulin-like growth factor-I (IGF-I), which is embedded abundantly in the bone matrix, plays a
crucial role in the regulation of bone metabolism [6,7]. Regarding IGF-I-effects on osteoblasts, we have
previously shown that IGF-I upregulates the activity of alkaline phosphatase, which is a biomarker
of bone formation, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol
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3-kinase/Akt in osteoblast-like MC3T3-E1 cells [8,9]. As for the effect of IGF-I on osteoblast
migration, IGF-I activates Akt and stimulates migration of osteoblast-like MC3T3-E1 cells as a
chemotactic factor [10]. In our study [11], we have demonstrated that p44/p42 MAP kinase and
phosphatidylinositol 3-kinase/Akt act as positive regulators in the IGF-I-induced migration of
osteoblast-like MC3T3-E1 cells. However, how the molecular mechanism underlying IGF-I induces the
osteoblast migration is unknown.

Heat shock proteins (HSPs) are induced in the cells exposed to various environmental stresses
such as heat, hypoxia, and oxidation [12]. It is firmly established that HSPs play an important role
as molecular chaperones in proteostasis under stress conditions [12]. Among HSPs, it is known that
HSP70 (HSPA) is constitutively expressed in the unstressed cells and that HSP70 is involved in various
physiological cell functions such as the regulation of steroid hormone receptors [13]. On the other hand,
accumulating evidence indicates that HSP70 plays a pivotal role in pathological conditions including
cancer, infection, and autoimmune diseases [14]. It has been reported that the overexpression of the
HSP70 protein in tumor tissue is related to worse outcomes [15]. Therefore, it is currently recognized
that the suppression of the HSP70 function is one possible therapeutic target against these diseases.
With regard to the effects of HSP70 on bone cells, extracellular HSP70 reportedly stimulates the alkaline
phosphatase activity and induces mineralization of human mesenchymal stem cells [16]. However,
the details of HSP70 in osteoblasts remain to be clarified.

In the present study, we investigated the effects of HSP70 inhibitors on the IGF-I-elicited migration
of osteoblast-like MC3T3-E1 cells and the underlying mechanism. In this paper, we show that the
HSP70 inhibitor suppresses the IGF-I-elicited migration of osteoblasts through attenuation of the
p44/p42 MAP kinase pathway.

2. Materials and Methods

2.1. Materials

IGF-I was obtained from R&D System, Inc. (Minneapolis, MN, USA). VER-155008 and YM-08
were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). Phospho-specific p44/p42 MAP kinase,
p44/p42 MAP kinase, phospho-specific Akt (Thr308), and Akt antibodies were used for the first
antibodies (Cell Signaling, Beverly, MA, USA). An ECL Western blotting detection kit was used (GE
Healthcare UK Ltd., Buckinghamshire, UK). Other materials were purchased from commercial sources.
VER-155008 and YM-08 were dissolved in dimethyl sulfoxide (DMSO). The maximum concentration
of DMSO was 0.1%, which did not affect the assay for cell migration and the detection of the protein
level using Western blotting.

2.2. Cell Culture

Cloned osteoblast-like MC3T3-E1 cells from an immortalized clonal cell line established from
neonatal mouse calvaria [17], which were generously provided by Dr. M. Kumegawa, were maintained
as previously reported [18]. MC3T3-E1 cells were cultured in α-minimum essential medium (α-MEM)
with 10% fetal bovine serum (FBS) at 37 ◦C in a humidified atmosphere of 5% CO2/95% air. The cells
were seeded into 90-mm diameter dishes (2 × 105 cells/dish) in α-MEM containing 10% FBS for
five days. The medium was then exchanged for α-MEM containing 0.3% FBS and the cells were
subsequently used for Western blot analysis after 48 h. For the cell migration assay, MC3T3-E1 cells
were cultured in α-MEM with 10% FBS for three days, sub-cultured in α-MEM with 0.3% FBS for 6 h,
and then used for the migration experiments.

2.3. Cell Migration Assay

For a wound-healing assay, cultured MC3T3-E1 cells were seeded at 10 × 104 cells/well into an
Ibidi Culture-Insert 2 Well (Ibidi, Martinsried, Germany) with a 500-µm margin from the side of the
well and allowed to grow for 24 h. After the insert was removed, the cells were then stimulated by
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70 nM of IGF-I for 8 h. The cells were visualized by the EOS Kiss X4 digital camera (Canon, Tokyo,
Japan) connected to a CK40 culture microscope (Olympus Optical Co. Ltd., Tokyo, Japan) before
the stimulation of IGF-I and after 8 h. The area of migrated cells was measured by ImageJ software
(version 1.48, NIH, Bethesda, MD, USA).

A transwell cell migration assay was performed by using a Boyden chamber (polycarbonate
membrane with 8-µm pores, Transwell® Corning Costar Corp, Cambridge, MA, USA), which was
previously described [19]. Cultured MC3T3-E1 cells were trypsinized and seeded (10 × 104 cells/well)
onto the upper chamber in α-MEM containing 0.3% FBS. IGF-I (10 nM) was added to the lower chamber
in α-MEM with 0.3% FBS and incubated for 16 h at 37 ◦C. We, then, mechanically removed the cells on
the upper surface of the membrane. Cells adherent to the underside of the transwell membrane were
fixed with 4% paraformaldehyde and stained with 4′,6-diamidino-2-phenylindole solution. These cells
were stained, visualized, and counted by using fluorescent microscopy at a magnification of 20× by
counting the stained cells. The migrated cells were photographed and counted by using fluorescent
microscopy at a magnification of 20× by counting the stained cells from three randomly chosen
high-power fields. When indicated, the cells were pretreated with VER-155008 or YM-08 for 60 min.

2.4. Western Blot Analysis

Cultured osteoblast-like MC3T3-E1 cells were pretreated with various doses of VER-155008 for
60 min and then stimulated by 10 nM of IGF-I or vehicle in 1 mL of α-MEM with 0.3% FBS for the
indicated periods. The cells were then lysed, homogenized, and sonicated in a lysis buffer containing
62.5 mM Tris/HCl, pH 6.8, 2% sodium dodecyl sulfate (SDS), 50 mM dithiothreitol, and 10% glycerol.
SDS-polyacrylamide gel electrophoresis (PAGE) was performed by using the method of Laemmli [20]
in 10% polyacrylamide gels. The protein was fractionated and transferred onto an Immun-Blot
polyvinyl difluoride (PVDF) membrane (Bio-Rad, Hercules, CA, USA). The membranes were blocked
with 5% fat-free dry milk in Tris-buffered saline-Tween (TBS-T, 20 mM Tris/HCl, pH 7.6, 137 mM NaCl,
0.1% Tween 20) for 1 h before incubation with the indicated primary antibodies. Western blot analysis
was performed, as described previously [21], using phospho-specific p44/p42 MAP kinase, p44/p42
MAP kinase, phospho-specific Akt or Akt antibodies as primary antibodies with peroxidase-labeled
antibodies raised in goat against rabbit IgG (KPL, Inc., Gaithersburg, MD, USA), which are being used
as secondary antibodies. The primary and secondary antibodies were diluted to optimal concentrations
with 5% fat-free dry milk in TBS-T. The peroxidase activity on the PVDF membrane was visualized on
X-ray films by utilizing an ECL Western blotting detection system.

2.5. Densitometric Analysis of Western Blotting

A densitometric analysis of Western blotting was performed by using a scanner and Image J
software (image J version 1.48, NIH, Bethesda, MD, USA). The background-subtracted signal intensity
of each phosphorylation signal was normalized to the respective total protein signal and plotted as the
fold increase in comparison to control cells without stimulation.

2.6. Statistical Analysis

One-way ANOVA followed by Bonferroni’s post-hoc comparisons tests were performed in all
statistical analysis and p < 0.05 was considered to be statistically significant. Analysis was carried out
by triplicate determinations from three independent cell cultures. All data are presented as the mean
± standard error of the mean (SEM).

3. Results

3.1. Effect of VER-155008 on the IGF-I-Stimulated Migration of MC3T3-E1 Cells

In our previous study [11], we have shown that IGF-I elicits migration of osteoblast-like MC3T3-E1
cells evaluated by a wound healing assay and a transwell assay. We first examined the effect of
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VER-155008, an inhibitor of HSP70 [22], on the IGF-I-stimulated migration of MC3T3-E1 cells by a
wound-healing assay. The increase of the filled area induced by IGF-I was significantly suppressed by
VER-155008 (10 µM), which caused approximately a 35% decrease in the IGF-I-effect (Figure 1).
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Figure 1. Effect of VER-155008 on the insulin-like growth factor-I (IGF-I)-induced migration of
MC3T3-E1 cells. The migration was evaluated by a wound-healing assay. The cells were pretreated
with 10 µM of VER-155008 or vehicle for 60 min and then stimulated by 70 nM of IGF-I or vehicle for 8 h.
The cells were photographed before IGF-I-stimulation (0 h) and, after 8 h (upper panel, a representative
result), the area of migrated cells was measured (lower bar graph), which were obtained from triplicate
independent experiments. * p < 0.05 compared to the value of the control cells without IGF-I stimulation.
** p < 0.05 compared to the value of IGF-I alone.

In addition, we examined the effect of VER-155008 on the IGF-I-stimulated migration of
osteoblast-like MC3T3-E1 cell using a Boyden chamber. VER-155008 markedly reduced the
IGF-I-stimulated MC3T3-E1 cell migration (Figure 2). VER-155008 (10 µM) led to an about 75% reduction
in the IGF-I-effect.
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3.2. Effect of YM-08 on the IGF-I-Stimulated Migration of MC3T3-E1 Cells 

We next examined the effect of YM-08, which is another inhibitor of HSP70 [23], on the IGF-I-
stimulated migration of MC3T3-E1 cells by a wound-healing assay. YM-08 (10 µM) reduced 
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Figure 2. Effect of VER-155008 on the IGF-I-induced migration of MC3T3-E1 cells. The migration
was evaluated by using a Boyden chamber. The cells were pretreated with 10 µM of VER-155008 for
60 min and then stimulated by 10 nM of IGF-I or vehicle for 16 h. The representative photographs from
triplicate independent experiments and the histogram showing the numbers of migrated cells in each
panel are presented. The blue spots indicate nucleus of migrated osteoblast stained by DAPI. * p < 0.05
compared to the value of the control cells without IGF-I stimulation. ** p < 0.05 compared to the value
of IGF-I alone. Scale bar: 100 µm.
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3.2. Effect of YM-08 on the IGF-I-Stimulated Migration of MC3T3-E1 Cells

We next examined the effect of YM-08, which is another inhibitor of HSP70 [23], on the
IGF-I-stimulated migration of MC3T3-E1 cells by a wound-healing assay. YM-08 (10 µM) reduced
remarkably the increase of the filled area induced by IGF-I (Figure 3). YM-08 (10 µM) led to about 40%
reduction in the IGF-I-effect.Biomedicines 2018, 6, x FOR PEER REVIEW  6 of 12 
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Figure 3. Effect of YM-08 on the IGF-I-induced migration of MC3T3-E1 cells. The migration was
evaluated by a wound-healing assay. The cells were pretreated with 10 µM of YM-08 or vehicle for
60 min and then stimulated by 70 nM of IGF-I or vehicle for 8 h. The cells were photographed before
IGF-I-stimulation (0 h) and after 8 h (upper panel, a representative result) and the area of migrated
cells were measured (lower bar graph), which were obtained from triplicate independent experiments.
* p < 0.05 compared to the value of the control cells without IGF-I stimulation. ** p < 0.05 compared to
the value of IGF-I alone.

Additionally, we examined the effect of YM-08 on the IGF-I-stimulated migration of MC3T3-E1
cell using a Boyden chamber. The IGF-I-stimulated migration of cells was significantly decreased by
YM-08 (Figure 4). The inhibitory effect of YM-08 on the migration was dose-dependent in the range
between 0.1 and 30 µM. YM-08 (30 µM) caused approximately 50% reduction in the IGF-I-effect.
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Figure 4. Effect of YM-08 on the IGF-I-induced migration of MC3T3-E1 cells. The migration was
evaluated by using a Boyden chamber. The cells were pre-treated with various doses of YM-08 for
60 min and then stimulated by 10 nM of IGF-I or vehicle for 16 h. The representative photographs from
triplicate independent experiments and the histogram showing the numbers of migrated cells in each
panel are presented. The white and black bars indicate IGF (−) and IGF (+), respectively. The blue
spots indicate nucleus of migrated osteoblast stained by DAPI. * p < 0.05 compared to the value of
the control cells without IGF-I stimulation. ** p < 0.05 compared to the value of IGF-I alone. Scale bar:
100 µm.

3.3. Effects of VER-155008 on the IGF-I-Induced Phosphorylation of p44/p42 MAP Kinase or Akt in
MC3T3-E1 Cells

We have previously demonstrated that IGF-I elicits migration of osteoblast-like MC3T3-E1
cells through the activation of p44/p42 MAP kinase and phosphatidylinositol 3-kinase/Akt [11].
In order to investigate the mechanism underlying the suppression by the HSP70 inhibitor of the
IGF-I-stimulated cell migration, we further examined the effects of VER-155008 on the IGF-I-induced
phosphorylation of p44/p42 MAP kinase or Akt. The IGF-I-induced phosphorylation of p44/p42 MAP
kinase was significantly reduced by VER-155008 (Figure 5). However, VER-155008 failed to affect the
IGF-I-induced phosphorylation of Akt (Figure 6).
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Figure 5. Effect of VER-155008 on the IGF-I-induced p44/p42 MAP kinase phosphorylation in
MC3T3-E1 cells. The cells were pretreated with various doses of VER-155008 for 60 min and then
stimulated by 10 nM of IGF-I or vehicle for 5 min. Western blot analysis was performed using
phospho-specific p44/p42 MAP kinase or p44/p42 MAP kinase antibodies. The histogram shows
quantitative representation of the levels of IGF-I-induced phosphorylation obtained from a laser
densitometric analysis of three independent cell cultures. The white and black bars indicate IGF (−)
and IGF (+), respectively. * p < 0.05 compared to the value of the control cells without IGF-I stimulation.
** p < 0.05 compared to the value of IGF-I alone.
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of IGF-I or vehicle for 3 min. Western blot analysis was performed by using phospho-specific Akt
or Akt antibodies. The histogram shows quantitative representation of the levels of IGF-I-induced
phosphorylation obtained from a laser densitometric analysis of three independent cell cultures.
* p < 0.05 compared to the value of the control cells without IGF-I stimulation. The white and black
bars indicate IGF (−) and IGF (+), respectively. N.S. designates no significant difference between the
indicated pairs.

4. Discussion

In the present study, we investigated the effects of HSP70 inhibitors on the IGF-I-elicited
migration of osteoblast-like MC3T3-E1 cells. We first examined whether VER-155008, which is an
HSP70 inhibitor [22], affects the IGF-I-elicited migration of osteoblast-like MC3T3-E1 cells evaluated
by a wound-healing assay. VER-155008 significantly suppressed the IGF-I-elicited migration of
MC3T3-E1 cells. In addition, we examined the effect of VER-155008 on the migration induced by
IGF-I using a Boyden chamber and demonstrated that the IGF-I-induced migration was reduced
by VER-155008. We next examined the effect of YM-08, which is another inhibitor of HSP70 [23],
on the IGF-I-elicited migration of MC3T3-E1 cells. YM-08 significantly repressed the migration
induced by IGF-I and evaluated by both a wound-healing assay and a transwell cell migration
assay. Considering our findings, it is probable that the HSP70 inhibitor suppresses the IGF-I-induced
migration of osteoblast-like MC3T3-E1 cells, which suggests that HSP70 acts as a positive regulator in
the cell migration.

With regard to the intracellular signaling of IGF-I in osteoblasts, we have previously shown
that p44/p42 MAP kinase and phosphatidylinositol 3-kinase/Akt act as positive regulators in the
IGF-I-stimulated migration of osteoblast-like MC3T3-E1 cells [11]. Afterward, we investigated the
exact mechanism behind the suppression by the HSP70 inhibitor of the IGF-I-stimulated migration.
We demonstrated that the phosphorylation of Akt induced by IGF-I was not affected by VER-155008
in these cells. Thus, it seems unlikely that phosphatidylinositol 3-kinase/Akt is involved in the
suppression by the HSP70 inhibitor of IGF-I-induced MC3T3-E1 cell migration. On the contrary,
VER-155008 significantly reduced the phosphorylation of p44/p42 MAP kinase induced by IGF-I.
Taken together, it is most likely that the HSP70 inhibitor reduces IGF-I-induced migration of
osteoblast-like MC3T3-E1 cells through the inhibition of the p44/p42 MAP kinase. Regarding the
mechanism of the molecular action of HSP70 on the p44/p42 MAP kinase pathway, it has been reported
that mortalin, which is a member of the HSP70 family, could regulate the activity of MEK1/2, which is
an upstream kinase of the p44/p42 MAP kinase, via protein phosphatase 1α in human melanoma
cells [24]. It is possible that HSP70 could strengthen IGF-I-induced p44/p42 MAP kinase through
stabilization of the MEK1/2-phosphorylated status in osteoblasts, which leads to the upregulation
of migration.

Osteoblasts migrate to the sites resorbed by osteoclasts and the migrated osteoblasts then start
bone formation at the resorbed sites [3–5]. Adequate migration of osteoblasts is indispensable for the
regulation of physiological bone remodeling and the appropriate osteoblast migration is considered to
be essential for maintaining both the quantity and quality of bone mass. Additionally, the osteoblast
migration is crucial in pathological bone metabolic diseases including osteoporosis and fracture
repair [3–5]. Since HSP70 plays an important role in the survival of cancer cells, HSP70 inhibitors
have been developed as anti-cancer agents [25,26]. Our present findings strongly suggest that
the HSP70 inhibitor could reduce the IGF-I-elicited migration of osteoblasts. It is established that
IGF-I embedded in the bone matrix plays a crucial role in the regulation of bone metabolism [6,7].
Thus, using HSP70 inhibitors as anti-cancer agents, it is possible to modulate bone metabolism to
result in a detrimental effect on bone. On the other hand, osteosarcoma is known to be a highly
metastatic bone tumor [27]. The metastatic sequence involves migration from the primary tumor site
to the surrounding extracellular matrix, intravasation, and extravasation. It has recently reported that
overexpression of ribosomal protein L3, which is a target of 5-FU, reduces migration and reciprocally
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promotes apoptosis of lung and colon cancer cells under the treatment of 5-FU [28,29]. It is likely that
suppression of migration causes a benefit for anti-cancer agents such as 5-FU, which has been used for
osteosarcoma [30]. It is recognized that HSP70 is potently expressed in human osteosarcoma [31]. It has
been reported that VER-155008 reduces cell viability and increases apoptosis of canine osteosarcoma
cells [32]. Taking into account our present findings, it is possible that HSP70 inhibitors are useful
candidates for drug combination in the chemotherapy of osteosarcoma and may result in the inhibition
of tumor metastasis and invasion.

Regarding the expression of HSP70 in osteoblasts, we have previously demonstrated that HSP70
is highly expressed in osteoblast-like MC3T3-E1 cells without stimulation [33]. It has been reported
that IGF-I reduces HSP70 expression in macrophages but not in fibroblasts [34]. The effect of IGF-I on
the expression of HSP70 in osteoblasts needs to be clarified. On the other hand, we found that HSP70
inhibitors alone did not affect the baseline of osteoblast migration. Thus, it is likely that HSP70 inhibitors
hardly affect the osteoblast migration under unstimulated conditions. However, clarification is needed
regarding whether HSP70 plays a role in osteoblast migration in general. Further investigations
including overexpression of HSP70 in osteoblasts are necessary to clarify the exact roles of HSP70 in
bone metabolism.

Taken together, our results strongly suggest that the HSP70 inhibitor reduces the IGF-I-elicited
migration of osteoblasts through the suppression of the p44/p42 MAP kinase pathway.
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