Supplementary Information for:

2 Deficiency and excess of groundwater iodine and their health associations

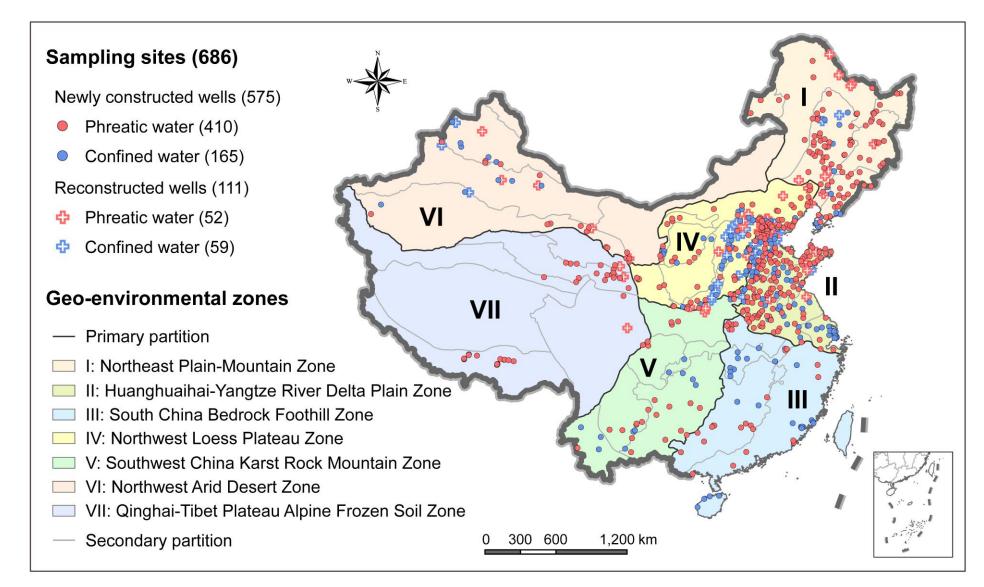
- 3 Ruoqi Ma^{1,2,3}, Mingquan Yan¹, Peng Han¹, Ting Wang^{1,4}, Bin Li^{1,4}, Shungui Zhou⁵, Tong
- 4 Zheng¹, Yandi Hu¹, Alistair G. L. Borthwick^{6,7}, Chunmiao Zheng⁸, Jinren Ni^{1,2,*}
- 5 *Correspondence to: Jinren Ni, College of Environmental Sciences and Engineering,
- 6 Peking University, Beijing 100871, P. R. China
- 7 E-mail addresses: <u>jinrenni@pku.edu.cn</u> (J.R. Ni)

9

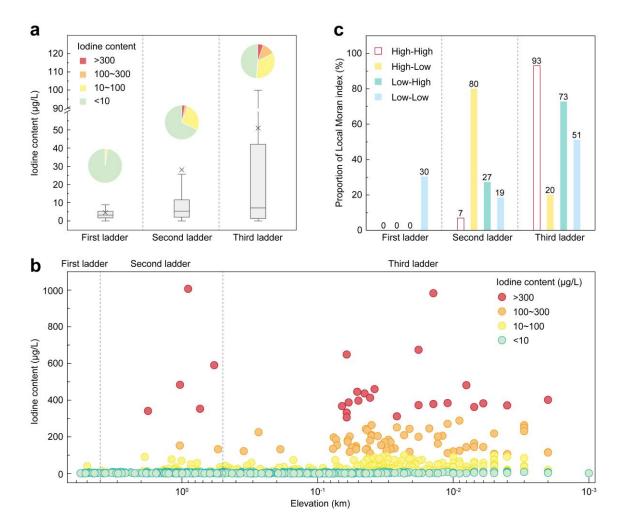
8

1

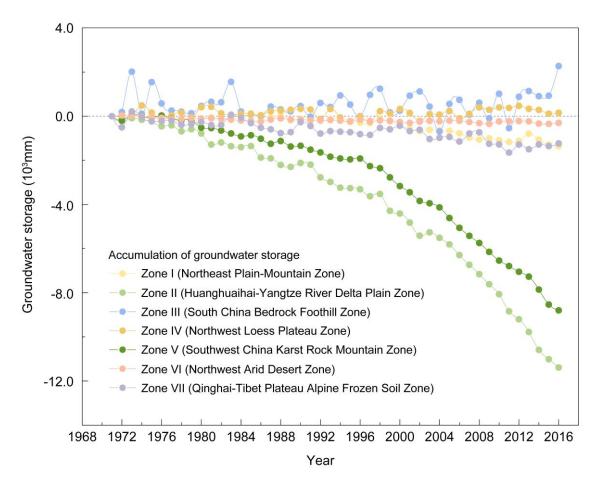
10 This Supplementary Information contains:

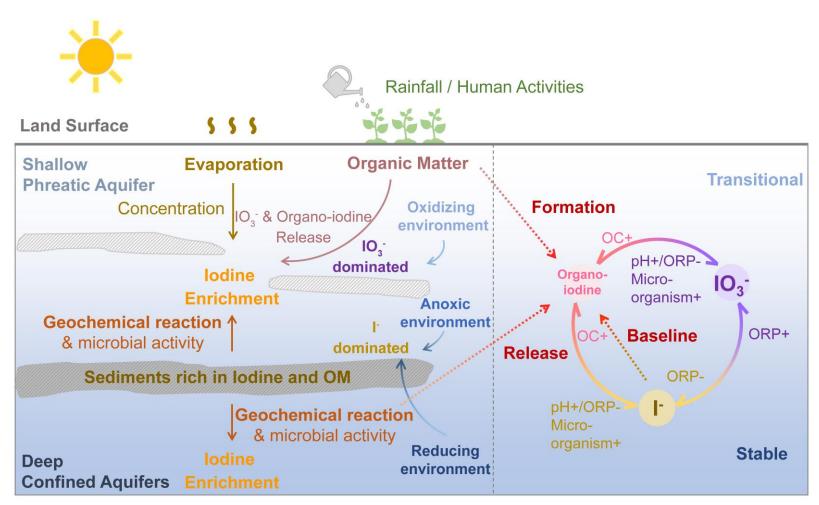

- Glossary (page 2)
- 12 Supplementary Figures $1 \sim 13$ (page $3 \sim 21$)
- Supplementary Tables $1 \sim 19$ (page $22 \sim 49$)
- Supplementary References (page $50 \sim 51$)

15 Glossary

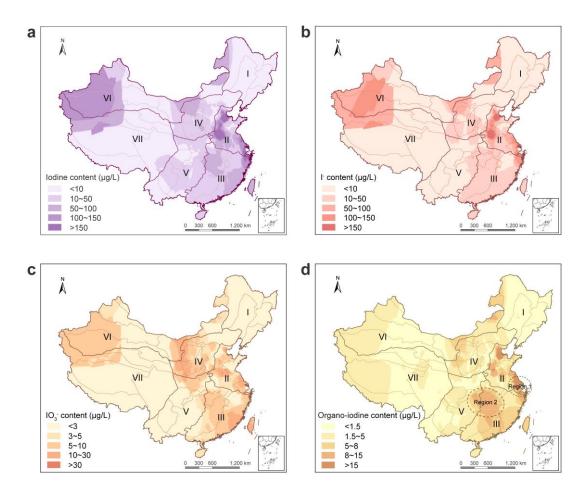

- Reduction iodine: iodide (I⁻), reduction state of iodine in the hydro-biogeochemical
- 17 cycle.
- 18 Oxidation iodine: iodate (IO₃⁻) and organo-iodine, oxidation state of iodine in the
- 19 hydro-biogeochemical cycle.
- 20 Porewater: water stored in the compressible sediments, which could be released into
- 21 adjacent aquifers in the process of sediment compaction.
- 22 *Iodine enrichment ratio*: an index used to evaluate the level of iodine released from
- 23 the solid to the aqueous phase, and defined as iodide/chloride (I⁻/Cl⁻) in groundwater.
- 24 Risk index of iodine deficiency (R_D): evaluation index of non-carcinogenic risks
- 25 response to iodine deficiency, which is equal numerically to the reciprocal of iodine-
- 26 deficient hazard quotient.
- 27 Risk index of iodine excess (R_E): evaluation index of non-carcinogenic risks response
- 28 to iodine excess, which is equal numerically to the iodine-excess hazard quotient.

- 29 Supplementary Figures
- 30 Supplementary Fig. 1 | Sampling sites of groundwater in 686 monitoring wells
- 31 throughout China
- 32 **Supplementary Fig. 2** | Distribution characteristics of iodine in groundwater
- 33 throughout China
- 34 **Supplementary Fig. 3** | Time series of annual groundwater storage accumulation
- 35 (1971 ~ 2016) in seven geo-environmental zones of China
- 36 Supplementary Fig. 4 | Summary of previous conceptual models for iodine
- 37 enrichment and transformation in groundwater
- 38 Supplementary Fig. 5 | Spatial distribution of total iodine content and its species in
- 39 groundwater throughout China
- 40 **Supplementary Fig. 6** Distribution characteristics of groundwater iodine species
- 41 **Supplementary Fig. 7** | Relationships between prevalence of thyroid diseases and
- 42 iodine nutrient levels
- 43 **Supplementary Fig. 8** | Comparison of daily iodine intake from drinking water and
- 44 iodized salt
- 45 **Supplementary Fig. 9** | Health risks posed by total groundwater iodine in seven geo-
- 46 environmental zones

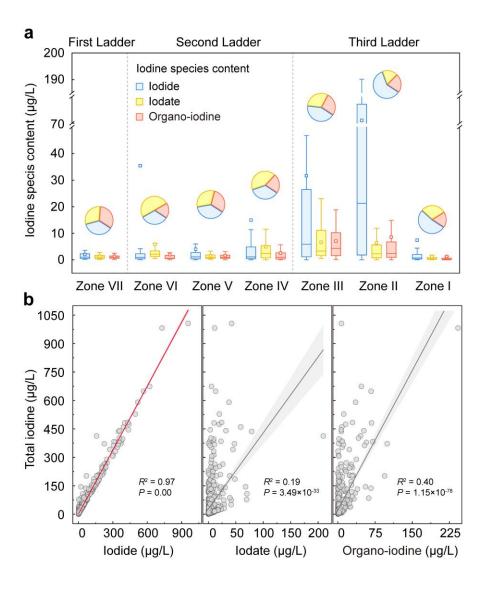

- **Supplementary Fig. 10** | Distribution of drinking water iodine based on the national
- 48 survey data from National Health Commission of P.R. China
- **Supplementary Fig. 11** | Spatial response of thyroid risks to groundwater iodine
- 50 speciation at provincial level in China
- **Supplementary Fig. 12** | Optimal iodine provision in Scenario 2 (Case 1)
- **Supplementary Fig. 13** | Optimal iodine provision in Scenario 3 (Case 1)

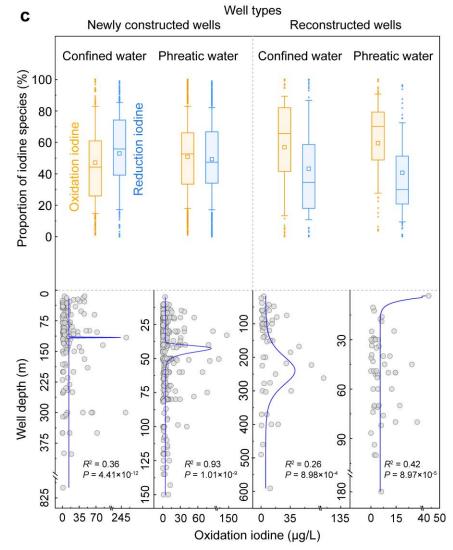

Supplementary Fig. 1 | Sampling sites of groundwater in 686 monitoring wells throughout China. Circular and hollow crosses indicate samples from newly constructed and reconstructed wells. Red and blue dots represent phreatic and confined water samples. China's geoenvironmental zones are shaded in different colors on national map, namely: Northeast Plain-Mountain Zone (I), Huanghuaihai-Yangtze River Delta Plain Zone (II), South China Bedrock Foothill Zone (III), Northwest Loess Plateau Zone (IV), Southwest China Karst Rock Mountain Zone (V), Northwest Arid Desert Zone (VI), and Qinghai-Tibet Plateau Alpine Frozen Soil Zone (VII).

Supplementary Fig. 2 | Distribution characteristics of iodine in groundwater throughout China. a, Pie charts and box plots indicating distribution of groundwater iodine content in three topographic ladders of China (n = 686). The box is bounded by the first and the third quartile with a horizontal line at the median and a cross at the mean, and whiskers extend to the maximum and minimum value in 1.5 times interquartile range. b, Variation in groundwater iodine content with elevation above mean sea level. c, Histograms showing proportions of different Local Moran Indexes (with 1200 km threshold distance) in three topographic ladders.

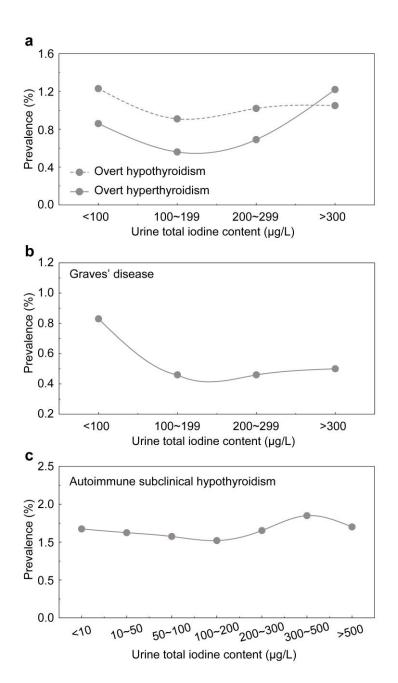


69 Supplementary Fig. 3 | Time series of annual groundwater storage accumulation (1971 ~ 2016) in seven geo-environmental zones of China.

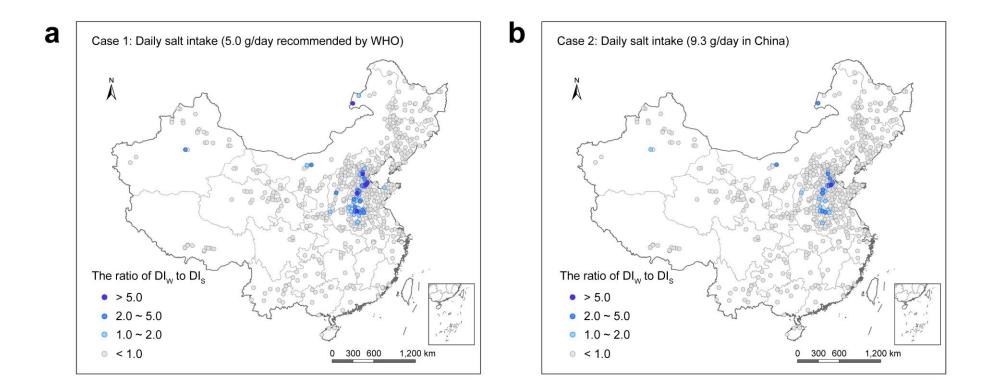



Enrichment of iodine

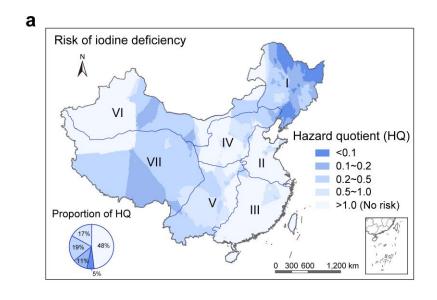
Transformation of species

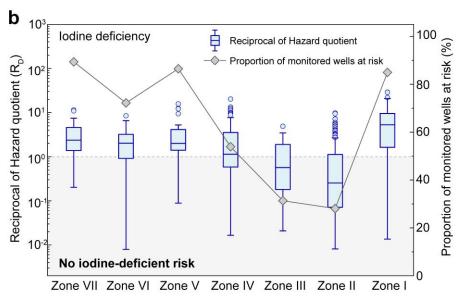


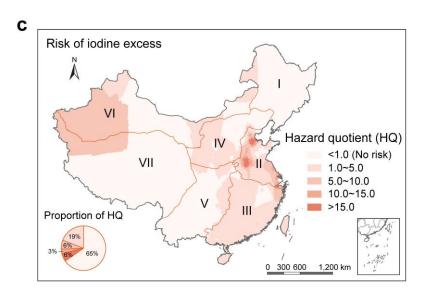
Supplementary Fig. 5 | Spatial distribution of total iodine content and its species in groundwater throughout China. a, Total iodine. b, Iodide. c, Iodate. d, Organo-iodine. Regions marked by dotted lines in (d) are the Yangtze River Delta Plain (Region 1) and the Lianghu Plain (Region 2).

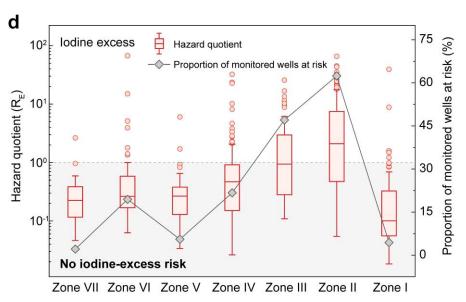


Supplementary Fig. 6 | Distribution characteristics of groundwater iodine species. a, Pie charts and box plots indicating distribution of iodine species (Γ , IO_3 and organo-iodine) in the seven geo-environmental zones of China (n = 686). The box is bounded by the first and the third quartile with a horizontal line at the median and a hollow square at the mean, and whiskers extend to the maximum and minimum value in 1.5 times interquartile range. b, Correlations between three iodine species and total iodine content (two-sided t-test). The pink line (or shade) and grey lines (or shades) are regression lines (or the 95% prediction intervals) of total iodine and different iodine species contents. c, Proportions of iodine species (Γ : reduction iodine, IO_3 and organo-iodine: oxidation iodine) and variations in oxidation iodine content with well depth for different types of groundwater (n = 686, two-sided F-test). The box is bounded by the 35% and the 65% quartile with a horizontal line at the median and a hollow square at the mean, and whiskers extend to the maximum and minimum value in the range of 20% to 80% quartile.

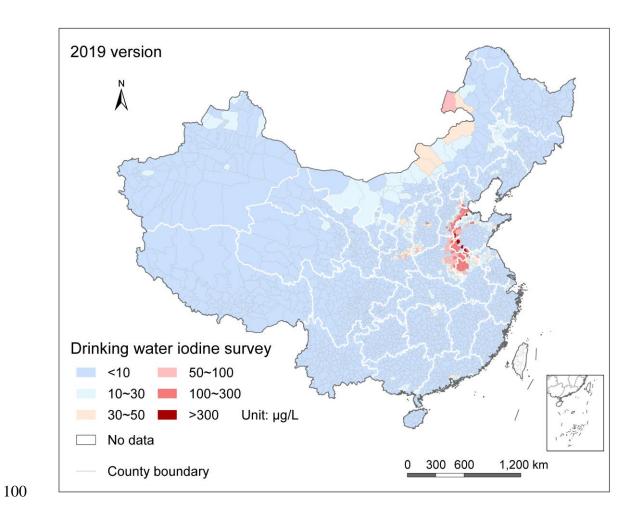


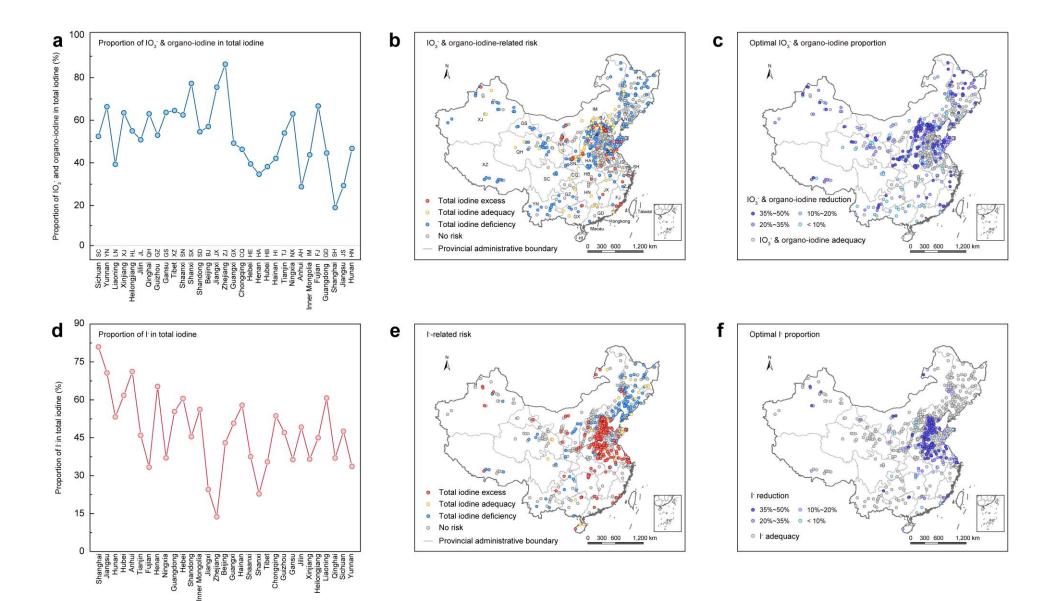

Supplementary Fig. 7 | Relationships between prevalence of thyroid diseases and iodine nutrient levels⁶. a, Prevalence of overt hypothyroidism and hyperthyroidism. b, Prevalence of Graves' disease. c, Prevalence of autoimmune subclinical hypothyroidism.

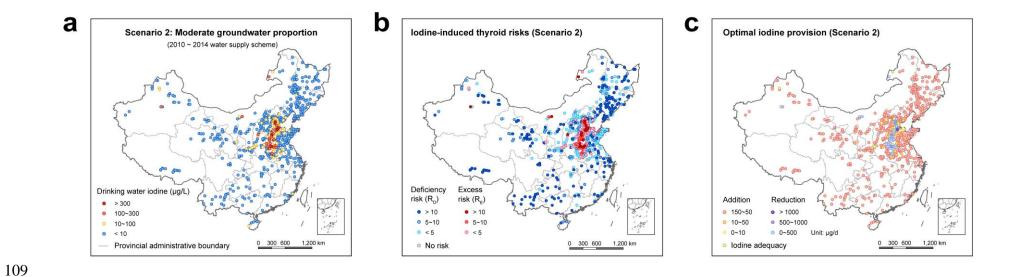


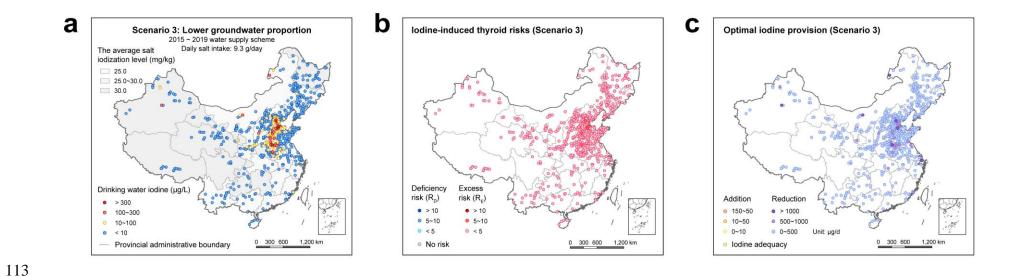

91 Supplementary Fig. 8 | Comparison of daily iodine intake from drinking water and iodized salt. a, Case 1 represents daily salt intake (5.0

92 g/day) recommended by World Health Organization (WHO). **b**, Case 2 represents daily salt intake (9.3 g/day) in China.






Supplementary Fig. 9 | Health risks posed by total groundwater iodine in seven geo-environmental zones. a, Spatial distribution of iodine-deficient hazard quotient throughout China. b, Box plots showing groundwater iodine deficiency risk in the seven geo-environmental zones, expressed using the reciprocal of hazard quotient (R_D) (n = 686). c, Spatial distribution of iodine-excess hazard quotient. d, Box plots showing groundwater iodine excess risk (R_E) in the seven geo-environmental zones (n = 686). Gray areas in (b) and (d) represent no iodine deficiency or excess risk. The box in (b) and (d) is bounded by the first and the third quartile with a horizontal line at the median, and whiskers extend to the maximum and minimum value in 1.5 times interquartile range.


Supplementary Fig. 10 | Distribution of drinking water iodine based on the national survey data from National Health Commission of P.R. China⁷.

Supplementary Fig. 11 | Spatial response of thyroid risks to groundwater iodine speciation at provincial level in China. a, Proportions of oxidation iodine (IO₃⁻ and organo-iodine) in total iodine at provincial level. b, Thyroid risks response to IO₃⁻ and organo-iodine in groundwater iodine (with proportion of IO₃⁻ and organo-iodine in total iodine > 50%). c, Optimal IO₃⁻ and organo-iodine proportion corresponding to tolerable thyroid risks. d, Proportions of reduction iodine (I⁻) in total iodine at provincial level. e, Thyroid risks response to I⁻ in groundwater iodine (with proportion of I⁻ in total iodine > 50%). f, Optimal I⁻ proportion corresponding to tolerable thyroid risks.

Supplementary Fig. 12 | **Optimal iodine provision in Scenario 2 (Case 1). a**, Scenario 2 represents groundwater as a partial source in drinking water utilization according to the water supply scheme (2010 ~ 2014). **b**, Iodine-induced thyroid risks under Scenario 2. **c**, Optimal iodine provision for reducing thyroid risks under Scenario 2.

Supplementary Fig. 13 | **Optimal iodine provision in Scenario 3 (Case 1). a**, Scenario 3 represents groundwater as a partial source in drinking water utilization with consideration of iodized salt supply (daily salt intake 9.3 g/day) in the total dietary iodine intake. **b**, Iodine-induced thyroid risks under Scenario 3. **c**, Optimal iodine provision for reducing thyroid risks under Scenario 3.

117 **Supplementary Tables**

133

via drinking water consumption

Supplementary Table 1 | Information on groundwater sampling sites 118 119 Supplementary Table 2 | Contents of groundwater iodine and its species in different 120 geo-environmental zones of China **Supplementary Table 3** | Hydrochemistry composition of groundwater in Zones I 121 and II 122 123 Supplementary Table 4 | Temporal variation of groundwater storage accumulation in 124 Zones I and II (1971 \sim 2016) **Supplementary Table 5** | Annual water supply volume (×10⁸ m³) of main provinces 125 126 involved in Zone I **Supplementary Table 6** | Annual water supply volume ($\times 10^8$ m³) of main provinces 127 128 involved in Zone II **Supplementary Table 7** | Annual groundwater resource volumes (×10⁸ m³) of main 129 provinces involved in Zone I and Zone II 130 **Supplementary Table 8** | Proportions of iodine species in different groundwater types 131 **Supplementary Table 9** | Mean and 95th percentile values of hazard quotient (HQ) 132

134 **Supplementary Table 10** | Iodine state and thyroid nodules prevalence in 36 cities 135 from 31 provinces of China 136 Supplementary Table 11 | Proportion of monitored wells at iodine-induced risk at 137 provincial level in China **Supplementary Table 12** | Median groundwater iodine content at provincial level in 138 139 China Supplementary Table 13 | Average proportions of groundwater used for water supply 140 over 5 years ($2010 \sim 2014$ and $2015 \sim 2019$) at provincial level in China 141 142 Supplementary Table 14 | Iodine content in drinking water of China 143 **Supplementary Table 15** | Proportion of groundwater iodine species at provincial 144 level in China Supplementary Table 16 | Key parameters for iodine-induced non-carcinogenic risk 145 146 assessment Supplementary Table 17 | Salt iodization levels in different provinces of China 147 Supplementary Table 18 | Dietary reference values for iodine 148 Supplementary Table 19 | Recommended limits for identifying high iodine 149 150 groundwater

151 Supplementary Table 1 | Information on groundwater sampling sites.

Geo-environmental zone	Terrain partition	Well type	Groundwater type	Number of samples
		Newly	Phreatic	88
Northeast plain-mountain (Zone I)	***	constructed	Confined	13
	III -	Danasaturatad	Phreatic	10
		Reconstructed	Confined	88
		Newly	Phreatic	156
Harmaland I. V. water visus dalta alais (7 and H)	THE	constructed	Confined	72
Huanghuaihai-Yangtze river delta plain (Zone II)	III -	D 1	Phreatic	22
		Reconstructed	Confined	35
		Newly	Phreatic	26
Careth China hadronk law marratain facthill (7 and III)	111	constructed	Confined	25
South China bedrock low mountain foothill (Zone III)	III -	Danasatura et a 1	Phreatic	0
		Reconstructed	Confined	0

Supplementary Table 1 | Information on groundwater sampling sites (continued).

Geo-environmental zone	Terrain partition	Well type	Groundwater type	Number of samples
		Navyly constructed	Phreatic	59
Northwest loss plates (Zana IV)	II	Newly constructed	Confined	29
Northwest loess plateau (Zone IV)	11	Reconstructed	Phreatic	10
		Reconstructed	Confined	18
		Navyly constructed	Phreatic	24
Southwest China Karst rock mountain (Zone V)	11	Newly constructed	Confined	11
	II	D	Phreatic	2
		Reconstructed	Confined	0
		N1 1	Phreatic	17
Nouthwest and Jaset (Zana VII)	II	Newly constructed	Confined	11
Northwest arid desert (Zone VI)	11	D	Phreatic	5
		Reconstructed	Confined	3
		Marrier agratus 4 1	Phreatic	40
Qinghai-Tibet plateau Alpine frozen soil areas	Ť	Newly constructed	Confined	4
(Zone VII)	1	Danagements 1	Phreatic	3
		Reconstructed	Confined	0

155 Supplementary Table 2 | Contents of groundwater iodine and its species in different geo-

environmental zones of China.

156

Geo-environmental zone	Conter	at (μg/L)	Median (μg/L)	Mean (μg/L)
	Total iodine	0.28~590.40	1.51	9.85
7 I	Iodide	0.01~517.14	0.69	7.38
Zone I	Iodate	<dl~37.64< td=""><td>0.40</td><td>1.21</td></dl~37.64<>	0.40	1.21
	Organo-iodine	0.00~39.37	0.23	1.25
	Total iodine	0.82~982.30	31.50	86.09
Zone II	Iodide	0.01~728.52	21.30	71.10
Zone II	Iodate	<dl~209.59< td=""><td>2.29</td><td>6.42</td></dl~209.59<>	2.29	6.42
	Organo-iodine	0.00~242.27	2.38	8.56
	Total iodine	1.63~384.10	14.08	45.33
Zone III	Iodide	0.01~352.19	5.88	31.67
Zone III	Iodate	0.46~27.91	3.31	6.60
	Organo-iodine	0.12~28.90	4.31	7.06
	Total iodine	0.39~483.60	7.02	22.37
7 111	Iodide	0.01~429.98	1.08	14.93
Zone IV	Iodate	<dl~44.82< td=""><td>2.41</td><td>4.92</td></dl~44.82<>	2.41	4.92
	Organo-iodine	0.00~29.43	0.90	2.53
	Total iodine	0.51~90.20	4.00	7.03
7 V	Iodide	0.02~79.21	1.08	4.00
Zone V	Iodate	<dl~10.28< td=""><td>0.88</td><td>1.48</td></dl~10.28<>	0.88	1.48
	Organo-iodine	0.02~9.87	0.88	1.55

157 DL = detection limit.

158 Supplementary Table 2 | Contents of groundwater iodine and its species in different geo-

environmental zones of China (continued).

Geo-environmental zone	Conte	nt (μg/L)	Median (μg/L)	Mean (μg/L)
	Total iodine	0.94~1006.25	3.96	43.26
Zana VI	Iodide	0.01~956.73	0.91	35.43
Zone VI	Iodate	0.48~69.73	2.12	5.87
	Organo-iodine	0.01~16.37	0.59	1.96
	Total iodine	0.69~39.56	3.38	4.67
7 VII	Iodide	0.18~23.93	0.98	2.00
Zone VII	Iodate	<dl~4.96< td=""><td>1.02</td><td>1.32</td></dl~4.96<>	1.02	1.32
	Organo-iodine	0.10~10.96	1.02	1.34

160 DL = detection limit.

Supplementary Table 3 | Hydrochemistry composition of groundwater in Zones I and II.

I., I.,	Index Units		Minimum		Maximum N		dian Standard		deviation	DI
Index	index Omts	Zone I	Zone II	Zone I	Zone II	Zone I	Zone II	Zone I	Zone II	- DL
\mathbf{K}^{+}	mg/L	<dl< td=""><td><dl< td=""><td>95.00</td><td>132.00</td><td>1.3</td><td>1.30</td><td>9.03</td><td>12.03</td><td>0.03</td></dl<></td></dl<>	<dl< td=""><td>95.00</td><td>132.00</td><td>1.3</td><td>1.30</td><td>9.03</td><td>12.03</td><td>0.03</td></dl<>	95.00	132.00	1.3	1.30	9.03	12.03	0.03
Na ⁺	mg/L	<dl< td=""><td>3.99</td><td>970.00</td><td>7421.00</td><td>30.26</td><td>105.54</td><td>121.55</td><td>623.53</td><td>0.10</td></dl<>	3.99	970.00	7421.00	30.26	105.54	121.55	623.53	0.10
Ca^{2+}	mg/L	1.61	1.82	245.03	748.59	45.49	69.90	40.98	77.85	1.00
Mg^{2+}	mg/L	2.51	<dl< td=""><td>145.54</td><td>956.00</td><td>18.06</td><td>29.45</td><td>21.95</td><td>101.78</td><td>1.00</td></dl<>	145.54	956.00	18.06	29.45	21.95	101.78	1.00
CO ₃ ²⁻	mg/L	<dl< td=""><td><dl< td=""><td>1.75</td><td>145.00</td><td><dl< td=""><td><dl< td=""><td>0.17</td><td>12.91</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.75</td><td>145.00</td><td><dl< td=""><td><dl< td=""><td>0.17</td><td>12.91</td><td>-</td></dl<></td></dl<></td></dl<>	1.75	145.00	<dl< td=""><td><dl< td=""><td>0.17</td><td>12.91</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>0.17</td><td>12.91</td><td>-</td></dl<>	0.17	12.91	-
HCO ₃ -	mg/L	<dl< td=""><td><dl< td=""><td>25.11</td><td>1677.00</td><td>3.18</td><td>387.00</td><td>4.05</td><td>217.22</td><td>5.00</td></dl<></td></dl<>	<dl< td=""><td>25.11</td><td>1677.00</td><td>3.18</td><td>387.00</td><td>4.05</td><td>217.22</td><td>5.00</td></dl<>	25.11	1677.00	3.18	387.00	4.05	217.22	5.00
Cl ⁻	mg/L	<dl< td=""><td><dl< td=""><td>1017.10</td><td>10115.46</td><td>14.08</td><td>61.01</td><td>119.82</td><td>790.00</td><td>0.04</td></dl<></td></dl<>	<dl< td=""><td>1017.10</td><td>10115.46</td><td>14.08</td><td>61.01</td><td>119.82</td><td>790.00</td><td>0.04</td></dl<>	1017.10	10115.46	14.08	61.01	119.82	790.00	0.04
SO ₄ ² -	mg/L	<dl< td=""><td><dl< td=""><td>1002.80</td><td>1970.27</td><td>14.98</td><td>72.29</td><td>111.28</td><td>307.79</td><td>0.10</td></dl<></td></dl<>	<dl< td=""><td>1002.80</td><td>1970.27</td><td>14.98</td><td>72.29</td><td>111.28</td><td>307.79</td><td>0.10</td></dl<>	1002.80	1970.27	14.98	72.29	111.28	307.79	0.10

DL = detection limit.

Supplementary Table 4 | Temporal variation of groundwater storage accumulation ^a in Zones I and II (1971 ~ 2016).

V	Groundwater storag	e accumulation (mm)	V	Groundwater storage	e accumulation (mm)
Year	Zone I	Zone II	Year	Zone I	Zone II
1971	0.0	0.0	1983	-50.6	-1359.3
1972	-33.4	-226.2	1984	-21.3	-1403.1
1973	23.0	-93.3	1985	0.3	-1354.7
1974	-47.1	-165.9	1986	-31.6	-1877.2
1975	-50.0	-236.3	1987	-62.4	-1914.5
1976	-145.6	-460.1	1988	12.4	-2211.8
1977	-106.6	-416.2	1989	-188.0	-2297.7
1978	-135.1	-684.9	1990	-129.8	-2119.3
1979	-181.7	-590.2	1991	-49.2	-2198.4
1980	-147.8	-786.1	1992	-184.2	-2773.3
1981	-51.6	-1283.8	1993	-151.0	-2980.2
1982	-150.5	-1195.2	1994	-82.7	-3241.0

^a Groundwater storage accumulation: the accumulated depth (mm) of groundwater per unit area.

Supplementary Table 4 | Temporal variation of groundwater storage accumulation a in Zones I and II (1971 ~ 2016) (continued).

Vaan	Groundwater storage	e accumulation (mm)	Vasa	Groundwater storage	e accumulation (mm)
Year	Zone I	Zone II	Year	Zone I	Zone II
1995	-220.2	-3261.5	2006	-780.2	-6295.8
1996	-296.6	-3311.0	2007	-972.4	-6738.4
1997	-316.7	-3628.0	2008	-1069.4	-7161.7
1998	-134.0	-3525.6	2009	-1004.9	-7619.4
1999	-239.6	-4287.6	2010	-1093.0	-8065.6
2000	-419.3	-4411.9	2011	-1169.4	-8841.6
2001	-587.8	-4823.3	2012	-1126.8	-9201.7
2002	-673.7	-5415.2	2013	-800.9	-9777.4
2003	-617.6	-5264.1	2014	-1062.5	-10591.2
2004	-639.6	-5513.9	2015	-1291.9	-11012.2
2005	-668.8	-5810.7	2016	-1358.0	-11389.4

^a Groundwater storage accumulation: the accumulated depth (mm) of groundwater per unit area.

Supplementary Table 5 | Annual water supply volume ($\times 10^8 \ m^3$) of main provinces involved in Zone I.

· ·	Heil	longjiang	Li	iaoning		Jilin		
Year	Total	Groundwater	Total	Groundwater	Total	Groundwater		
2004	259.44	103.95	99.19	38.96	130.23	65.00		
2005	271.51	113.08	98.39	36.84	133.26	64.27		
2006	286.21	114.37	102.90	38.03	141.24	67.01		
2007	291.37	124.63	100.78	38.75	142.87	67.17		
2008	297.01	127.38	104.08	40.61	142.78	66.58		
2009	316.25	136.04	111.09	42.51	142.79	67.35		
2010	325.00	146.14	120.04	44.17	143.67	67.58		
2011	352.40	149.90	131.20	43.70	144.50	64.30		
2012	358.90	161.50	129.80	43.30	142.20	61.30		
2013	362.30	167.40	131.50	44.00	142.10	60.00		
2014	364.10	167.60	133.00	44.90	141.80	58.40		
2015	355.30	157.70	133.60	44.00	140.80	58.60		
2016	352.60	166.80	132.50	44.90	135.40	57.00		
2017	353.10	163.10	126.70	44.70	131.10	54.50		

Data source: China's Statistical Yearbook on Environment (National Bureau of Statistics).

172 Supplementary Table 6 | Annual water supply volume (×10⁸ m³) of main provinces 173 involved in Zone II.

	E	Beijing		Γianjin]	Hebei
Year	Total	Groundwater	Total	Groundwater	Total	Groundwater
2004	34.55	26.80	22.06	7.07	195.87	157.75
2005	34.50	24.90	23.09	6.98	201.78	162.78
2006	34.30	24.34	22.96	6.76	204.00	164.64
2007	34.81	24.19	23.37	6.81	202.50	163.08
2008	35.08	22.94	22.33	6.25	195.02	156.17
2009	35.50	21.80	23.37	6.01	193.72	154.64
2010	35.20	21.19	22.49	5.87	193.68	155.98
2011	36.00	20.90	23.10	5.80	196.00	154.90
2012	35.90	20.40	23.10	5.50	195.30	151.30
2013	36.40	20.00	23.80	5.70	191.30	144.60
2014	37.50	19.60	24.10	5.30	192.80	142.10
2015	38.20	18.20	25.70	4.90	187.20	133.60
2016	38.80	17.50	27.2	4.7	182.6	125.0
2017	39.50	16.60	27.5	4.6	181.6	116.0

Data source: China's Statistical Yearbook on Environment (National Bureau of Statistics).

Supplementary Table 7 | Annual groundwater resource volumes (×10⁸ m³) of main provinces involved in Zone I and Zone II.

X7		Zone I			Zone II	
Year	Heilongjiang	Liaoning	Jilin	Beijing	Tianjin	Hebei
2004	273.70	94.40	109.60	16.50	5.20	131.10
2005	288.80	122.50	130.20	18.50	4.50	109.70
2006	279.20	104.60	91.60	18.20	4.40	94.30
2007	232.80	86.30	93.40	18.80	4.80	107.20
2008	247.80	99.60	105.40	24.90	5.90	136.30
2009	313.40	97.30	87.60	17.80	5.60	122.70
2010	277.90	141.90	146.80	18.90	4.50	112.90
2011	237.20	112.90	111.90	21.20	5.20	126.20
2012	289.80	147.00	147.40	26.50	7.60	164.80
2013	381.50	160.20	139.40	18.70	5.00	138.80
2014	295.40	120.20	82.30	16.00	3.70	89.30
2015	283.00	127.40	83.20	20.60	4.90	113.60
2016	285.90	154.70	120.90	24.20	6.10	133.70
2017	273.20	133.30	86.60	20.40	5.50	116.30

Data source: China Statistical Yearbook on Environment (National Bureau of Statistics).

179 Supplementary Table 8 | Proportions of iodine species in different groundwater types.

W-11 4	Graundwater type	Proportion organo-		Proportion of I		
Well type	Groundwater type	Median	Mean	Median	Mean	
Newly	Phreatic	52.61%	50.77%	47.39%	49.23%	
constructed	Confined	44.24%	47.11%	55.76%	52.89%	
Danagaturatad	Phreatic	70.08%	59.39%	29.92%	40.61%	
Reconstructed	Confined	65.51%	56.80%	34.49%	43.20%	

Supplementary Table 9 | Mean and 95th percentile values of hazard quotient (HQ) via drinking water consumption.

Control of the contro		Iodine deficier	ncy	Iodine excess			
Geo-environmental zones	Mean	95th percentile	Proportion of risk	Mean	95th percentile	Proportion of risk	
Zone I	1.23	1.84	84.96%	0.66	0.98	4.42%	
Zone II	10.76	47.50	28.10%	5.74	25.33	62.41%	
Zone III	5.67	23.31	31.37%	3.02	12.43	47.06%	
Zone IV	2.80	7.58	53.91%	1.49	4.04	21.74%	
Zone V	0.88	2.03	86.49%	0.47	1.08	5.41%	
Zone VI	5.41	13.31	72.22%	2.88	7.10	19.44%	
Zone VII	0.58	1.11	89.36%	0.31	0.59	2.13%	

Supplementary Table 10 | Iodine state and thyroid nodules prevalence in 36 cities from 31 provinces of China.

Province	Sampled city	Median groundwater iodine content (μg/L)	Median groundwater iodate content (µg/L)	Median groundwater iodide content (μg/L)	Median urine iodine content (μg/L)	Prevalence of thyroid nodules	Prevalence of Subclinical hypothyroidism
Anhui	Hefei	29.52	3.93	22.96	208.64	9.69%	2.49%
Beijing	Beijing	10.97	3.05	4.71	151.52	22.08%	2.85%
Chongqing	Chongqing	9.77	0.83	4.00	193.48	22.37%	2.37%
Fujian	Fuzhou	73.66	9.76	12.52	136.60	30.75%	1.29%
Gansu	Longnan	12.09	2.36	9.21	226.53	17.58%	6.33%
Guangdong	Guangzhou	11.16	3.35	4.99	128.80	41.66%	1.42%
Guangxi	Chongzuo	1.91	0.71	1.01	153.41	13.53%	1.92%
Guizhou	Guiyang	0.85	0.32	0.51	200.30	7.43%	5.50%
Hainan	Haikou and Zhanzhou	13.39	1.45	9.68	151.96	10.80%	1.38%
Hebei	Shijiazhuang and Cangzhou	59.30	7.48	42.07	200.90	17.40%	2.57%
Heilongjiang	Harbin	0.98	0.25	0.37	155.10	22.79%	1.67%

Supplementary Table 10 | Iodine state and thyroid nodules prevalence in 36 cities from 31 provinces of China (continued).

Province	Sampled city	Median groundwater iodine content (μg/L)	Median groundwater iodate content (µg/L)	Median groundwater iodide content (µg/L)	Median urine iodine content (μg/L)	Prevalence of thyroid nodules	Prevalence of Subclinical hypothyroidism
Henan	Xinxiang and Kaifeng	245.6	34.16	192.16	225.41	13.61%	4.57%
Hubei	Shiyan	97.16	18.04	60.01	191.84	9.87%	4.00%
Hunan	Changde	30.57	2.75	19.44	172.40	14.63%	3.87%
Inner Mongolia	Hohhot	9.22	3.98	3.81	207.00	24.41%	3.99%
Jiangsu	Xuzhou	246.65	67.94	161.01	304.80	19.06%	3.17%
Jiangxi	Nanchang and Jingdezhen	27.45	8.68	9.37	176.60	9.97%	2.05%
Jilin	Changchun	2.34	0.76	1.15	178.15	20.84%	1.68%
Liaoning	Dalian	0.97	0.33	0.54	149.80	23.73%	2.03%
Ningxia	Guyuan	175.19	58.81	86.10	250.32	30.17%	5.10%
Qinghai	Xining and Haidong	3.92	1.13	1.35	218.42	7.69%	10.43%
Shaanxi	Xi'an	25.85	15.41	7.81	220.59	11.33%	4.31%

Supplementary Table 10 | Iodine state and thyroid nodules prevalence in 36 cities from 31 provinces of China (continued).

Province	Sampled city	Median groundwater iodine content (μg/L)	Median groundwater iodate content (µg/L)	Median groundwater iodide content (μg/L)	Median urine iodine content (μg/L)	Prevalence of thyroid nodules	Prevalence of Subclinical hypothyroidism
Shandong	Taian	5.47	2.95	0.99	137.90	10.79%	2.23%
Shanghai	Shanghai	184.55	49.55	83.77	164.15	24.78%	2.29%
Shanxi	Taiyuan	4.83	2.64	0.82	211.85	11.70%	2.34%
Sichuan	Chengdu	2.86	0.87	1.36	172.10	10.87%	3.59%
Tianjin	Tianjin	40.60	10.69	18.67	142.20	30.12%	6.69%
Tibet	Lhasa	1.739	0.36	0.58	171.40	25.48%	1.71%
Xinjiang	Turpan	3.302	2.06	1.07	147.98	33.10%	3.29%
Yunnan	Kunming	2.098	0.54	1.08	177.70	21.47%	4.54%
Zhejiang	Hangzhou	13.4	4.35	1.84	216.93	15.29%	3.02%

Supplementary Table 11 | Proportion of monitored wells at iodine-induced risk at provincial level in China.

D .	Monitored wells with	iodine-induced risks	D.	Monitored wells with	Monitored wells with iodine-induced risks		
Province —	Deficiency	Excess	— Province —	Deficiency	Excess		
Hebei	35.80%	48.15%	Ningxia	20.00%	60.00%		
Henan	34.69%	61.22%	Hainan	25.00%	25.00%		
Inner Mongolia	14.29%	42.86%	Hunan	0.00%	80.00%		
Heilongjiang	88.89%	0.00%	Sichuan	100.00%	0.00%		
Beijing	44.44%	38.89%	Guangxi	40.00%	30.00%		
Shanxi	55.56%	22.22%	Jiangxi	40.00%	40.00%		
Liaoning	97.50%	0.00%	Guangdong	12.50%	50.00%		
Shandong	45.07%	45.07%	Hubei	25.00%	75.00%		
Shaanxi	65.38%	23.08%	Fujian	12.50%	62.50%		
Jilin	86.05%	4.65%	Guizhou	83.33%	16.67%		
Gansu	70.59%	5.88%	Yunnan	100.00%	0.00%		

190 Supplementary Table 11 | Proportion of monitored wells at iodine-induced risk at provincial level in China (continued).

D	Monitored wells with	iodine-induced risks	D	Monitored wells with iodine-induced risks		
Province —	Deficiency	Excess	— Province —	Deficiency	Excess	
Xinjiang	69.57%	21.74	Chongqing	40.00%	20.00%	
Qinghai	85.00%	0.00%	Jiangsu	0.00%	92.86%	
Tianjin	20.00%	66.67%	Zhejiang	40.00%	40.00%	
Anhui	14.29%	71.43%	G1 1 '	0.000/	100.000/	
Tibet	95.83%	4.17%	Shanghai	0.00%	100.00%	

Supplementary Table 12 | Median groundwater iodine content at provincial level in

China.

Province	Median content (μg/L)	Province	Median content (μg/L)
Hebei	13.16	Ningxia	20.59
Henan	33.42	Hainan	13.52
Inner Mongolia	14.74	Hunan	30.57
Heilongjiang	1.89	Sichuan	2.86
Beijing	10.97	Guangxi	13.98
Shanxi	7.18	Jiangxi	12.94
Liaoning	0.86	Guangdong	32.29
Shandong	10.34	Hubei	97.16
Shaanxi	4.93	Fujian	21.40
Jilin	2.34	Guizhou	2.18
Gansu	3.41	Yunnan	3.20
Xinjiang	4.58	Chongqing	9.77
Qinghai	4.59	Jiangsu	78.75
Tianjin	40.60	Zhejiang	13.40
Anhui	26.84	C1 1 '	104.55
Tibet	2.81	Shanghai	184.55

Supplementary Table 13 | Average proportions of groundwater used for water supply

over 5 years (2010 ~ 2014 and 2015 ~ 2019) at provincial level in China.

Duszinss	Proportion of	groundwater	Duarinas	Proportion of	Proportion of groundwater		
Province	2010 ~2014	2015 ~2019	Province	2010 ~2014	2015 ~2019		
Hebei	77.27%	62.97%	Ningxia	7.72%	8.54%		
Henan	57.94%	50.59%	Hainan	7.20%	6.46%		
Inner Mongolia	49.53%	45.98%	Hunan	5.63%	4.48%		
Heilongjiang	44.95%	45.19%	Sichuan	7.34%	4.37%		
Beijing	56.46%	42.56%	Guangxi	3.69%	3.66%		
Shanxi	51.41%	41.47%	Jiangxi	3.80%	3.28%		
Liaoning	43.61%	41.33%	Guangdong	3.91%	3.16%		
Shandong	40.23%	37.46%	Hubei	3.21%	2.73%		
Shaanxi	37.96%	35.15%	Fujian	2.87%	2.71%		
Jilin	34.14%	34.30%	Guizhou	2.89%	2.57%		
Gansu	21.71%	21.92%	Yunnan	3.43%	2.43%		
Xinjiang	19.47%	19.62%	Chongqing	1.96%	1.55%		
Qinghai	14.67%	18.49%	Jiangsu	1.68%	1.38%		
Tianjin	24.19%	16.44%	Zhejiang	1.66%	0.68%		
Anhui	10.92%	10.76%	Class also:	0.100/	0.000/		
Tibet	10.53%	10.57%	Shanghai	0.10%	0.00%		

Data source: China's Statistical Yearbook on Environment (National Bureau of Statistics).

199 Supplementary Table 14 | Iodine content in drinking water of China.

	Number of	Median		Number	of counties	
Province	sampled counties	content (µg/L)	<10 µg/L	10~100 μg/L	100~300 μg/L	>300 μg/L
Beijing	16	3.4	16	0	0	0
Tianjin	16	5.1	12	3	1	0
Hebei	172	4.7	120	31	17	4
Shanxi	119	5.0	88	30	1	0
Inner Mongolia	104	6.7	73	31	0	0
Liaoning	105	3.7	95	10	0	0
Jilin	64	4.6	57	7	0	0
Heilongjiang	132	5.0	120	12	0	0
Shanghai	16	2.7	15	1	0	0
Jiangsu	103	7.3	79	22	1	1
Zhejiang	89	2.1	83	6	0	0
Anhui	105	4.3	77	18	10	0
Fujian	88	2.2	83	5	0	0
Jiangxi	100	2.5	100	0	0	0
Shandong	137	9.2	74	49	11	3
Henan	170	9.6	94	65	11	0

200 Data source: Investigation on iodine content in drinking water of China (National Health Commission of

the People's Republic of China).

203 Supplementary Table 14 | Iodine content in drinking water of China (continued).

Duraniana	Number of	Median		Number	of counties	
Province	sampled counties	content (μg/L)	<10 μg/L	10~100 μg/L	100~300 μg/L	>300 μg/L
Hubei	103	3.7	101	2	0	0
Hunan	132	2.5	121	10	1	0
Guangdong	128	5.1	107	21	0	0
Guangxi	112	3.3	107	5	0	0
Hainan	25	6.0	25	0	0	0
Chongqing	39	1.5	39	0	0	0
Sichuan	189	2.1	188	1	0	0
Guizhou	91	1.8	91	0	0	0
Yunnan	129	1.3	129	0	0	0
Tibet	74	2.2	74	0	0	0
Shaanxi	110	4.6	77	32	0	0
Gansu	89	2.2	89	0	0	0
Qinghai	43	1.7	42	1	0	0
Ningxia	23	6.4	18	5	0	0
Xinjiang	113	3.8	104	9	0	0

²⁰⁴ Data source: Investigation on iodine content in drinking water of China (National Health Commission of

the People's Republic of China).

Supplementary Table 15 | Proportion of groundwater iodine species at provincial level in China.

D	Proj	portion of iodine	species	Durania	Propo	Proportion of iodine species		
Province	I-	IO ₃ -	organo-iodine	Province	I	IO ₃ -	organo-iodine	
Hebei	60.52%	13.99%	25.50%	Ningxia	37.05%	38.31%	24.64%	
Henan	65.28%	17.67%	17.05%	Hainan	57.88%	16.67%	25.45%	
Inner Mongolia	56.21%	23.29%	20.50%	Hunan	53.26%	19.54%	27.21%	
Heilongjiang	44.98%	28.59%	26.43%	Sichuan	47.54%	30.50%	21.96%	
Beijing	42.97%	27.84%	29.19%	Guangxi	50.75%	25.85%	23.41%	
Shanxi	22.76%	57.96%	19.28%	Jiangxi	24.50%	36.44%	39.06%	
Liaoning	60.69%	29.10%	10.21%	Guangdong	55.37%	24.49%	20.15%	
Shandong	45.39%	26.85%	27.75%	Hubei	61.76%	18.56%	19.68%	
Shaanxi	37.55%	47.98%	14.47%	Fujian	33.34%	40.31%	26.35%	
Jilin	49.18%	32.44%	18.37%	Guizhou	47.01%	29.49%	23.50%	
Gansu	36.34%	42.01%	21.66%	Yunnan	33.66%	26.60%	39.74%	

Supplementary Table 15 | Proportion of groundwater iodine species at provincial level in China (continued).

Dussinss	Proj	Proportion of iodine species			Propo	Proportion of iodine species		
Province	I-	IO ₃ -	organo-iodine Province	I	IO ₃ -	organo-iodine		
Xinjiang	36.55%	48.28%	15.17%	Chongqing	53.64%	14.27%	32.09%	
Qinghai	37.02%	33.84%	29.15%	Jiangsu	70.65%	16.46%	12.89%	
Tianjin	45.98%	26.33%	27.70%	Zhejiang	13.70%	32.49%	53.81%	
Anhui	71.20%	18.59%	10.22%	ci i :	00.050/	10.200/	0.740/	
Tibet	35.46%	27.74%	36.80%	Shanghai	80.95%	10.30%	8.74%	

Supplementary Table 16 | Key parameters for iodine-induced non-carcinogenic risk assessment.

Parameter	Units	Value	Parameter	Units	Value
Concentration of iodine (C _w)	μg/L	Present study	Body weight (BW)	kg	60
Ingestion rate (IR _w)	L/day	2	Average time (AT)	day	10950
Exposure frequency (EF)	day/year	365	Reference dose	ma/(Ira.day)	Lower limit: 1.3
Exposure duration (ED)	year	30	of iodine (RfD) ^a	mg/(kg·day)	Upper limit: 2.5

^a Reference dose of iodine is based on recommended iodine intake specified by the World Health Organization.

Supplementary Table 17 | Salt iodization levels in different provinces of China 8 .

Province	Average iodine content (mg/kg)	Iodized salt coverage	Province	Average iodine content (mg/kg)	Iodized salt coverage
Hebei	25.0	93.87%	Ningxia	30.0	98.05%
Henan	30.0	98.26%	Hainan	25.0	97.77%
Inner Mongolia	25.0	96.17%	Hunan	30.0	97.35%
Heilongjiang	30.0	97.92%	Sichuan	30.0	97.21%
Beijing	25.0	95.40%	Guangxi	25.0	99.25%
Shanxi	25.0	96.19%	Jiangxi	25.0	99.96%
Liaoning	27.5	96.54%	Guangdong	25.0	98.14%
Shandong	25.0	96.26%	Hubei	25.0	95.97%
Shaanxi	25.0	98.27%	Fujian	25.0	90.35%
Jilin	25.0	97.66%	Guizhou	30.0	99.62%
Gansu	30.0	99.78%	Yunnan	25.0	99.66%
Xinjiang	30.0	99.77%	Chongqing	30.0	99.08%
Qinghai	30.0	99.66%	Jiangsu	25.0	99.13%
Tianjin	30.0	79.01%	Zhejiang	25.0	64.24%
Anhui	25.0	99.46%			
Tibet	30.0	97.53%	Shanghai	30.0	77.82%

214 Supplementary Table 18 | Dietary reference values for iodine.

Dietary reference values	Value (μg/day)
Recommended nutrient intake of iodine ^a	150
Tolerable upper iodine intake level ^b	600

²¹⁵ a Recommended nutrient intake of iodine is provided by the World Health Organization.

217 Supplementary Table 19 | Recommended limits for identifying high iodine groundwater.

Recommended limits (RL)	Value (μg/L)
RL _R ^a	75
RL_U^b	300

 $^{^{}a}$ RL_R is calculated based on the recommended nutrient intake of iodine (RNI).

^{216 &}lt;sup>b</sup> Tolerable upper iodine intake level is established by the Institute of Medicine.

²¹⁹ b RL_U is calculated based on the tolerable upper iodine intake level (UL).

220 Supplementary References

- 1. Fuge, R. & Johnson, C. C. Iodine and human health, the role of environmental
- geochemistry and diet, a review. Appl. Geochem. 63, 282-302 (2015).
- 223 2. Li, J. X. et al. Fluoride and iodine enrichment in groundwater of North China Plain:
- Evidences from speciation analysis and geochemical modeling. Sci. Total Environ. 598,
- 225 239-248 (2017).
- 3. Xue, X. B. et al. Impacts of sediment compaction on iodine enrichment in deep aquifers of
- the North China Plain. *Water Res.* **159**, 480-489 (2019).
- 4. Xue, X. B. et al. Effects of depositional environment and organic matter degradation on the
- enrichment and mobilization of iodine in the groundwater of the North China Plain. Sci.
- 230 Total Environ. **686**, 50-62 (2019).
- 5. Hou, X. L. et al. A review on speciation of iodine-129 in the environmental and biological
- 232 samples. Anal. Chim. Acta 632, 181-196 (2009).
- 6. Li, Y. Z. et al. Efficacy and Safety of Long-Term Universal Salt Iodization on Thyroid
- Disorders: Epidemiological Evidence from 31 Provinces of Mainland China. *Thyroid* **30**,
- 235 568-579 (2020).
- 7. National Health Commission of China Investigation on iodine content in drinking water of
- 237 China.

238	http://www.nhc.gov.cn/jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml
239	(2019).
240	8. Chinese Medical Association (Local Epidemiology Branch), Chinese Nutrition Society &
241	Chinese Society of Endocrinology. The Iodine Supplementation Guidelines for Chinese
242	Residents. http://www.nhc.gov.cn/ewebeditor/uploadfile/2018/05/20180515144010634.pdf
243	(2018).