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Ambient mass spectrometry 
for rapid authentication of milk 
from Alpine or lowland forage
Alessandra Tata1, Andrea Massaro1, Giorgia Riuzzi2, Ilaria Lanza2, Marco Bragolusi1, 
Alessandro Negro1, Enrico Novelli3, Roberto Piro1, Flaviana Gottardo2 & Severino Segato2*

Metabolomics approaches, such as direct analysis in real time-high resolution mass spectrometry 
(DART-HRMS), allow characterising many polar and non-polar compounds useful as authentication 
biomarkers of dairy chains. By using both a partial least squares discriminant analysis (PLS-DA) and a 
linear discriminant analysis (LDA), this study aimed to assess the capability of DART-HRMS, coupled 
with a low-level data fusion, discriminate among milk samples from lowland (silages vs. hay) and 
Alpine (grazing; APS) systems and identify the most informative biomarkers associated with the main 
dietary forage. As confirmed also by the LDA performed against the test set, DART-HRMS analysis 
provided an accurate discrimination of Alpine samples; meanwhile, there was a limited capacity to 
correctly recognise silage- vs. hay-milks. Supervised multivariate statistics followed by metabolomics 
hierarchical cluster analysis allowed extrapolating the most significant metabolites. Lowland milk was 
characterised by a pool of energetic compounds, ketoacid derivates, amines and organic acids. Seven 
informative DART-HRMS molecular features, mainly monoacylglycerols, could strongly explain the 
metabolomic variation of Alpine grazing milk and contributed to its classification. The misclassification 
between the two lowland groups confirmed that the intensive dairy systems would be characterised 
by a small variation in milk composition.

Italian dairy farming relies mainly on high genetic merit cows kept indoor and fed with high energy total mixed 
rations (TMR) based on maize silage as main fodder. Recently, ensiled forages from grass (Italian ryegrass), 
cereals (sorghum, wheat) and legume (lucerne) have been introduced into these highly productive cows’ diets to 
mitigate the environmental negative effects of maize monoculture, as recommended by the common European 
agriculture policy. As an attempt to improve milk nutritional quality and cheese-making attitude and enhance 
environmental sustainability, an increasing attention has been given to low input lowland production chains 
using hays from permanent meadow and lucerne as TMR roughage sources1. Meanwhile, in the Alpine farm-
ing system, autochthonous lactating cows graze on natural swards with a limited administration of energetic 
concentrates; a dairy chain producing a highly nutritional milk, mainly processed as protected designation of 
origin (PDO) cheese, which can be sold at higher prices2. Despite the fact that Alpine grazing takes place only 
during summer season, it contributes to maintain natural resources and preserve botanical biodiversity, which 
are highly valuable ecosystem services improving environmental sustainability.

Even though there are many factors that can alter milk quality, such as breed, season, number and stage of 
lactation3,4, feed management is certainly one of those with the strongest impact5–7, especially if Alpine produc-
tion is compared with lowland systems. Although many studies have already investigated the effects of maize 
silage-, hay- or alpine-feeding strategies on milk metabolomics profile4,8, understanding the relationship between 
feeding system and the wide pool of biomarkers useful to authenticate the milk dairy chain is still a challenge. 
Moreover, a comprehensive metabolomics approach allows to investigate the biochemical pathways involved in 
the synthesis of milk constituents from the rumen to the mammary gland release.

Over the last few years, metabolomics has been implemented and highlighted as a valuable tool to characterise 
a large number of compounds in milk and other dairy products and determine whether these metabolites are 
significantly correlated with the feeding system, especially in uncontrolled real farming conditions9–11. Such a 
multi-analytical investigation needs techniques that are powerful and precise but also less time consuming; the 
ambient ionisation is an example of technique that enables a great simplification and that shortens time required 
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for analysis12. Specifically, direct analysis in real time coupled with high resolution mass spectrometry (DART-
HRMS) has already been suggested for accurate dairy authentication13, prediction of the health status of dairy 
cows14, and toxicants detection in forages15. Considering the high quality of mountain milk16, determination of 
the authenticity of milk feeding systems, rapid detection of falsifications and improvements in traceability along 
dairy production chains can be beneficial. To this aim, the main goal of this research was to assess the capability 
of DART-HRMS coupled with a low-level data fusion to discriminate milks according to their intensive lowland 
or extensive Alpine feeding system origins. To verify whether or not this innovative supervised multivariate pat-
tern recognition could be a valid screening technology, a validation was performed on a test set. Furthermore, an 
investigation on the cow-related metabolic role of the selected DART-HRMS molecular features was performed.

Materials and methods
Ethical statement, experimental design and chemical analysis.  To carry out on-farm non-inva-
sive researches, no ethical committee oversight is required under Italian legislation. The authors confirm they 
did not disturb dairy cows in any way, and raw bulk milk sampling was conducted using non-invasive methods 
in accordance with guidelines approved by the farm veterinarians.

The study involved 20 dairy farms: 14 of them located in the middle of the Italian lowland area called Po Val-
ley (North East of Italy; 45°40’ lat. N, 11°38’ long. E) and 6 of them in the Alpine area of South-Tyrol (46°33’ lat. 
N, 11°34’ long. E). The selection of the farms was aimed at representing the average herd size, breeds and milk 
production characterising both the intensive (lowland) and extensive (Alpine) dairy production chains12. On 
the lowland farms, the lactating dairy cows were fed with TMR, meanwhile, on the Alpine farms, they grazed 
on natural pastures and received an energetic concentrate supplement daily. All forages were produced on the 
farms although some concentrate feeds were purchased. According to the main roughage source, three diets were 
formulated: (i) a mix of maize/grass and legume silages (MMS); (ii) permanent meadow and lucerne hays (HAY); 
(iii) Alpine pasture (APS). The main ingredients and the proximate composition of the dietary groups are sum-
marised in Table 1. Over a 1-year experimental period, 70 raw bulk milk samples were collected from the low-
land farms (MMS = 38 and HAY = 32) across the four seasons, and 18 samples from the Alpine farms (APS = 18) 
during summer; thus, a total of 88 samples were analysed for milk quality traits and DART-HRMS signatures.

During each milk sampling, lowland TMR, Alpine sward and energetic concentrate supplement samples 
were collected. As regards the APS group, the ration samples were made by mixing sward and concentrate in 
a theoretical 60:40 proportion. Ration samples were oven-dried at 60 °C for 48 h and then ground at 0.5 mm 
with Universal Cutting Mill Pulverisette 19 mill (Fritsch GmbH, Idar-Oberstain, Germany). Subsequently, they 

Table 1.   Diet formulation and proximate composition (average ± standard deviation) of the feeding groups 
based on the main forage source (% on dry matter, DM). Energetic concentrates, maize and barley grain 
derivates (meal, extruded, rolled, flaked); protein concentrates, soybean and sunflower products; residual, straw, 
bran, beet pulps, mineral-vitamin premix; aNDF, neutral detergent fibre; ADF, acid detergent fibre. For APS, 
data referred to the grazing period and considered a theoretical daily dry matter intake (kg) per lactating 
cow of 12, 5 and 3 of pasture, energetic and protein concentrates and a mix of dried and ensiled forages, 
respectively.

Lowland Alpine

Mix maize/crop silages Meadow/lucerne hays Alpine pasture

MMS HAY APS

(n = 38) (n = 32) (n = 18)

Diet ingredients (% DM)

Maize silage 26  -  -

Grass and legume silages 13 9 5

Permanent meadow hay 8 26 4

Lucerne hay 3 10 1

Green grass 2 6 5

Alpine pasture  -  - 60

Energetic concentrates 26 31 12

Protein concentrates 18 13 8

Residual 4 5 5

Diet composition (% DM)

DM, % 55.1 (± 5.0) 62.2 (± 5.2) 51.0 (± 7.2)

Crude protein 14.0 (± 0.5) 13.8 (± 1.0) 14.8 (± 1.5)

Crude fat 2.7 (± 0.4) 2.5 (± 0.5) 2.1 (± 0.4)

Crude ash 7.9 (± 0.7) 7.9 (± 0.6) 8.8 (± 0.6)

aNDF 37.0 (± 1.9) 39.1 (± 3.8) 43.1 (± 4.4)

ADF 21.9 (± 1.4) 22.5 (± 1.9) 25.9 (± 2.2)

Starch 22.4 (± 1.8) 20.3 (± 1.5) 17.1 (± 1.9)
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were analysed for chemical traits using the AOAC methods for dry matter (DM), crude protein, crude fat, crude 
ash, and starch, and ANKOM technology for neutral detergent fibre (aNDF) and acid detergent fibre (ADF), as 
described by De Nardi et al.17.

The milk proximate composition (crude protein, casein, fat, lactose) and chemical traits (urea, native pH) were 
recorded by a Fourier transform mid-infrared (FT-MIR) spectroscopy technique using a MilkoScan FT6000 (Foss 
Electric A/S, Hillerød, Denmark). Additionally, the somatic cell count (SCC) was performed by a Fossomatic 
5000 (Foss Electric A/S, Hillerød, Denmark).

DART‑HRMS analysis.  Two different extraction procedures were applied to the milk samples. In the first 
one, 50 µL of milk were suspended in 1 mL of water and methanol (H2O:MeOH; 80:20 v/v) solution (MilliQ 
water and Methanol HPLC-grade with 99.9% purity, from VWR International, Radnor, USA), vortexed for 30 s, 
sonicated for 15 min and centrifuged for 5 min at 12,000 x g to extract the polar metabolites18. In the second 
protocol, 50 µL of milk were diluted in 10 mL of pure ethyl acetate (EtAc) (99.9% purity, Carlo Erba Reagents, 
Cornaredo, Italy), vortexed for 30 s, then sonicated for 15 min to extract the more lipophilic, non-polar metabo-
lites. A volume (1 mL) of extract was pipetted into a small tube and centrifuged for 5 min at 12,000 g. Subse-
quently, to obtain four datasets, the two methanol:water diluted samples were analysed in negative and positive 
ion mode respectively; and so were the ethyl acetate diluted samples. This metabolites fractionation allows dif-
ferentiated analysis and the expansion of the achievable dataset19.

The instrumental analysis was carried out by using a DART SVP 100 ion source (IonSense, Saugus, USA) 
coupled with an Exactive Orbitrap (Thermo Fisher Scientific, Waltham, USA). The DART source was coupled 
with a Dip-it(R) sampler (IonSense, Saugus, MA, USA). To facilitate the transfer of the ions from the DART source 
to the mass spectrometer, a VAPUR interface was installed. The distance between the DART gun and the ceramic 
transfer tube of the VAPUR interface was 12 mm. The parameters of the DART and the Orbitrap analyser were 
set as described by Riuzzi et al.19. The resolution was set to 70,000 FWHM and the mass range was 75–1125 Da 
in both the positive and negative ion modes. All DART-MS analyses were run with an automated gain control 
target setting of 3 × 106. Melting point tubes were inserted into the autosampler holder, and then 5 μL of each 
extract were spotted individually onto them. Subsequently, the spotted melting point tubes were automatically 
moved at a constant speed of 0.3 mm/s through the DART gun exit and ceramic tube of the VAPUR interface. 
The time of desorption from the surface of each tip was about 20 s.

The samples were analysed in triplicate, and XCalibur QualBrowser software (Thermo Fisher Scientific, 
Waltham, USA) was used to visualise the entire mass spectra in a .raw format. These mass spectra were converted 
to mzML files by using Proteowizard20 and then opened with mMass software (http://​www.​mmass.​org/) to 
interpret the mass spectrometry data. The m/z values were tentatively assigned by consulting the online librar-
ies METLIN (https://​metlin.​scrip​ps.​edu) and HUMAN METABOLOME DATABASE (www.​hmdb.​ca). Prior 
to statistical analysis, the mass spectra of the four datasets (two extraction solvents and two ion modes) were 
converted into .csv files with the Rstudio 3.6.1 software (RStudio Team, 2016; RStudio Integrated Development 
for R; RStudio, Inc., Boston, USA).

Statistical analysis.  Milk proximate composition and chemical traits were analysed by using a linear mixed 
model that included the fixed effects of the dietary feeding group and the random effect of the farm (SAS PROC 
MIXED). Pairwise comparisons among levels of all the factors were performed by using Bonferroni correction. 
The hypotheses of the linear model on the residuals were graphically assessed. This first statistical model was 
performed by using SAS 9.4 software (SAS Institute Inc., Cary, NC, USA).

The triplicate mass spectral data were averaged and statistically analysed by using the Rstudio 3.6.1 software 
and the MetaboAnalyst 5.0 web portal (www.​metab​oanal​yst.​ca) for comprehensive and integrative metabolomic 
data analysis21. The isotopes were removed from the signals recorded in the four datasets, and the m/z values 
aligned with a tolerance of 0.008 Da. All ion signals with more than 75% of missing values (no detected ion 
intensity) were removed. For ions with less than 75% of missing values, those missing values were replaced with 
half of the value of the lowest recorded m/z intensity. The signals of each mass spectrum were also normalised 
by sum, whereas each feature of all samples was normalised by Pareto scaling. As reported in Fig. 1, the four 
datasets were merged (concatenated) by using a low-level data fusion approach. The merged dataset was split 
into a training (70% of the data, n = 63) and a test set (30% of the data, n = 25). The training set was submitted to 
a partial least squares discriminant analysis (PLS-DA) with the aim of distinguishing between the three dietary 
feeding groups. Subsequently, only the ions with coefficients > 30 were retained. The 25 selected ions were sub-
mitted to hierarchical cluster analysis (HCA) with Pearson distance and Ward linkage to show the correlation 
between groups and the selected ions.

The twenty-five informative m/z values extrapolated by PLS-DA were used to build a linear discriminant 
analysis (LDA) model on the training set by using Rstudio 3.6.1. Its capability to correctly classify the samples 
according to the dietary feeding group was verified on the training set by a tenfold cross validation. Further-
more, the LDA model was performed against the test set withheld previously. As suggested by Segato et al.22, the 
predictions of this verification were arranged in a confusion matrix and a set of statistical measurements was 
calculated to assess the predictive discriminating capacity of the supervised classifier LDA model based on the 
25 most informative ions sorted by the PLS-DA.

http://www.mmass.org/
https://metlin.scripps.edu
http://www.hmdb.ca
http://www.metaboanalyst.ca
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Results
Milk quality.  Milk proximate composition was significantly (p < 0.05) affected by the feeding system with 
APS showing the highest values for crude protein, casein and fat content (Table 2). No differences in milk nutri-
ents were detected between the two lowland dairy chains. Moreover, the feeding system did not affect urea and 
SCC across feeding groups.

DART‑HRMS.  DART-HRMS mass spectra are reported in the additional information (Supplemental Fig-
ures S1–S4, Additional File 1). The high-resolution mass spectra allowed the detection and subsequent tenta-
tive annotation by library search of a variety of small metabolites and lipids including free fatty acids (FFA), 
monoacylglycerols (MAG), triacylglycerols (TAG), small organic acids and amino acids. As observed in the 
mass spectra in Figures  S1–S4, DART-HRMS revealed differences in the relative abundances of a variety of 
milk molecular ions related to fatty acids (FA), amino acids and MAG among the three feeding systems. Intra-
sample repeatability was assessed by calculating the percentage (%) of relative standard deviation (%RSD), as an 
indicator of the instrument fluctuations. To this aim, the intensities of the main ions of APS milk mass spectra 
were monitored during DART-HRMS data acquisition in negative ion mode. The ratio of absolute intensities of 
the ions of m/z 255.2327/281.2484 was chosen to evaluate the intra-sample repeatability. The reproducibility of 

(+) DART-HRMS
MeOH:H2O
(20:80) v/v

Low-level data fusion

MERGED
DATASET

TRAINING SET
(70% of samples)

PLS-DA

(-) DART-HRMS
MeOH:H2O
(20:80) v/v

(+) DART-HRMS
Pure EtAc

(-) DART-HRMS
Pure EtAc

Pre-Processing

TEST SET
(30% of samples)

Pre-Processing Pre-Processing Pre-Processing

VALIDATION

LDA

HCA

Informative
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Figure 1.   Flow chart of the experimental design and statistical analysis of the (+ / −) DART-HRMS metabolites. 
After DART-HRMS data pre-processing (TIC normalisation, signal alignment and signal filtering), the four 
datasets (two dilutions per two ion modes) were submitted to low-level data fusion and the merged dataset was 
randomly separated into a training (n = 63) and a test (n = 25) set. A partial least squares discriminant analysis 
(PLS-DA) was performed on the training set and the outcomes were plotted in a scatter gram (see Fig. 2). A 
hierarchical cluster analysis (HCA) was performed on the 25 selected ions (coefficient > 30) by Pearson distance 
criterion and generating a heat map (see Fig. 3). The 25 selected ions were used to build a linear discriminant 
analysis (LDA) model that was validated on the test set (see Table 4).
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DART-HRMS data was assessed with independently extracted samples from a different operator and by subject-
ing them to independent runs. Six mass spectra were collected from HAY and APS milk in negative ion mode 
at different times. The resulting inter-day %RSD of 11% suggested that the method is characterised by a small 
degree of variation and thus a high reproducibility23.

The outcomes of the PLS-DA performed on the training set extrapolated from the merged dataset showed an 
accurate separation between the APS milk samples and those from MMS and HAY lowland feeding systems, as a 
result of the significant differences between their metabolic profiles (Fig. 2). On the contrary, there is no evident 
separation between MMS and HAY, which overlapped as two spatial subgroups mainly along component 2 of the 
PLS-DA score plot (Fig. 2). Furthermore, the 0.95-ellipses confidence interval of the APS samples highlighted a 
wide metabolic variability along the first PLS-DA component.

The PLS-DA model allowed extrapolating the 25 most discriminative ions that were submitted to an HCA 
to estimate the correlation between these DART-HRMS biosignatures and the three feeding systems through 
a correlation matrix reported in the heat map (Fig. 3). The results of the HCA are presented as a heatmap that 
shows the correlation between significant ions retrieved by PLS-DA and the three feeding groups. The HCA 
confirmed the separation into two main sample groups according to the milk production chain based on low 
(APS) and high-input systems (MMS and HAY).

The tentative assignments of the biomarkers are reported in Table 3. Despite a less evident separation between 
the two lowland feeding systems, it seems that MMS group is highly correlated (red colour) with m/z 114.0664 
(protonated creatinine) and mildly correlated with m/z 85.029 (ketoacid derivate), 97.0289 (ketoacid derivate), 
145.0494 (protonated dimethyl-fumarate), 149.0234 (not assigned), 163.0600 (protonated dehydrated glucose), 
180.0865 (ammoniated dehydrated glucosamine), 186.0759 (not assigned), 204.0866 (protonated dehydrated 
N-acetyl-glucosamine), 281.8424 (deprotonated oleic acid). The HAY group was highly correlated with the ion 
of m/z 178.1339 (ammoniated norgramine) and mildly correlated with m/z 113.0243 (deprotonated dehydrated 
acetolactate) and m/z 383.3153 (MAG 20:2), even if these last two m/z values seemed to be correlated also with 
the MMS milk. All of these ions associated with the lowland production chains are strongly negatively correlated 
(blue colour) with APS. The APS milk showed a high positive correlation with the deprotonated ions of m/z 
89.0241 (deprotonated lactic acid), the protonated ions of m/z 313.2733 (MAG 16:0) and 359.3153 (MAG 18:0) 
and their dehydrated forms of m/z 331.2839 and 341.3047. The APS based milk is also characterised by a high 
relative intensity of the non-assigned ion of m/z 227.125 and the ammoniated MAG (16:0) ion of m/z 348.3106.

The discriminative capacity of the LDA classification model, based on the 25 selected ions and carried out 
on the test set, was reported in a confusion matrix (Table 4). This validation highlighted a reliable and accurate 
capacity of the classification model to recognise the APS samples as indicated by a set of predictive statistics equal 
to 1.00. Moreover, the lowland samples were misclassified between each other, and never with the APS ones. The 
HAY samples seemed to be recognised better than the MMS ones, even if the accuracy and Matthews correlation 
coefficient (MCC) values indicate a moderate discriminative capacity of the PLS-DA discriminant algorithm.

Discussion
The significant highest concentration of milk constituents observed in APS-samples could be explained as a strat-
egy of Alpine dairy farmers to enhance milk quality and cheese making attitude by both rearing medium genetic 
merit lactating cows and limiting their daily milk yield24. However, a clear explanation for the response of milk 
nutrients to dietary forage seems difficult to achieve because of the different parent forages that were used, which 
are also harvested at different growing phenological stages. The higher crude protein and casein values recorded 
for the Alpine grazing cows may be due also to an improvement in ruminal nitrogen retention because of the 
condensed tannins presence in mountain botanical species25. Tannins seemed to partially protect forage protein 
from ruminal degradation, thus enabling a greater availability of N-protein sources in the mammary gland26. As 
regards to fat content, its significant highest content in APS-samples is likely to be caused by a greater ruminal 
availability of water-soluble carbohydrates (e.g., sugars and fructans) and other readily fermentable carbohydrates 

Table 2.   Effect of the dietary feeding groups on milk proximate composition and quality traits. SCC, somatic 
cell count as log2 (SCC/100,000) + 3; MMS, mix maize/crop silages; HAY, permanent meadow and lucerne 
hays; APS, Alpine pasture; SEM, standard error of the mean. a,b Least squares means (LSMeans) in a row 
without a common superscript differ (p < 0.05).

Lowland Alpine

SEM P valueMMS HAY APS

Milk composition (g/100 g)

Crude protein 3.46b 3.43b 3.53a 0.03 0.012

Casein 2.66b 2.62b 2.72a 0.03 0.016

Fat 3.98b 3.94b 4.25a 0.09 0.043

Lactose 4.82 4.78 4.82 0.03 0.084

Milk quality traits

SCC score (units) 3.85 4.03 4.07 0.17 0.152

Urea (mg/dL) 24.6 24.3 25.4 1.4 0.420

Native pH 6.66 6.66 6.65 0.01 0.197
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that might have stimulated the synthesis of β-hydroxy-butyric acid, which is positively correlated with milk fat 
synthesis in the mammary gland27. The native plant fatty acids did not affect milk fat content probably because 
the rumen microbiota biohydrogenation and the further metabolic pathways did not result in any antilipogenic 
fatty acids, such as rumen intermediate trans C18:1 isomers.

The main goal of this study was to evaluate the capacity of multi-modal DART-HRMS to trace three dairy 
production chains. The first one is the high-input system based on arable lowland (maize and other cereal silages) 
and high genetic merit lactating cows; the second one relies on lowland permanent meadow to produce a “hay-
milk” that is more suitable for hard cheese making. Finally, the third one is based on a low-input production 
approach that combines extensive Alpine natural pasture with local low genetic dairy cows and its main purpose 
is to produce high-value mountain cheeses. Although there are several studies that investigated the effect of 
these feeding regimens on milk constituents, the majority of them focused on a specific chemical class (lipids, 
N-compounds, carbohydrate-like substances) and were also carried out under controlled experimental farm 
conditions3,28. On the contrary, through the use of a low-level data fusion, this study simultaneously modelled 
milk metabolites retrieved from four datasets (polar and non-polar extracts analysed in positive and negative ion 
modes) obtained in real farming conditions. Indeed, a multimodal mass spectrometric approach was applied as a 
comprehensive metabolomics fingerprinting to identify informative biomarkers that may be used as production 
indicators within the labelling process and by policymakers to award dairy farmers. Taking all this into account, 
DART-HRMS coupled with chemometrics demonstrated its capability to correctly discriminate APS milk samples 
from the lowland ones confirming that the geographical (e.g., altitude and crop selection) and botanical origin 
of forage is the driving key factor of mountain milk specificity9,10.

Despite low-level data fusion is a strategy that is capable of integrating various data sources and of providing 
a more comprehensive exploration of the chemical composition, there was still a spatial overlapping between 
the two lowland feeding clusters in the PLS-DA scatter plot (Fig. 2). Furthermore, the PLS-DA performed on 
the merged DART-HRMS training set allowed identifying the most discriminative ions. As confirmed by the 

Figure 2.   PLS-DA scores plot based on (+ / −) DART-HRMS metabolites on the train set (n = 63). Ninety-five 
percent ellipses confidence intervals (0.95-CI) are drawn around each centroid of groupings. MMS, mix crop/
maize silages (blue circles); HAY, permanent meadow and lucerne hays (green circles); APS, Alpine pasture (red 
circles).
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heatmap (Fig. 3), the major metabolic differences lie between the lowland and the Alpine milks, even though 
some changes in the relative intensities of the biomarkers can be observed also between MMS and HAY sam-
ples. However, the outputs of this research highlighted a spatial arrangement of two indistinguishable lowland 
subclusters likely due to the variability of the home-grown forages (cropping and harvesting practices) and/or to 
seasonal effects within the MMS and HAY groups. The influence of these uncontrolled field-related factors on the 
variability of milk DART-HRMS metabolic profile suggests that the accuracy and reproducibility of newly devised 
classification algorithms need to be regularly validated by experimental evidences from on-farm investigations.

The model correctly classified all the APS samples with accuracy, sensitivity, specificity and MCC equal to 
1.00. The same performance indicators are low for the classification of HAY and MMS due to their high chemical 
similarity as compared to APS profiles. This indicates that the APS metabolic profiles are very distinct and highly 

Figure 3.   Heatmap obtained by hierarchical clustering analysis (HCA) of the selected milk (+ /−) DART-HRMS 
ions. The red (positive) and blue (negative) colour scales indicate the degree of correlation between metabolic 
ions and feeding system; the two shorter Pearson’s distance-tree clusters among the feeding systems (columns) 
and metabolites (rows) are represented by the branch height (the lower a node is vertical, the more similar its 
subtree is).
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correlated to the grazing nature of milk (Table 4). We can speculate that, in the future, this unique characteristic 
fingerprint can be exploited for rapid screening of APS milk and detection of production system frauds.

Milk produced by cows on the lowland farms (MMS and HAY) was characterised by a pool of energetic com-
pounds (creatinine, glucose, acetolactate), ketoacid derivates, low-weight molecules (methyl 2-furoate, dimethyl 
fumarate, norgramine), amines (glucosamine, N-acetyl-glucosamine), and organic acids (3-hydroxy-2-methyl-
glutarate or 2-hydroxy-2-ethylsuccinate and oleic acid). Among these, only creatinine was strongly correlated 
with the ensiled forages (MMS), meanwhile the HAY feeding group seemed to have a stronger association with 
acetolactate, norgramine and MAG (20:2). However, many of these metabolites showed correlations with both 
MMS and HAY feeding systems, thus causing the overlapping highlighted by the PLS-DA (Fig. 2).

Creatinine (m/z 114.0664) and its precursor phosphocreatinine were found as potential indicators of stressful 
feeding conditions for lactating dairy cows, as rapidly mobilizable reserves of energy in skeletal muscles29,30. In 
the MMS group, this stressful conditions may have occurred because of greater daily milk yield performances, 
even though it was reported also as a biomarker of milk coming from early lactation stages29 and of cows’ health 

Table 3.   Discriminative (+ /−) DART-HRMS metabolites detected in milk samples according to the dietary 
feeding groups. MMS, mix maize/crop silages; HAY, permanent meadow and lucerne hays; APS, Alpine 
pasture; MAG, monoacylglycerol.

Feeding group DART-HRMS m/z Theoretical m/z Error (ppm) Elemental formula Type of ion
Instrument ion mode and 
extraction solvent Tentative assignment

MMS 114.0664 114.0662 1.75 C4H7N3O [M + H]+ ( +) MeOH:H2O (80:20 v/v) Creatinine

HAY

113.0243 113.0239 3.54 C5H8O4 [M−H−H2O]− (−) MeOH:H2O (80:20 v/v) Acetolactate

178.1339 178.1339 0 C10H12N2 [M + NH4]+ ( +) Pure EtAc Norgramine

383.3153 383.3156 − 0.78 C23H42O4 [M + H]+ ( +) Pure EtAc MAG (20:2)

MMS/HAY

85.0290 85.0290 0 C4H6O3 [M−H2O + H]+ ( +) MeOH:H2O (80:20 v/v) Ketoacid derivate

97.0289 97.0290 1.05 C5H6O3 [M−H2O + H]+ ( +) MeOH:H2O (80:20 v/v) Ketoacid derivate

127.0390 127.0390 0 C6H6O3 [M + H]+ ( +) MeOH:H2O (80:20 v/v) Methyl 2-furoate

143.0347 143.0344 2.1 C30H48O3 [M−H]− (−) MeOH:H2O (80:20 v/v) 3-hydroxy-2-methylglutarate 
2-hydroxy-2-ethylsuccinate

145.0494 145.0495 0.7 C6H8O4 [M + H]+ ( +) MeOH:H2O (80:20 v/v) Dimethyl fumarate

149.0234 – – – ( +) MeOH:H2O (80:20 v/v) –

163.0600 163.0607 − 4.3 C6H12O6 [M−H2O + H]+ ( +) MeOH:H2O (80:20 v/v) Glucose

180.0865 180.0861 2.22 C6H12O6 [M + NH4−H2O]+ ( +) MeOH:H2O (80:20 v/v) Glucosamine

204.0866 204.0872 − 2.9 C8H15NO6 [M−H2O + H]+ ( +) MeOH:H2O (80:20 v/v) N-acetyl-glucosamine

281.2484 281.2486 − 0.7 C18H34O2 [M−H]- (−) Pure EtAc Oleic acid

APS

89.0241 89.0244 − 3.37 C3H6O3 [M−H]− (−) Pure EtAc Lactic acid

227.1250 – – – ( +) MeOH:H2O (80:20 v/v) –

313.2733 313.2743 − 3.19 C19H38O4 [M−H2O + H]+ ( +) Pure EtAc
( +) MeOH:H2O (80:20 v/v) MAG (16:0)

331.2839 331.2843 − 1.2 C19H38O4 [M−H]+ ( +) Pure EtAc
( +) MeOH:H2O (80:20 v/v) MAG (16:0)

341.3047 341.3056 − 2.05 C21H42O4 [M−H2O + H]+ ( +) Pure EtAc MAG (18:0)

348.3106 348.3108 − 0.57 C19H38O4 [M + NH4]+ ( +) Pure EtAc MAG (16:0)

359.3153 395.0958 − 1.39 C21H42O4 [M−H]+ ( +) Pure EtAc MAG (18:0)

Table 4.   Confusion matrix of the linear discriminant analysis (LDA) based on (+ / −) DART-HRMS 
metabolites; the validation was carried out on the test set (n = 25). MMS, mix maize/crop silages; HAY, 
permanent meadow and lucerne hays; APS, alpine pasture.

Predicted

Actual

MMS HAY APS

MMS 3 3 0

HAY 8 6 0

APS 0 0 5

Total 11 9 5

Sensitivity 0.27 0.67 1.00

Specificity 0.79 0.50 1.00

Accuracy 0.56 0.56 1.00

Precision 0.50 0.43 1.00

Matthews correlation coefficient 0.07 0.16 1.00
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status31. Despite the low concentration of creatinine and of its derivates in milk, estimating the amount of these 
amino acid-like energetic compounds can be useful to assess milk nutritional value.

Norgramine (m/z 178.1339) seemed to be the DART-HRMS signature that is most correlated with the HAY 
system. To our knowledge, it was reported as a biomarker of feeding regimes based on a mix of grass and 
legume19, which is similar to the composition of the HAY diet as it is based on dried and ensiled grass and leg-
ume forages. As norgramine was found to be strongly negatively (r = -0.85) correlated with APS milk samples, its 
absence is an indication of Alpine dairy products, although further studies are needed to prove its effectiveness 
in tracing milk origin. The third ion that was assigned to HAY feeding thesis is monoacylglycerol MAG (20:2) 
(m/z 383.3153). The detection of doubly unsaturated MAG in milk was already reported in literature as MAG 
fragment ions in a lower mass region but with no clear explanation with regards to their production system and 
milking and milk conservation methods13,32.

With regards to lowland milk samples, two low-weight molecules were detected as methyl 2-furoate (m/z 
127.0390) and dimethyl fumarate (m/z 145.0494) and two isomers of m/z 143.0347 were identified as 3-hydroxy-
2-methylglutarate or 2-hydroxy-2-ethylsuccinate. Although methyl 2-furoate, a volatile compound, and dimethyl 
fumarate, a fumarate-derivate, were already detected as compounds of lowland TMR rations mainly based on 
maize silage and other grass silages (sorghum, wheat, Italian ryegrass), there is not a clear explanation for their 
correlation with these feeding strategies13,19,33. The two isomers (3-hydroxy-2-methylglutarate or 2-hydroxy-
2-ethylsuccinate) could be involved in metabolic cycles to support the lactate synthesis in the mammary gland31. 
Regardless of the specific anabolic pathway, these intermediates of gluconeogenesis could be associated with a 
high-intensity mammary gland activity with their releasing as traces in milk. The synthesis of propionate, one of 
the main substrates involved in gluconeogenesis, is also supported by pyruvate throughout the succinic pathway, 
suggesting that the presence of 2-hydroxy-2-ethylsuccinate is proof of a metabolism addressed to support cow’s 
energy needs for lactation34. Moreover, the detection of glucose (m/z 163.0600) in the lowland milk samples con-
firms this hypothesis, as it was already correlated with a high intake of starch and/or rapidly fermentable sources 
of carbohydrates provided to highly productive dairy cows31,33. A higher glucose and lactose concentration in 
milk was explained as the result of an increased intramammary pressure due to a greater milk production35. Oleic 
acid (m/z 281.2484) is both influenced by season and involved in body fat mobilization36, and the presence of 
this FFA may be due to its greater content in milk and derivates from lowland TMR compared with the Alpine 
grazing systems9,37. Finally, so far, N-acetyl-glucosamine has been found as a milk biomarker but its presence was 
not put into correlation with feeding strategy33,38; meanwhile, there are not findings on the presence of ketoacid 
derivates and glucosamine in milk.

As regards to APS group, the application of DART-HRMS highlighted a wide and specific pool of biosigna-
tures for the authentication of Alpine grazing milk. The metabolic profile of Alpine milk was identified by 11 
ions related to lactate and a predominance of MAG molecules characterised by the presence of C16:0 and C18:0. 
Lactic acid (m/z 89.0241) could be related to a relatively high SCC33, even if we did not find any statistical dif-
ference among feeding groups. Conversely to our findings, O’Callaghan et al. reported that L-lactate was more 
correlated with milk from cows fed a silage-based TMR comparing with those reared outdoors on a lowland 
perennial pasture34. Probably, in the Alpine environment the raw milk microbiota from the entero-mammary 
and exogenous (teat apex and skin) pathways could play a role in an early chemical alteration (i.e., fermentation) 
of lactose and oligosaccharides, even if this finding requires further investigation39. Traces of milk MAG rich in 
C18:0 and C16:0 might be also explained through the action of the environmental-specific activity of indigenous 
lipoprotein lipases (LPL) carried out soon after milking. LPL have an optimum activity at the sn-1 and sn-3 posi-
tions of the glycerol backbone, where they are mainly esterified by polyunsaturated FA (PUFA) and short chain 
FA (SCFA), respectively40. Therefore, as a result of the early and sn-1- and sn-3-addressed enzymatic activity of 
LPL, MAG (C16:0) and (C18:0) remain in milk and, even if in low concentrations, are detected by DART-HRMS. 
Their identification may be a key-factor in APS milk authentication, even if this outcome needs to be investigated 
by further lipidomic studies. Large botanical diversity and environmental conditions (e.g., outdoor/pasture 
grazing vs. indoor/hay) may influence milk microbiota originating from teat skin and the following specific 
enzymatic activities of the microflora conveyed in milk29,39. However, as reported in our previous trial19, during 
DART analysis, TAG undergo in-source fragmentation to yield diacylglycerol and monoacylglycerol fragment 
ions, as a result of a possible thermal degradation. Whether they derive from in-source DART fragmentations 
or from hydrolysis phenomena in milk, it is necessary to take into account that lipids are a complex matrix due 
to the presence of more than 400 FA and more than 1300 of their combinations in 3-acylgricerols (TAG) having 
specific physical, chemical and nutritional properties41. Furthermore, lipid extraction is still a critical issue to be 
solved as the analytical criterion used to perform their extraction could affect the identification and quantifica-
tion of specific categories of lipids32.

Conclusions
We demonstrated that DART-HRMS, coupled with low-level data fusion and chemometrics, provides a simplified 
approach that allows a straightforward and deeper access to chemical composition of milk directly from diluted 
samples. While the high-input silage-based system is characterised by creatinine, the hay-based milk can be iden-
tified by the higher relative intensity of acetolactate, norgramine and MAG (20:2). However, a pool of metabolites 
is shared by the two lowland systems. The discrimination of Alpine milk was allowed by a predominance of MAG 
molecules. Therefore, through the precise determination of the chemical profile of the milk and the construc-
tion of statistically based classifiers, DART-HRMS could be employed for rapid authentication of Alpine pasture 
milk from those produced in lowland scenarios. This innovative analytical tool is able to accelerate the alpine 
pasture-milk authenticity verification and to enhance the traceability systems along milk production chains.
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