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Abstract: The paper presents new value-added composite materials prepared by recycling tire rubber,
polyethene terephthalate (PET), high-density polyethene (HDPE), wood sawdust, and fly ash. The
composites were manufactured through the compression molding technique for three temperatures
(150 ◦C, 160 ◦C, and 190 ◦C) previously optimized. The addition of fly ash as reinforcement in
polymer blends is a viable route to improve the composite” properties. The paper aims to assess the
effect of fly ash on the mechanical properties and water stability of the new all waste composites
considering their applications as outdoor products. The static tensile (stress-strain behavior) and
compression properties of the composites were tested. The fly ash composites were characterized in
terms of wetting behavior and surface energies (contact angle measurements); chemical structure of
the new interface developed between composite” components (FTIR analysis), crystalline structure
(XRD analysis), surface morphology and topography (SEM, AFM). The addition of fly ash promoted
the development of the hybrid interfaces in the new composites, as FTIR analysis has shown, which, in
turn, greatly improved the mechanical and water resistance. The novel all waste composites exhibited
lower surface energies, larger contact angles, and smoother morphologies when compared to those
with no fly ash. Overall, the study results have revealed that fly ash has improved the mechanical
strength and water stability of the composites through the formation of strong hybrid interfaces. The
study results show optimal water stability and tensile strength for 0.5% fly ash composites cured at
190 ◦C and optimal compressive strength with good water stability for 1% fly ash composite cured at
150 ◦C.

Keywords: fly ash; end of life tire rubber; rubber-PET-HDPE-wood composites; wood waste;
mechanical properties

1. Introduction

Nowadays, several worldwide issues derive from the huge amounts of waste disposal,
which seriously harms the environment and humanity’s health. The reuse of and waste
recycling could save 600 billion euros for EU companies. Consequently, gas emissions
could be reduced by up to 4% per year [1]. Tire rubber wastes represent an important waste
category with a continuous growth rate and negative impact on the environment. Globally,
about 1.5 billion tires are discarded per year in addition to the already accumulated large
volume [2]. The management of waste tire rubbers is often reduced only at energy recovery
by their incineration in a cement kiln, paper plants, etc. [3], but there is a huge loss of
materials at the same time that causes a negative impact on the environment. The most
sustainable method for recycling rubber tires could be by grinding and blending them with
other polymers in order to achieve new polymer composites [4].

On the other hand, plastic-based products are a part of our daily life because of
their low cost, density, high strength, and their resistance to corrosion and weathering.
Worldwide, the production of plastics doubled from 2000 to 2020, reaching 360 million tons.
There are many single-use plastic products (PET, HDPE, PS, PP), and after use, they are
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thrown away, thus increasing the environmental burden and causing detrimental effects on
the quality of water, soil, and human healthy consequently [5,6].

Government legislative efforts are conducted to recycle end-of-life plastic-based prod-
ucts into value-added products [7].

However, reports on the recycling of plastics in a sustainable way are scarce. Often,
the plastic products coming from beverages and the food industry are thrown everywhere,
and finally, they reach the sea and endanger marine life.

The use of biomass fillers such as wood, sisal, flax, and so on, to produce compos-
ite materials offers a series of advantages, which include a low density, less processing
equipment damage, flexibility, biodegradability, and minimal health hazards [8,9].

Wood sawdust, resulting from the exploitation of wood, could harm the environment
when there is improper disposal. The strength of wood is 20 times higher than of the HDPE
being used as reinforcement in plastic composites. The advantages of using wood in WPC
over classic fibers are related to its high availability, low weight and cost, thermal and
insulation properties, and a lack of abrasiveness to equipment [10].

There are reports on the development of wood-plastic composites (WPC) and rubber-
wood-plastic composites (RubWPC), which have a low density and good mechanical
properties [11–16]. The mechanical properties of WPC are determined by the interface
adhesion between the wood and the polymer matrix. There are many reported methods for
the improvement of polymer-wood compatibilities, such as grafting the maleic anhydride
to a polymer, adding coupling agents, treating the wood through mercerizing, plasma,
corona, and so on [17–20]. These wood treatments promote the wood–polymer interface
adhesion, but they are difficult to be applied on a large scale due to their cost and because
they often use toxic chemical compounds.

However, sustainable and economical methods could be applied for the recycling of
most discarded waste types (rubber, plastic, wood, etc.) by manufacturing performant and
water stability RubWPC through the addition of inorganic fillers.

Moreover, the addition of inorganic fillers in the form of waste into a polymer matrix
leads to the formation of the hybrid interfaces, which, in turn, greatly improve the me-
chanical, physical, thermal, flame retardant, water stability, and durability properties of
organic–inorganic (hybrid) composites [21–24].

Silica is often used for improving the wood–polymer interface in order to achieve
new value-added products by increasing the synergistic effects of both components’
properties [25].

The available FA, the waste generated from heating a power plant (enriched with
silica), could be an important candidate for use as a filler in rubber-plastic-wood composites.

Fly ash is widely used as a supplementary cementitious material in concrete manufac-
turing. It improves the workability and durability of concrete while reducing the costs of
concrete products [26–28].

To the best of our knowledge, there are no reports on the influence of FA on water
stability and the mechanical properties of all waste composites manufactured from waste
rubber, PET, HDPE, and wood.

The new hybrid waste composites, including organic and inorganic fillers in the
rubber matrix, could reduce the environmental burden while also providing increased
performance products for outdoor applications, such as paving slabs, covers for play and
sports grounds, highway walls, and so on.

The paper aims to assess the effect of fly ash on the mechanical properties and water
stability of the new all waste composites developed by recycling together most discarded
wastes such as tire rubber, PET, HDPE, and wood.

2. Experimental Methodology
2.1. Materials

The materials used in this study were waste tire rubber from Granutech Recycling
(Suceava, RO, USA), PET flakes from used bottles, small amounts of high-density polyethene
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flakes (HDPE, PET from Teli Company), wood sawdust (fir 1–2%, and beech 98–99%) from
Wood Engineering Department, Transilvania University of Brasov, Romania, with a natural
moisture content of 5.28% and fly ash (FA) coming from the Heating Plant CET Brasov,
RO. FA is a cheap material and is a poly-oxide compound with a high weight percentage
of SiO2 (53.32 wt%), Al2O3 (22.05 wt%), and Fe2O3 (8.97 wt%). As per ASTM standard
C-618-2a [29], this FA is of F type (the SiO2, Al2O3, and Fe2O3 content exceed 70%) [30]. All
of the materials were milled to 1 mm-sized particles.

2.2. Methods

All waste rubber-PET-HDPE-wood composites were prepared through the compres-
sion molding method using a thermostat oven (type ECv 200–300) for thermal curing. The
thermal processing duration was one hour at 150 ± 5 ◦C (samples 1S type), 160 ± 5 ◦C
(samples 2S type), 190 ± 5 ◦C (samples 3S type) temperatures optimized in our previous
work [31]. The composite components mass ratio previously optimized and the codes of
the samples without fly ash (FA) are:

• rubber:PET:HDPE:wood = 80:10:5:5, samples 1S (cured at 150 ◦C), 2S (cured at 160 ◦C)
and 3S (cured at 190 ◦C);

The mass ratio of the fly ash composite components is rubber:PET:HDPE:wood:FA =
(80 − x):10:5:5:x, with the fly ash weight percentage ranging from 0.5 to 2 wt% with a 0.5
wt% step. The fly ash added composites are denoted as follows in Table 1.

Table 1. Codes of fly ash composites.

Samples Composition
[wt%]

T
[◦C] FA [%] Samples Code

rubber:PET:HDPE:wood: FA = (80 − x):10:5:5:x

150

0.5 1S_FA—1
1 1S_FA—2

1.5 1S_FA—3
2 1S_FA—4

160

0.5 2S_FA—1
1 2S_FA—2

1.5 2S_FA—3
2 2S_FA—4

190

0.5 3S_FA—1
1 3S_FA—2

1.5 3S_FA—3
2 3S_FA—4

Two set samples of each series were prepared: the S series (without FA) and the S-FA se-
ries (with FA). The two sets of each series of samples without FA and with FA (denoted as S
and S_FA, respectively) were thermally processed at the previously optimized temperatures
of 150 ◦C, 160 ◦C, and 190 ◦C [31]. A sample set of each series (S and S-FA, respectively)
were kept for three days in laboratory condition, and those from the second set of each
composite series were immersed for 5 days in tap water (Total Hardness = 14.5 dGH) and
then were dried in an open air laboratory before their characterization. Five representative
samples of each series were mechanically tested.

2.3. Characterization Techniques

Mechanical tests: Tensile strength (σt) and Young modulus (E) were evaluated with
Z020, Zwick/Roell equipment (DE) at a traction speed of 100 mm/min. The compression
resistance (RC) was tested on the same mechanical testing equipment, according to SR EN
ISO 527-4:2000.

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy
(EDX) analysis: Micrographs were obtained by using a scanning electron microscope
(SEM, JP), Hitachi, S3400N, type II, and quantitative elemental analysis of the samples was
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performed with EDX (Thermo, Ultra Dry, Noran System 7, NSS Model, 2000000counts/sec)
and the sensitivity down to a few atomic percent.

Atomic force microscopy (AFM) analysis: The surface morphology and topography
of the nanocomposite were investigated by atomic force microscopy (AFM NT-MDT model
NTEGRA PRIMA EC). The images were taken in semi-contact mode with a “GOLDEN”
silicon cantilever (NCSG10, force constant 0.15 N/m, tip radius 10 nm).

Fourier Transforms Infrared Spectroscopy (FTIR) analysis: was performed using a
Spectrum Bruker spectrophotometer (KR); the spectra were recorded in reflectance mode,
in the 500 to 4500 cm−1 range, after 16 scans, with a resolution of 4 cm−1.

X-ray diffraction (XRD): The crystallinity data were collected over the range 2θ = 10 ~ 60◦

in the fixed time mode, with a step interval of 0.01◦, at 25◦, using a Bruker Advanced D8
diffractometer (CuKα1 radiation, with 1.5406 Å wavelength, at 40 kV, 20 mA).

Contact angle measurements: The measurements of the composite surfaces were
performed with an OCA-20 Contact Angle System (Data Physics Instruments), based on
the sessile drop method. The surface energies were calculated using the Owens, Wendt,
Rabel, and Kaelble (OWRK) method [32]. The two liquids used in the experiments were:
water (σH2O = 72.10 mN/m, σp

H2O = 52.20 mN/m and σd
H2O = 19.90 mN/m) and glycerol

(σglycerol = 73.40 mN/m, σp
glycerol = 37.00 mN/m and σd

glycerol = 36.40 mN/m) and the total
surface energy, polar, and the dispersive components were obtained using Equation (1) [32]:

σSL = σS + σL − 2
(√

σd
S · σd

L +
√

σ
p
S · σ

p
L

)
(1)

σSV—surface energy; σS—surface tension of testing liquid; σL—surface tension of
solid surface; σd

SV , σ
p
SV—dispersive and polar component of the surface energy.

3. Results and Discussions
Mechanical Tests

Composite materials should meet the required mechanical properties, such as tensile,
compressive, and impact strength depending on the targeted applications. The mechanical
behavior of the composite materials is strongly influenced by interfacial zone strength.
Interfacial adhesion plays a key role that greatly entails the composite’s mechanical, thermal,
and durability properties. The interfacial adhesion in composite systems could be tailored
mainly by three mechanisms, mechanical, mechanical-chemical, or chemical bonds between
the components of the composite system. The nature of the interfacial adhesion in a
composite system is strongly dictated by the technological and compositional parameters,
filler dispersion degree, filler properties, such as wetting, shape and size, components
properties, and so on.

A small amount of flay ash (up to 2%) was added in order to avoid fly ash cluster
formation as the filler particle interactions are larger than the interaction of the composite
components in the interfacial zone. By adding a small amount of fly ash, cluster formation
is avoided. The interfacial linkage between the fly ash and polymer matrix is crucial to the
fly ash composite’s mechanical strength [33–35].

The assessment of the composite behavior under wet conditions represents a prerequi-
site when outdoor applications are being pursued. That is why the study evaluated the
mechanical strength before and after water immersion of the novel hybrid composites.

The previously optimized temperatures valorize the mechanical properties and ben-
efit of the wood incorporated into the rubber-PET-HDPE blend. Wood composites ob-
tained at higher curing temperatures lead to the decomposition of the wood components,
thus reducing the binding effect between composite components. Crystalline cellulose
from the wood greatly enhances the mechanical properties of the rubber—plastic-based
composites when the composite is cured at temperatures below 200 ◦C [36]. These two
series of composites were mechanically tested, and the results are presented in Table 2.
The addition of wood sawdust significantly influences the mechanical properties of the
rubber–plastic composites.
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Table 2. Mechanical properties of composites with PET, rubber, HDPE, wood, and ash addition,
before and after the water immersion.

T
[◦C]

Sample
Code

σt
[N/mm2]

Init,ial

σt
[N/mm2]

Immersion

Rc
[N/mm2]

Init,ial

Rc
[N/mm2]

Immersion

150

1S_FA—1 1.66 1.68 63.62 58.67

1S_FA—2 1.51 1.52 50.34 62.80

1S_FA—3 1.52 1.69 55.08 50.91

1S_FA—4 1.39 1.46 62.19 63.16

160

2S_FA—1 1.88 1.73 52.35 62.28

2S_FA—2 1.68 1.84 66.60 58.01

2S_FA—3 1.63 1.72 68.69 50.05

2S_FA—4 1.58 1.68 66.55 53.12

190

3S_FA—1 2.09 2.07 57.42 56.52

3S_FA—2 1.86 1.87 55.20 57.25

3S_FA—3 1.89 1.87 61.16 51.67

3S_FA—4 1.71 1.94 62.78 53.37

Up to 40 wt% of the PET was incorporated in the rubber matrix for the three optimized
temperatures, as is shown in Figure 1.
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Figure 1. Variation of tensile strength with % PET and processing temperature.

The tensile strength of the all-waste composite drastically decreased when the PET
content was increased due to the weakening interface with PET particle agglomerations,
Figure 1. The agglomeration of PET at the interface zone hampers the stress transfer from
the matrix to filler, as tensile strength tests have revealed. The highest tensile strength was
recorded to be 10 wt% for the PET composites. That is why in developing novel composites
with rubber, HDPE, wood, and fly ash 10% wt PET was considered.

Five representative samples (with fly ash) of each series (before and after water
immersion) were mechanically tested, and the average values are summarized in Table 2.

By comparing the pristine composite series cured at 150 ◦C, 160 ◦C, and 190 ◦C,
the tensile strength increased as the curing temperature increased, and we recorded a
decreasing trend with the increased amount of FA incorporated into the rubber-plastic-
wood blend. Therefore the lowest tensile strength corresponds to 2% in the FA highest
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sample obtained at 150 ◦C (1S_FA—4), and the highest was recorded for the 0.5% FA
composite cured at 190 ◦C (3S_FA—1), as is shown in Figure 2.
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The mechanical properties of a composite system’s tensile strength best reflect the
interface strength. The curing temperature strongly impacts the composite’s mechanical
strength. The rubber matrix and HDPE undergo a viscous to fluid phase at the curing
temperatures of 150 ◦C and 160 ◦C, thus supporting the development of physical–chemical
interfaces. Instead, the hydrophilic hemicellulose wood component starts to degrade, and
interfaces between rubber, FA, wood, and HDPE are more likely to be formed [31].

The composite cured at 190 ◦C registered the best tensile strength, and the behavior
could be due to the increase in the interface’s density. At this temperature, PET undergoes a
viscous fluid thermal transition and supports the interface zone extension. The processing
temperature of 190 ◦C compared to the lower ones ensures a tight contact between the
composite’s components, thus favoring the widening of the interface’s zone. The thermal
transitions of the rubber, HDPE, and PET alongside the increased amount of hydrophilic
wood components degraded favor the development of rubber-PET/HDPE-wood/-rubber-
HDPE/rubber-FA interfaces following both mechanisms of physical–chemical bonding
and mechanical sticking. The composite’s interface is further investigated in the FTIR
analysis section.
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In the 150 ◦C and 190 ◦C composites, we recorded a slight increase in tensile strength,
Figure 2. The absorption/desorption mechanism of water molecules that enter the capillary
structure, then the micro-cracks, and finally the water diffusion of the composite explain
this behavior. The 1S_FA—2 exhibits good stability in mechanical strength even after water
immersion. The water stability of 1S_FA—2 is entailed by the particular behavior of water
molecules, which act as a plasticizing agent when they enter the composite’s capillarity
structure. The plasticizing water alongside the wood components, which act as a binder in
the composite with waste rubber and HDPE [31], enhances the interface strength between
the composite’s components.

The compressive strength of the pristine series registered an increasing trend as a
small fly ash amount was added to the rubber-PET-HDPE-wood blend, Figure 2. The
highest compressive strength was assigned to the 2% fly ash composites for all three
optimized temperatures. This mechanical behavior is owed to the mechanical strength
of fly ash, its rigidity, and especially due to its high SiO2 content, which exhibits a high
affinity for the rubber matrix and thus extending the contact area. There are reports on
fly ash’s high affinity for rubber matrices [37,38]; thus, hybrid rubber–fly ash interface
development is likely to be developed. It is worthy to note that the 160 ◦C sample recorded
the best compression increase after the addition of FA. This behavior was noticed in a
previous study for the composite series treated at 160 ◦C [31]. The rubber-plastic-wood
composite produced at T = 160 ◦C exhibits a particular compression strength increase when
inorganic fillers are added. The explanation is related to the composite densification when
FA particles enter the sponge-like structure of the rubber-plastic-wood blend, reducing the
macromolecular chains’ mobility and highly contributing to the increase in the composite’s
rigidity, as seen in Figure 2. The 190 ◦C composites with no FA recorded over a 50% lower
compression strength compared to those cured at 150 0 C and 160 ◦C, as seen in Figure 2.
The decrease in mechanical strength is directly linked to the partial degradation of the wood
with a corresponding loss in the composite’s mechanical strength. The 3S_FA—4 registered
an outstanding increase in compression strength, with approximately 63 MPa when FA
was inserted into the rubber-plastic-wood blend. The composite’s resistance increase when
fly ash was added could be explained by the rigid and rich silica FA cenospheres, which
enter into the composite’s capillaries and improve the composite’s density.

The water immersion of fly ash composites led to a slight decrease in the compressive
strength, as seen in Figure 2. The water immersion of the composites could induce a possible
flexibilization of their structure with a subsequent loosening in the structure. However,
the samples with 1% fly ash prepared at 150 ◦C, denoted as 1S_FA—2, and the 0.5% fly
ash sample prepared at 160 ◦C (2S_FA—1) registered a significant compression strength
increase after their water immersion, 24.75% and 18.96%, respectively. These results prove
the synergistic effect of wood, water (plasticizing), and the proper amount of FA on the
strength increase in the composite’s interface. The FA’s cenospheric structure, as was in
the SEM analysis section, enters the capillary structure of the composite rubber matrix and
leads to a high potential for rubber–FA crosslinking.

The bound water effect (possible with the inorganic filler modifications) is reflected
in the tensile strength of composites registered after their immersion in water. The tensile
strength of the water immersed composites recorded a slow increase rate, with the highest
tensile strength for the 0.5% FA composite prepared at 190 ◦C, as seen in Figure 2.

These composites could be promising for use in outdoor products (paving slabs, rail-
ways, coverings for playgrounds, and sports fields), considering that the matrix can encap-
sulate the wood components and improve their resistance to humidity and prevent swelling.

Surface energy measurements
Considering the outdoor applications of the developed composite based on organic

and inorganic phases, the wetting behavior is of the utmost importance because of its
influence on aging. The surface energies of the fly ash composites compared to those
without FA were determined based on contact angle measurements. The surface energies of
composites are strongly influenced by the surface chemical structure, morphology, surface
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roughness, the tested liquid type, and the interaction between liquid–surface molecules.
The hydrophobic nature of polymer materials with their poor polarity leads to a low
contact angle value. The FA composites to be used in outdoor products are required to be
resistant to wet environments in order to preserve their interface strength and mechanical
characteristics, respectively. The contact angles of the composite surface with both liquid
water and glycerol and surface energies σSV with their components dispersive and polar
(σd

SVσ
p
SV) before and after water immersion are summarized in Table 3.

Table 3. Surface energies with dispersive and polar components for composites with fly ash unim-
mersed and water immersed.

Unimmersed Water Immersed
Samples

Code Θwater
[o]

Θglycerol
[o]

σSV
[mN/m]

σd
SV

[mN/m]
σ

p
SV

[mN/m]
Θwater

[o]
Θglycerol

[o]
σSV

[mN/m]
σd

SV
[mN/m]

σ
p
SV

[mN/m]
1S 78.40 91.26 81.27 11.43 2.56 95.97 88.33 18.80 14.56 4.24

1S_FA—1 104.8 97.9 13.68 11.2 2.48 70.26 85.43 43.61 40.13 3.48

1S_FA—2 78.93 103 18.30 17.8 0.05 75.6 94.06 55.28 47.87 7.41

1S_FA—3 88.3 103.1 82.51 64.75 17.76 96.66 90.83 15.83 9.84 5.98

1S_FA—4 108.1 110.3 12.34 0 12.34 94.86 107.96 63.55 50.24 13.31

2S 102.70 94.65 16.63 14.45 2.18 88.84 73.47 32.60 28.39 4.20

2S_FA—1 108 99.3 16.06 15.14 0.92 82.3 96.16 82.86 68.66 14.21

2S_FA—2 91.2 95.6 12.88 12.27 0.61 82.33 86.43 35.16 0.04 35.14

2S_FA—3 107.3 101 11.72 9.22 2.51 93.5 96.73 23.73 23.72 0.01

2S_FA—4 108.1 102.2 10.92 8.3 2.62 96.06 105.4 42.85 37.39 5.46

3S 86.37 113.61 13.50 12.45 1.05 113.3 100.01 28.72 28.53 0.19

1S_FA—1 100.2 90.7 20.94 19.22 1.73 95.7 100.36 25.85 0.44 25.41

1S_FA—2 104.2 92 27.83 27.68 0.15 92.03 94.53 23.14 0.03 23.11

1S_FA—3 110.7 93.7 47.86 46.63 1.43 88.36 94.4 36.39 35.31 1.08

1S_FA—4 111.7 100.8 20.41 20.35 0.06 83.7 101.03 52.81 52.39 0.42

Almost all of the fly ash composites exhibit low surface energies for all three optimized
temperatures. The composites denoted as 1S_FA—3 and 3S_FA—3 present a slight surface
energy increase compared to all of the others, but it is worthy to note that their dispersive
component is prevalent, as seen in Table 3. The contact angle measurement results well
match the mechanical tests, which registered good compression strength, thus proving the
stiffening effect of FA related to its high content of oxides. The high contact angle values
and the low value of the polar components support the FA composite’s hydrophobicity;
thus, it has a high potential for application in outdoor products in wet environments.
The surface energies and contact angles (with water and glycerol) of water immersed
FA composites have shown a similar trend as the unimmersed ones, thus outlining the
hydrophobic character of FA composites.

Therefore, poor polarity and low surface energy FA composites well match the require-
ments of outdoor products (e.g. building materials, tiles, covers for several grounds, pillar
sleeves for a carpark and so on).

FTIR analysis
The possible hybrid interfaces in the novel all-waste composites were investigated by

Fourier Transformed Infrared (FTIR) spectroscopy. During the thermal processing of the
polymeric blend with the fly ash, as a result of oxidative processes or reciprocal affinity
alongside mechanical adhesion, physical, and/or chemical bonds could be established
between the composite’s components.
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The FTIR bands of the FA composite with the best combination of mechanical proper-
ties (1S_FA—2) were investigated and compared to that without FA, as shown in Table 4.
The FA addition to the rubber-plastic-wood blend brought significant changes to the FTIR
spectrum, as can be seen in Figure 3:

- the 1610 cm−1 band assigned to C=C (rubber) or deformation vibration of water from
wood disappeared and instead appeared as two bands, 1586 and 1531 cm−1. The
first corresponds to the lignin from wood and the second to the carboxylate group
(–COO−), [32] or C=C from rubber. These changes could be explained by the hybrid
interface formation through chemical bonding between rubber, wood, and FA;

- the shift of the of 1458 cm−1 (C=C from rubber) and 1245 cm−1 (C–O–C of PET or
wood) to lower wavenumbers 1428 and 1215 cm−1, respectively; a new band at 1355
cm−1 between the previous occurred and was assigned to wood constituents (–CH3
from lignin/hemicellulose/polysaccharide –OH). These results indicate possible chem-
ical interactions between rubber, PET, HDPE, wood, and FA compounds. The shifts of
these bands toward lower wavenumbers could explain the interface’s flexibilization.

- the appearance of new bands from 1115 (of high intensity) and 537 cm−1 were assigned
to silica and other oxides from FA, as seen in Figure 3. These new bands’ appearance
corresponds to the possible chemical interactions between the matrix and the prevalent
silica compounds from fly ash. These results support the mechanical test results,
which indicated an increase in the mechanical strength of the composite with fly ash
compared to those without fly ash.

Table 4. FTIR bands of the composites with and with no FA added.

FTIR Bands 1S 1S_FA—2 Rubber PET HDPE Wood
OH 3354 3327 - - - 3341

aliphatic C–H 2911 2907 2914 2914 2916

–CH=CH2 2845 2840 2847 - 2847 -

C=O 1714 1714 - 1713 - 1721

C=C 1610 1586
1531 1617 - - -

C=C rubber and HDPE. –CH2 of PET and CH of wood 1458 1428 1431 1407 1471 1421

C–C of rubber. CH3 of wood - 1355 1372 - - 1369

C–O–C from PET and wood 1245 1215 - 1240 - 1245

C–O–C wood 1093 1069

Si-O stretching vibration (FA) 1115

C–O–C wood 1016 1020 1016 1025

aromatic nuclei in PET 837 874
813 - 872 - -

C-H 717 717 723 717 -

FA 537

By comparing the FTIR spectra of the 1% FA composite, Figure 4, cured at 150 ◦C
before and after immersion in water, the following changes were noticed, as seen in Table 5.

- The shift to higher wave numbers of 2842, 1722, 1369, 1219, and 719 cm−1 bands.
These changes clearly indicate the increased rigidity of the composite structure, as
explained by the plasticizing effect of the water in the composite capillaries. The
FTIR results confirmed the mechanical test results, which registered an increase in the
compression strength and stable tensile strength to water in the 1S_FA—2 sample.
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Figure 4. FTIR spectra of 1S_FA—2 before and after water immersion.

The water immersion of the composite with FA led to some changes; 1069, 1020, and
874 cm−1 bands occurred as a single broader band at 1019 cm−1. This could be explained by
the physical and chemical interactions between PET, wood, and FA made possible through
hydrogen bonds. Furthermore, these interactions extend the interface zone, which, in turn,
leads to an increase in mechanical strength, as was already noticed in the mechanical test
results section.

XRD analysis
An XRD investigation was performed to identify the crystalline and amorphous do-

mains of all waste composites with FA and their influence on the mechanical properties.
The sample investigated 1S_FA—2 to explore the best combination of mechanical prop-
erties even under humidity and from an economic aspect, being manufactured at the
lowest temperature (150 ◦C). The XRD results are presented compared to samples with no
FA addition.
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Table 5. Representative band values in the IR spectra of water-immersed fly ash composites.

Specific Groups 150 ◦C 150 ◦C. 1%
Fly Ash

150 ◦C. 1%
Fly Ash

Immersed
Rubber PET HDPE Wood

OH 3354 3327 3284 - - - 3341

C-H aliphatic 2911 2907 2908 2914 2914 2916

–CH=CH2 2845 2840 2842 2847 - 2847 -

C=O 1714 1714 1722 - 1713 - 1721

C=C 1610 1586
1531

1584
1531 1617 - - -

C=C rubber and HDPE. –CH2 in
PET s, i CH in wood 1458 1428 1430 1431 1407 1471 1421

C-C in rubber. CH3 in wood - 1355 1369 1372 - - 1369

C-O-C in PET and wood 1245 1215 1219 - 1240 - 1245

Si-O stretching vibration (FA) 1115 1118

C-O-C in wood 1093 1069

C-O-C in wood 1016 1020 1019 1016 1025

aromatic nuclei in PET 837 874
813 815 - 872 - -

C-H 717 717 719 723 717 -

metal oxides 537 552

The crystallinity of this composite type is determined by the wood components with
their crystalline cellulose and their nucleating agent role on the one hand and on the other
hand because of inorganic filler [39–42]. There are reports on the PET nucleating role in
wood and HDPE-based composites [43].

The higher crystallinity of the FA composite compared to 1S composites is explained
by the increase in the ordered degree as a consequence of the rearrangement of the polymer
macromolecular chains. The fly ash, due to its cenospheric shape and high affinity to the
matrix, ensures tight contact over a large area with the rubber macromolecular chains.
Consequently, the mobility of the macromolecular chains is diminished, which in turn leads
to an increase in the ordered degree and a higher crystalline percentage, as shown in the
XRD results.

Diffractograms of this composite type showed a broad peak due to the amorphous
polymer–rubber matrix. The highest intensity peak is assigned to HDPE, with its high
symmetry of macromolecules has the largest percentage of crystalline phase.

A slight increase in the crystalline degree was noticed for the water-immersed 1S_FA—2,
as can be seen in Figure 5. This result could be explained by the rearrangement of the
macromolecular chains as the water molecules enter the composite capillarity structure.

The crystalline degree of both unimmersed and water immersed 1S_FA—2 recorded
similar values. These XRD results clearly confirm the strong hybrid interface between the
components of the composite. These results match the FTIR and mechanical test results,
which revealed for 1S_FA—2 the formation of new chemical bonds and good stability in
the mechanical strength even after water immersion.

One may conclude that the crystalline degree could support the composite resistance
to water action, conferring thus a rigid matrix that is difficult to weaken or modify.

SEM and AFM microscopy
Scanning electron microscopy and atomic force microscopy were performed in order

to investigate the quality of the surface morphology and interface structure. Therefore, a
low-rugosity surface shows good linking between the composite components and a good
interface strength. AFM images were taken over a 50 × 50 µm2 surface of the composites
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with the best combination of mechanical properties (1S_FA—2) compared to that with no
FA (1S).
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The SEM morphology images obtained by the secondary electrons of fly ash evidenced
their cenosphere structure with a high specific surface, Figure 6. The FA cenospheres
with a 50-times smaller diameter size than the rubber matrix are effective in filling the
capillary structure of the rubber-plastic-wood blend, thus enhancing their density. The
EDS analysis results pointed out the poly oxides-rich composition of FA with prevalent
silica share. These results are in good agreement with the mechanical tests and FTIR results.
The first composite strength increase through the composite structure densification due to
the addition of FA cenospheres was recorded, and the FTIR results revealed the possible
formation of the hybrid interface of rubber-FA type was due to the high silica affinity to the
rubber matrix.

The AFM results revealed a decrease in rugosity (RMS = 106.3 nm) for the pristine
FA composite (1S_FA—2) compared to the composite without FA (1S. RMS = 127 nm),
Figure 7A,C. The FA composite with the fly ash cenospheres filling the capillarity structure
of the composite led to a more compact and homogenous structure for 1S_FA—2 compared
to 1S, as can be seen in Figure 7A,C.

The smoother surface morphology of the FA composite compared to those with no FA
may be explained by the good distribution of fly ash cenosphere in the matrix. This behavior
is owed to the high affinity between the silica particles and the polymer matrix (rubber)
confirmed by the low roughness values, as can be seen in Figure 7C, compared to the
composite without FA in Figure 7A. Water-immersed FA composite presents a significant
roughness decrease, 20% approximately, compared to that before immersion, Figure 7C,D.
The water molecules that enter the capillary structure of the composite act as a plasticizing
agent, smoothing the surface of the water-immersed 1S_FA—2 compared to that of the
unimmersed, as can be observed from Figure 7C,D. The increase in surface smoothness
of the water-immersed 1S_F A-2 is explained by the plasticizing effect of water, as can be
clearly seen from their topography in the insets of Figure 7C,D.

The decrease in rugosity in the water-immersed 1S_FA—2 compared to the unim-
mersed one supports the XRD results, which recorded an increase in the degree of crystaliza-
tion, and the mechanical tests, which registered an enhancement in the compressive strength.
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4. Conclusions

The influence of fly ash (FA) cenospheres on the mechanical properties and water
stability of the new all-waste composites based on tire rubber, PET, HDPE, and wood
sawdust was assessed considering their applications as outdoor products.

The synergistic effect of high stiffness and tensile strength wood alongside rich silica
FA with its rigidity was reflected in the superior mechanical properties of the all-waste
composites (S-FA type) compared to that without FA (S type). The high FA affinity to
the rubber matrix and water as the plasticizer supports strong hybrid interface formation
and thus the mechanical strength of rubber-PET-HDPE-wood-FA composites, even in wet
conditions. The mechanical performance is well supported by FTIR analyses which outlined
hybrid interface formation through chemical bonding. Optimal processing temperature
and FA weight ratio in the rubber-PET-HDPE-wood blend are key factors in designing
composites with stable mechanical features, even in wet environments.

The best combination of mechanical properties was recorded for 1% FA samples cured
at 150 ◦C and 0.5% FA samples cured at 190 ◦C.

The water immersion of the rubber-PET-HDPE-wood-FA composite led to a high
ordered degree, as the XRD results have shown. The water molecules act as a plasticizer
smoothening the composite’s surface, as the AFM and contact angle measurements were
confirmed by the low rugosity (RMS) and low surface energies, respectively.

The optimal mechanical strength and water stability correspond to the composite
cured at 150 ◦C with 1% fly ash, which could be recommended for outdoor products such
as paving slabs, covering playgrounds, and so on.
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4. Sienkiewicz, M.; Janik, H.; Borzędowska-Labuda, K.; Kucinska-Lipka, J. Environmentally friendly polymer-rubber composites

obtained from waste tyres: A review. J. Clean. Prod. 2017, 147, 560–571. [CrossRef]
5. Grigore, M.E. Methods of Recycling. Properties and Applications of Recycled Thermoplastic Polymers. Recycling 2020, 2, 24.

[CrossRef]
6. Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Schubel, P. Recycling of landfill wastes (tyres, plastics

and glass) in construction–A review on global waste generation, performance, application and future opportunities. Resour.
Conserv. Recycle. 2021, 173, 105745. [CrossRef]

7. Çınar, M.E.; Kar, F. Characterization of the composite produced from waste PET and marble dust. Constr. Build. Mater. 2018, 163,
734–741. [CrossRef]

8. Layth, M.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its
Applications. Int. J. Polym. Sci. 2015, 2015, 243947. [CrossRef]

9. Singh, M.K.; Arora, G.; Tewari, R.; Zafar, S.; Pathak, H.; Sehgal, A.K. Effect of pinecone filler particle size and treatment on the
performance of recycled thermoplastics reinforced wood composites. Mater. Today Proc. 2022; in press. [CrossRef]

http://doi.org/10.1016/j.resconrec.2021.105894
http://doi.org/10.1016/j.susmat.2020.e00173
http://doi.org/10.3390/ma13030782
http://www.ncbi.nlm.nih.gov/pubmed/32046356
http://doi.org/10.1016/j.jclepro.2017.01.121
http://doi.org/10.3390/recycling2040024
http://doi.org/10.1016/j.resconrec.2021.105745
http://doi.org/10.1016/j.conbuildmat.2017.12.155
http://doi.org/10.1155/2015/243947
http://doi.org/10.1016/j.matpr.2022.02.022


Polymers 2022, 14, 1957 15 of 16

10. Ahmet, S.; Gökhan, H.; Tyagi, V.V. Low cost and eco-friendly wood fiber-based composite phase change material: Development,
characterization, and lab-scale thermoregulation performance for thermal energy storage. Energy 2020, 195, 116983. [CrossRef]

11. Lopez, Y.M.; Gonçalves, F.G.; Paes, J.B.; Gustave, D.; Gutemberg de Alcântara Segundinho, P.; de Figueiredo Latorraca, J.V.;
Gomes da Silva, E.S.; Theodoro Nantet, A.C.; Prata Filho, C.M. Comparative study of different technological processes on the
physical-mechanical properties and flammability of wood plastic composite. J. Build. Eng. 2022, 52, 104391. [CrossRef]

12. Chaudemanche, S.; Perrot, A.; Pimbert, S.; Lecompte, T.; Faure, F. Properties of an industrial extruded HDPE-WPC: The effect of
the size distribution of wood flour particles. Constr. Build. Mater. 2018, 162, 543–552 . [CrossRef]

13. Zhou, Y.; Wang, Y.; Fan, M. Incorporation of tyre rubber into wood-plastic composites to develop novel multifunctional composites:
Interface and bonding mechanisms. Ind. Crops. Prod. 2019, 141, 111788. [CrossRef]

14. Friedrich, D. Success factors of Wood-Plastic Composites (WPC) as sustainable packaging material: A cross-sector expert study.
Sustain. Prod. Consum. 2022, 30, 506–517. [CrossRef]

15. Martinez, L.Y.; Paes, J.B.; Gustave, D.; Gonçalves, F.G.; Méndez, F.C.; Nantet, A.C.T. Production of wood-plastic composites using
cedrela odorata sawdust waste and recycled thermoplastics mixture from the post-consumer products-A sustainable approach
for cleaner production in Cuba. J. Clean. Prod. 2020, 244, 118723. [CrossRef]

16. Zhou, Y.; Hui, D.; Wang, Y.; Fan, M. Nanomechanical and dynamic mechanical properties of rubber–wood–plastic. Nanotechnol.
Rev. 2022, 11, 167–175. [CrossRef]

17. Soccalingame, L.; Bourmaud, A.; Didier, P.; Bénézet, J.C.; Bergeret, A. Reprocessing of wood flour reinforced polypropylene
composites: Impact of particle size and coupling agent on composite and particle properties. Polym. Degrad. Stab. 2015, 113,
72–85. [CrossRef]

18. Lu, J.Z.; Wu, Q.; McNabb, H.S. Chemical coupling in wood fiber and polymer composites: A review of coupling agents and
treatments. Wood Fiber Sci. 2000, 32, 88–104.

19. Gallagher, L.W.; McDonald, A.G. The effect of micron-sized wood fibers in wood-plastic composites. Maderas Cienc. Technol. 2013,
15, 357–374. [CrossRef]

20. Avramidis, G.; Hauswald, E.; Lyapin, A.; Militz, H.; Viöl, W.; Wolkenhauer, A. Plasma treatment of wood and wood-based
materials to generate hydrophilic or hydrophobic surface characteristics. Wood Mater. Sci. Eng. 2009, 4, 52–60. [CrossRef]

21. Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based
natural fiber-reinforced composites and their applications. Compos. B Eng. 2020, 200, 108254. [CrossRef]

22. Shishkovsky, I.V.; Scherbakov, V.I. Additive manufacturing of polymer composites with nano-titania inclusions. Laser Phys. Lett.
2021, 18, 066001. [CrossRef]

23. Marwa, A.; Moez, K.; Jamel, M.; Mondher, W.; Fakhreddine, D. Experimental investigation on the mechanical behavior of recycled
rubber reinforced polymer composites filled with aluminium powder. Constr. Build. Mater. 2020, 259, 119845 . [CrossRef]

24. Zhou, H.; Wang, X.; Hao, X.; Wang, Q.; Ou, R. Mechanical Properties and Fire Retardancy of Wood Flour/High-Density
Polyethylene Composites Reinforced with Continuous Honeycomb-Like Nano-SiO2 Network and Fire Retardant. J. Renew. Mater.
2020, 8, 485–498. [CrossRef]

25. Liu, X.; Fu, Z.; Zhang, F.; Wu, M.; Dong, Y. Synthesis of silica Janus nanosheets and their application to the improvement of
interfacial interaction in wood polymer composites. J. Mater. Res. Technol. 2021, 15, 4652–4661. [CrossRef]

26. Abu, S.M.A.; Saif, H.; Munshi, M.I.U.; Elahi, M.M.A.; Sobuz, M.H.R.; Tam, V.W.Y.; Islam, M.S. Assessing the influence of fly ash
and polypropylene fiber on fresh mechanical and durability properties of concrete. J. King Saud Univ. Eng. Sci. 2021; in press.
[CrossRef]

27. Li, C.; Zhu, H.; Wu, M.; Wu, K.; Jiang, Z. Pozzolanic reaction of fly ash modified by fluidized bed reactor-vapor deposition. Cem.
Concr. Res. 2017, 92, 98–109. [CrossRef]

28. Li, J.; Zhang, W.; Li, C.; Monteiro, P.J.M. Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle
assessment with regional variability. J. Clean. Prod. 2020, 261, 121224. [CrossRef]

29. Visa, M.; Cosnita, M.; Moldovan, M.; Marin, C.; Mihaly, M. Fly Ash Waste Recycling by Pt/TiO2 Incorporation for Industrial Dye
Removal. Int. J. Environ. Res. 2021, 18, 3887. [CrossRef]

30. Cosnita, M.; Cazan, C.; Duta, A. Interfaces and mechanical properties of recycled rubber-polyethylene terephthalate-wood
composites. J. Compos. Mater. 2014, 48, 683–694. [CrossRef]

31. Cosnita, M.; Cazan, C.; Duta, A. The influence of inorganic additive on the water stability and mechanical properties of recycled
rubber. polyethylene terephthalate. high density polyethylene and wood composites. J. Clean. Prod. 2017, 165, 630–636. [CrossRef]

32. Vladuta, C.; Voinea, M.; Purghel, E.A.; Duta, A. Correlations between the structure and the morphology of PET–rubber
nanocomposites with different additives. Mater. Sci. Eng. B 2009, 165, 221–226. [CrossRef]

33. Zhang, C.; Tang, Z.; Guo, B.; Zhang, L. Significantly improved rubber-silica interface via subtly controlling surface chemistry of
silica. Compos. Sci. Technol. 2017, 156, S026635381732660X. [CrossRef]

34. Chenchen, T.; Guangyu, C.; Yuxing, F.; Yonglai, L.; Chunmeng, M.; Nanying, N.; Liqun, Z.; Ming, T. Quantitatively identify and
understand the interphase of SiO2/rubber nanocomposites by using nanomechanical mapping technique of AFM. Compos. Sci.
Technol. 2019, 170, 1–6. [CrossRef]

35. Abbas, Z.M.; Tawfilas, M.; Khani, M.M.; Golian, K.; Marsh, Z.M.; Jhalaria, M.; Simonutti, R.; Stefik, M.; Kumar, S.K.; Benicewicz,
B.C. Reinforcement of polychloroprene by grafted silica nanoparticles. Polymer 2019, 171, 96–105. [CrossRef]

http://doi.org/10.1016/j.energy.2020.116983
http://doi.org/10.1016/j.jobe.2022.104391
http://doi.org/10.1016/j.conbuildmat.2017.12.061
http://doi.org/10.1016/j.indcrop.2019.111788
http://doi.org/10.1016/j.spc.2021.12.030
http://doi.org/10.1016/j.jclepro.2019.118723
http://doi.org/10.1515/ntrev-2022-0002
http://doi.org/10.1016/j.polymdegradstab.2015.01.020
http://doi.org/10.4067/S0718-221X2013005000028
http://doi.org/10.1080/17480270903281642
http://doi.org/10.1016/j.compositesb.2020.108254
http://doi.org/10.1088/1612-202X/abf83b
http://doi.org/10.1016/j.conbuildmat.2020.119845
http://doi.org/10.32604/jrm.2020.010263
http://doi.org/10.1016/j.jmrt.2021.10.100
http://doi.org/10.1016/j.jksues.2021.06.005
http://doi.org/10.1016/j.cemconres.2016.11.016
http://doi.org/10.1016/j.jclepro.2020.121224
http://doi.org/10.3390/ijerph18083887
http://doi.org/10.1177/0021998313476561
http://doi.org/10.1016/j.jclepro.2017.07.103
http://doi.org/10.1016/j.mseb.2009.07.004
http://doi.org/10.1016/j.compscitech.2017.12.020
http://doi.org/10.1016/j.compscitech.2018.11.020
http://doi.org/10.1016/j.polymer.2019.03.031


Polymers 2022, 14, 1957 16 of 16

36. Tian, F.; Chen, L.; Xu, X. Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled
rubber. J.Bioresour.Bioprod. 2021, 6, 152–159. [CrossRef]
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