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Abstract. Colloidal gold-conjugated monoclonal anti- 
bodies were prepared to stage-specific fast myosin 
heavy chain (MHC) isoforms of developing chicken 
pectoralis major (PM). Native thick filaments from 
different stages of development were reacted with these 
antibodies and examined in the electron microscope to 
determine their myosin isoform composition. Fila- 
ments prepared from 12-d embryo, 10-d chick, and 
1-yr chicken muscle specifically reacted with the em- 
bryonic (EB165), neonatal (2E9), and adult (AB8) an- 
timyosin gold-conjugated monoclonal antibodies, 
respectively. The myosin isoform composition was 
more complex in thick filaments from stages of pecto- 
ral muscle where more than one isoform was simul- 
taneously expressed. In 19-d embryo muscle where 
both embryonic and neonatal isoforms were present, 
three classes of filaments were found. One class of 
filaments reacted only with the embryonic antibody, a 

second class reacted only with the neonatal-specific 
antibody, and a third class of filaments were decorated 
by both antibodies. Similar results were obtained with 
filaments prepared from 44-d chicken PM where the 
neonatal and adult fast MHCs were expressed. These 
observations demonstrate that two myosin isoforms can 
exist in an individual thick filament in vivo. Immuno- 
electron microscopy was also used to determine the 
specific distribution of different fast MHC isoforms 
within individual filaments from different stages of de- 
velopment. The anti-embryonic and anti-adult antibod- 
ies uniformly decorated both homogeneous and hetero- 
geneous thick filaments. The neonatal specific 
antibody uniformly decorated homogeneous filaments; 
however, it preferentially decorated the center of heter- 
ogeneous filaments. These observations suggest that 
neonatal MHC may play a specific role in fibrillo- 
genesis. 

T 
HE basic structural unit of the skeletal muscle myo- 
fibril is the sarcomere, an interdigitating array of actin- 
containing thin filaments and myosin-containing thick 

filaments (22). The initial formation of myofibrils has been 
examined using biochemical, ultrastructural and immuno- 
chemical methods. Coinciding with terminal differentiation 
of the myoblast and fusion to form myotubes, the contractile 
proteins of the myofibril accumulate (11). Immunohistochem- 
istry and electron microscopy of developing myotubes re- 
vealed the simultaneous appearance of thin and thick fila- 
ments after their organization into sarcomeres (17). Stress 
fibers in developing muscle cells have been proposed to act 
as templates or nucleation sites along which nascent myofi- 
brils are formed (12, 34). However, recent studies suggest 
that nascent myofibrils may also form by a mechanism inde- 
pendent of stress fibers (31a, 43, 43a). 

Sarcomeric thick filaments are composed primarily of my- 
osin, a ubiquitous contractile protein, which is represented 
by a large multigene family (33, 36, 58). With the exception 
of Drosophila (4, 39), the diversity of sarcomeric myosin ex- 
pression observed in eukaryotes is the result of differential 
gene expression (7, 27, 32, 37). 

Myosin will polymerize in vitro to form filaments similar 

in structure to those isolated from muscle (20, 21). However, 
synthetic thick filaments lack many proteins associated with 
native filaments. Recent studies suggest that C, H, and X pro- 
teins are localized at specific sites along the surface of the 
thick filament (3). Therefore, the assembly of native thick 
filaments involves not only myosin polymerization but inter- 
actions with other proteins that may themselves be organized 
in specific structural arrays. 

Fluorescence energy transfer studies indicate that myosin 
monomers can rapidly exchange with synthetic myosin fila- 
ments (40). Smooth muscle myosin has also been found to 
be in equilibrium with smooth muscle thick filaments in vitro 
(30, 53). If a similar process occurs in native thick filaments 
in vivo, changes in myosin heavy chain (MHC) ~ expression 
would result in the insertion of new isoforms into preexisting 
filaments. Support for this proposal comes from studies of 
fluorescein-conjugated myosin microinjected into muscle 
cells containing organized myofibrils. In these studies, the 
myosin rapidly associated with A bands irrespective of the 
type of myosin injected (23a). 

1. Abbreviations used in this paper: MHC, myosin heavy chain; PM, pec- 
toralis major. 
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To provide more information about the assembly of thick 
filaments in vivo, we used isoform-specific gold-conjugated 
monoclonal antibodies and immunoelectron microscopy to 
analyze the isoform composition of native thick filaments 
isolated from developing chicken pectoralis major (PM). 
Our data demonstrate that during periods of development 
where two fast MHC isoforms were expressed, homoge- 
neous filaments composed of either of the two isoforms and 
heterogeneous filaments composed of both isoforms could be 
isolated. Furthermore, we observed that in heterogeneous 
thick filaments containing embryonic and neonatal myosins, 
and in heterogeneous thick filaments containing neonatal and 
adult myosins, the neonatal-specific antibody decorated the 
center of many thick filaments. Thus, our results provide evi- 
dence that a specific fast myosin isoform may play a unique 
role in thick filament assembly. 

Materials and Methods 

Preparation of Native Myosin Thick Filaments 
Native thick filaments were prepared from the PM of White Leghorn 
chickens at different ages as previously described (49). The PM was in- 
cubated for 15-30 min in relaxation buffer (100 mM KCI, 10 mM MgCl2, 
5 mM ATE 6 mM KH2PO4, 1 mM EGTA, 0.1 mM PMSE pH 7.0). The 
muscle was teased into thin strips, tied on wooden applicators, and in- 
cubated overnight in 50% glycerol in relaxation buffer at 4°C. After a 
change of buffer, the muscle was stored overnight at - 20° C  in 50% glycerol 
in relaxation buffer. The glycerinated muscle was rinsed twice with relaxa- 
tion buffer and homogenized three times with a glass Dounce homogenizer 
in 3 vol of relaxation buffer. The homogenate was filtered through four layers 
of cheese cloth and the filtrate was centrifuged at 12,000 g for 20 rain at 
4°C. The supernatant containing thick filaments was used in subsequent ex- 
periments. 

Myosin Preparations 
Myosin was extracted from the PM of 16-d embryo, 8-d chicken, and 1-yr- 
old adult chickens as described earlier (48). The concentration of proteins 
was determined by the Bradford protein assay (5). 

Preparation of Synthetic Myosin Thick Filaments 
In vitro-reassembled thick filaments were prepared from myosin extracts 
(35, 40). Filaments were assembled by dialyzing purified myosin (0.5-1.0 
mg/ml) overnight at 4°C in a low salt buffer consisting of 0.1 M KCI, 5 mM 
ATE 0.2 mM DTT, 0.1 mM PMSE 10 mM KH2PO4 pH 6.9. The filament 
solution was centrifuged at 2,000 g for 3 min to separate the assembled fila- 
ments from soluble myosin. Pelleted filaments were resuspended in an equal 
volume of low salt buffer and stored at 4°C. 

Preparation of Colloidal Gold-conjugated 
Monoclonal Antibodies 
Three monoclonal antibodies EB165, 2E9, and AB8 that recognize the em- 
bryonic, neonatal, and adult fast myosin heavy chain isoforms (9) were con- 
jugated to colloidal gold. Ammonium sulfate (40%) precipitated antibodies 
were further purified by DEAE Affi-gel blue chromatography (6). The 
purified monoclonal antibodies were conjugated to 5-nm (EBI65 and AB8) 
or 15-nm (2E9) colloidal gold particles (Janssen Life Sciences Products, 
Piscataway, N J) as previously described (38). 

lmmunogold Electron Microscopy 
Myosin thick filaments were decorated with gold-conjugated antibodies as 
described below. 200-mesh copper grids were coated with 0.25 % Formvar 
in dichloroetbane. The Formvar-coated grids were coated with carbon by 
vacuum evaporation. Filaments were allowed to adsorb to the grid surface 
for 1-2 min. The grids were incubated with 2% BSA in relaxation buffer 
for 1 h at 4°C. Filaments were reacted overnight at 4°C with a 1:10-1:100 

dilution of gold-conjugated monoclonal antibody in 2% BSA in relaxation 
buffer. For double labeling, the two gold-conjugated antibodies were com- 
bined in solution before incubating with the filaments bound to the grid. Un- 
reacted antibody was removed by floating the grids sequentially on six drops 
of relaxation buffer. Filaments were fixed with 1% glutaraldehyde, washed 
on six drops of relaxation buffer, washed on six drops of distilled water, and 
finally negative stained with 1% uranyl acetate. Grids were observed with 
an electron microscope (H-600; Hitachi Ltd., Tokyo) at an accelerating 
voltage of 75 kV. 

Quantitation of lmmunogold Labeling 
To quantitate specific gold decoration of isolated thick filaments, electron 
micrographs were taken of randomly selected regions of the grid. Samples 
for each experiment consisted of at least 600 thick filaments photographed 
from 5-10 grids. Only those particles distributed along the surface of the 
filament were counted, and a filament was considered labeled when at least 
five gold beads were observed on a filament. Filaments were considered 
double labeled when at least five 5-nm gold beads and five 15-nm gold beads 
decorated the same filament. 

Results 

Specificity of Gold-conjugated Monoclonal Antibodies 
Monoclonal antibodies that recognize the three stage-spe- 
cific fast MHC isoforms identified in chicken PM were con- 
jugated to either 5- or 15-nm colloidal gold as described in 
Materials and Methods. Western blots demonstrated that 
conjugation to colloidal gold had no effect on antibody spec- 
ificity (data not shown). Table I summarizes the specificities 
of the gold-conjugated monoclonal antibodies. 

Immunogold EM of Myosin Thick Filaments 
Native thick filaments were prepared from PM of 12-d 
chicken embryos, 19-d chicken embryos, 10-d chickens, 
44-d chickens, and 1-yr chickens for use in immunogold 
labeling experiments. At all stages of development, thick 
filaments had similar structure consisting of finely tapered 
ends, smooth central bare zone, rough surface projections, 
and an average length of 16/~m (data not shown). 

To optimize the decoration of thick filaments with gold- 
conjugated monoclonal antibodies, a series of dilution ex- 
periments were performed for each antibody. An example of 
these results is shown in Fig. 1 where 15-nm gold-conjugated 
2E9 antibody was incubated with thick filaments isolated 
from 10-d chicken PM. Filaments were decorated along 
their length with gold particles (Fig. 1). Dense staining pro- 
tein aggregates and backgrourrd staining were also observed. 
Since unpolymerized myosin is present in our samples and 
would be adsorbed to the grid, some antibody binding to the 
grid surface would be expected. At high antibody concentra- 
tions dense decoration of the filaments was observed (Fig. 
1, C and D). However, this often results in large, darkly 
stained aggregates, which makes visualization of the filament 
and identification of different size gold beads in the same ilia- 

Table I. Specificity of Gold-conjugated Monoclonal 
Antibodies to Chicken Pectoral Muscle Myosins 
Stage of development EB 165 2E9 AB8 

12-d embryo + - - 
lO-d chick + / -  + - 
l -yr  chicken + - + 
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Figure 1. Thick filaments isolated from 10-d chicken PM decorated with anti-neonatal MHC antibody. Thick filament preparations from 
10-d chick PM were incubated with 15-nm gold-conjugated 2E9 antibody at (.4) 1:100, (B) 1:50, (C) 1:10, and (D) 1:5 dilutions. At a 
dilution of 1:100, the majority of gold beads decorated the filaments while background labeling was minimal. Increased antibody concentra- 
tion results in more filament decoration (B and C) with an increase in background as well. At a 1:5 dilution of antibody, filament decoration 
was very dense resulting in the formation of large aggregates which obscured the filament. Bar, 100 nm. 

ment difficult. Thus, we used antibody concentrations (1:50- 
1:100) that decorated >90% of the filaments when they con- 
tained the appropriate myosin (see Fig. 2 and Table II). This 
allowed us to easily identify filaments that reacted with two 
different antibodies. 

Thick filaments isolated from the PM of 12-d embryonic 
chicken, 10-d chicken, and l-yr chicken were reacted with 
EB165, 2E9, and AB8 gold-conjugated monoclonal antibod- 
ies. Filaments prepared from the PM of 12-d chicken em- 
bryos were decorated with 5-nm gold-conjugated EB165 but 
not with gold-conjugated 2E9 or AB8 antibodies (Fig. 2 A). 
This is the expected result if only embryonic myosin is ex- 
pressed at this stage of development. As shown in Fig. 2 B, 
15-nm gold-conjugated 2E9 antibody reacts with the major- 
ity of filaments from the PM of 10-d chickens, while 5-nm 
gold-conjugated AB8 antibody does not. A few filaments re- 
act with 5-nm gold-conjugated EB165 at this stage of devel- 
opment. This is consistent with previous studies showing the 
persistence of a small amount of embryonic fast MHC in the 
PM of neonatal chickens (9). Native filaments prepared from 
the PM of 1-yr chickens were decorated with both gold-con- 
jugated EB165 and gold-conjugated AB8 antibodies but not 

with gold-conjugated 2E9 antibody (Fig. 2 C). This is con- 
sistent with previous studies that showed only the adult iso- 
form of MHC is present at this stage of maturation (9). Table 
II summarizes the percentage of filaments decorated with 
each gold-conjugated monoclonal antibody at these stages of 

Table II. Single Immunogold-labeled Thick Filaments 

Stage Antibody Total filaments counted Percent labeled 

12-d embryo EB165 495 98 
2E9 500 0 
AB8 450 0 

10-d chick EBI65 600 3 
2E9 605 90 
AB8 590 0 

l -yr  chicken EB165 600 93 
2E9 550 0 
AB8 595 93 

The percentage of thick filaments decorated with each of the gold-conjugated 
antibodies at different stages of PM muscle development is summarized from 
observations on filaments like those illustrated in Fig. 4. A filament was consi- 
dered labeled when at least five gold beads were present along the length of 
the filament. 
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PM development. From these results and the known spe- 
cificity of our antibodies, filaments from the PM of 12-d em- 
bryo, 10-d chicken, and 1-yr chicken are homogeneous and 
composed of embryonic myosin, neonatal myosin, and adult 
myosin, respectively. Although 3 % of the filaments from the 
PM of 10-d chickens were decorated with EB165 antibody, 
in these experiments, we cannot determine whether embry- 
onic and neonatal myosins are in the same or different fila- 
ments. 

To determine the myosin composition of filaments from 
stages of PM development where multiple fast MHCs are 
simultaneously expressed within the same muscle fiber, we 
reacted isolated filaments with a mixture of gold-conjugated 
antibodies and examined them by EM. Thick filaments were 
prepared from the PM of 19-d chicken embryos, a stage of 
development where neonatal fast MHC is rapidly accumulat- 
ing in muscle fibers comprised of embryonic myosin (9). 
When filaments were incubated with both 5-nm gold- 
conjugated EB165 antibody and 15-nm gold-conjugated 2E9 
antibody, three classes of filaments were observed. One class 
of filaments was decorated with the embryonic antibody 
(Fig. 3 A); a second class reacted only with the neonatal anti- 
body (Fig. 3 B); and a third class was labeled by both anti- 
bodies (Fig. 3 C). 

Similar results were obtained with thick filaments isolated 
from the PM of 44-d-old chickens in which both the neonatal 
and adult MHCs are expressed. These filaments were in- 
cubated with 15-nm gold-conjugated 2E9 antibody and 5-nm 
gold-conjugated AB8 antibody and examined by EM. Again, 
three classes of filaments were identified based on their reac- 
tivity with these antibodies. One class reacted with 2E9 anti- 
body (Fig. 4 A), the second class was decorated with AB8 
antibody (Fig. 4 B), and the third class reacted with both an- 
tibodies (Fig. 4 C). 

Table III summarizes our observations on filaments from 
the PM of 19-d embryos and 44-d chickens. At both stages 
of PM development, approximately half of the filaments 
were labeled by two antibodies clearly demonstrating that 
two fast MHC isoforms can exist in the same native thick fila- 
ment. However, in addition to heterogeneous filaments, there 
remain filaments that react only with a single antibody. 

To determine whether both homogeneous and heteroge- 
neous filaments would form from myosins polymerized in 
vitro, we prepared synthetic thick filaments from a mixture 
of purified embryonic and neonatal myosins as described in 
Materials and Methods. In electron micrographs of nega- 
tively stained filaments, the synthetic filaments had tapered 
ends and rough surface projections similar to native fila- 
ments but exhibited a greater variability of filament length 
(Fig. 5 A). These filaments were then incubated with 5-nm 
gold-conjugated EB165 and 15-nm gold-conjugated 2E9 
antibodies and examined by EM. In contrast to native illa- 
ments, only a single class of filaments (>98%) decorated 
with both antibodies was observed (Fig. 5 B). 

Figure 2. Immunogold labeling of thick filaments from the PM of 
12-d chicken embryos, 10-d chicks, and 1-yr chickens. Thick fila- 
ments were prepared from the PM of 12-d chicken embryos (A), 
10-d chicks (B), and l-yr chickens (C). Filaments from each stage 
were reacted with 5-nm gold-conjugated EBI65 (A 1, B 1, and C 
1 ), 15-rim gold-conjugated 2E9 (.4 2, B 2, and C2), and 5-nm gold- 
conjugated AB8 (A 3, B 3, and C 3). Filaments from the embryo 

reacted only with EB165 antibody. The majority of filaments from 
10-d chicks were decorated by 2E9, but a few ('~3%) reacted with 
EB165. No filaments from the 10-d chicks reacted with ABS. Fila- 
ments from the l-yr adult reacted with both EB165 and AB8, but 
not with 2E9. Closed arrows indicate 5-nm gold beads and open ar- 
rows indicate 15-nm gold beads. Bar, 100 rim. 

The Journal of Cell Biology, Volume 108, 1989 536 



Figure 3. Native thick filaments isolated from the PM of 19-d embryos reacted with gold-conjugated anti-embryonic and gold-conjugated 
anti-neonatal antibodies. Filaments from PM of 19-d embryos were labeled with 5-nm gold-conjugated EB165 antibody and 15-nm gold- 
conjugated 2E9 antibody as described in Materials and Methods. Filaments were labeled with EB165 (A), 2E9 (B), or both antibodies 
(C). White arrows indicate the position of 5-nm gold beads and black arrows indicate the position of 15-nm gold beads. Bar, 100 nm. 

Distribution of Different MHC Isoforms in Native 
Thick Filaments 
To determine the distribution of MHCs within individual 
thick filaments, a grid was constructed that divided a fila- 
ment into five equal segments (Fig. 6). This grid was placed 
over an electron micrograph of a filament and the number of 
gold particles decorating each of the five regions was deter- 
mined. If filaments were randomly decorated, each region 
would then contain ,~20% of the gold labeling. 

The distribution of immunogold labeling was first ana- 
lyzed on homogeneous filaments from the PM of 12-d em- 
bryos, 10-d chickens, and 1-yr chickens. As seen in Fig. 7, 
,~20% of the gold particles counted were localized in each 
region for filaments prepared from 12-d embryo incubated 
with the anti-embryonic MHC antibody. Similar results were 
obtained with filaments from the PM of 10-d chickens re- 
acted with the anti-neonatal MHC gold-conjugated antibody 
and with filaments from the PM of 1-yr chickens reacted with 
anti-adult MHC gold-conjugated antibody. Based on these 
results, it appears that the embryonic, neonatal, and adult an- 
tibody gold probes uniformly decorate filaments composed 
of embryonic, neonatal, and adult MHCs, respectively. This 

uniform labeling indicates that the epitopes for these anti- 
bodies were accessible along the entire length of the fila- 
ment. 

This same analysis was then performed on thick filaments 
from the PM of 19-d chicken embrye, that reacted with both 
EB165 and 2E9 antibodies. As shown in Fig. 8, filaments 
were uniformly decorated with gold-conjugated anti-embry- 
onic MHC antibody. However, the anti-neonatal MHC anti- 
body preferentially decorated the center of filaments. More 
than 42 % of the gold beads counted decorated this region 
while the remainder of the beads were uniformly distributed 
among the other four regions. The data suggest that while the 
embryonic fast myosin isoform was randomly distributed in 
filaments from 19-d embryonic PM, the neonatal isoform 
was preferentially localized in the center of filaments. In illa- 
ments from the PM of44-d posthatch chicken that contained 
both neonatal and adult MHCs, gold-conjugated anti-adult 
MHC antibody uniformly decorated the thick filaments while 
antineonatal MHC antibody again was observed to preferen- 
tially decorate the center of the filaments (Fig. 9). Thus, the 
neonatal fast MHC isoform exhibited a preferential localiza- 
tion at the central region of heterogeneous filaments irre- 
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Figure 4. Native thick filaments isolated from the PM of 44-d chickens reacted with gold-conjugated anti-neonatal and gold-conjugated 
anti-adult MHC antibodies. Filaments from the PM of 44-d chickens were labeled with 15-nm gold-conjugated 2E9 and 5-nm gold-con- 
jugated AB8 antibodies as described in Materials and Methods. Filaments were labeled with 2E9 (A), AB8 (B), or both antibodies (C). 
White arrows indicate the position of 5-rim gold beads and black arrows indicate the position of 15-nm gold beads. Bar, 100 nm. 

spective of whether the other isoform was the embryonic or 
adult MHC. 

Discuss ion  

We have demonstrated that when two MHC isoforms are ex- 
pressed in chicken PM, thick filaments may contain either 
one or both MHCs. Isolated thick filaments from 19-d em- 
bryonic PM may be grouped into three classes based on their 
MHC content. As shown in Fig. 3, thick filaments may be 

Table IIL Double Immunogold-labeled Thick Filaments 

Stage Antibody Percent labeled 

19-d embryo EB 165 14.3 

(n = 934) 2E9 33.7 
EB165+2E9  44.9 

44-d chicken 2E9 23 

(n = 999) AB8 21.4 
2E9 + AB8 54.8 

Filaments from the PM of 19-d embryos were incubated with a mixture of 
5-rim gold-conjugated EB 165 and 15-nm gold-conjugated 2E9 antibodies. Fila- 
ments from the PM of 44-d chickens were incubated with a mixture of 15-nm 
gold-conjugated 2E9 and 5-nm gold-conjugated AB8 antibodies. The percen- 
tage of filaments decorated with either a single or both antibodies is summa- 
rized from observations On filaments similar to those illustrated in Figs. 5 and 
6. n, number of filaments counted. 

composed of embryonic MHCs, neonatal MHCs, or both 
MHCs. Since our filament preparations are derived from 
whole muscle homogenates, we have not demonstrated that 
all three classes of filaments are found in the same fiber. 
However, at this early stage of pectoral muscle development, 
all of the fibers react with the anti-embryonic MHC antibody 
and >90% of the fibers also react with the anti-neonatal 
MHC antibody (reference 9; data not shown). Since no fibers 
are present that react with only the anti-neonatal MHC anti- 
body, the filaments composed of pure neonatal myosin must 
arise from fibers that also contain embryonic myosin. Simi- 
lar observations with filaments from 44-d muscle, a stage at 
which virtually all cells contained both neonatal and adult 
MHCs, also support the conclusion that all myosin filaments 
within a single fiber are not identical. 

Although 33% of the filaments isolated from 19-d em- 
bryonic pectoral muscle reacted only with anti-neonatal 
MHC antibody, double antibody sandwich ELISA (8) sug- 
gests that only 10-15 % of the myosin present in the pectoral 
muscle at this stage of development is the neonatal isoform 
(data not shown). This discrepancy may be the result of a 
differential release of thick filaments from myofibrils. The 
majority of preexisting thick filaments in embryonic muscle 
would contain embryonic MHC. Thus, neonatal MHC-con- 
taining thick filaments would represent a larger percentage 
of newly assembled thick filaments than of total filaments in 
19-d embryonic muscle. It has been reported that homogeni- 
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Figure 5. Synthetic filaments prepared from embryonic and neonatal MHCs reacted with gold-conjugated anti-embryonic and gold- 
conjugated anti-neonatal MHC antibodies. Synthetic filaments were prepared from embryonic and neonatal myosin as described in 
Materials and Methods. (A) A representative sample of assembled filaments is shown. (B) Filaments were incubated with a mixture of 
5-nm gold-conjugated EB165 antibody and 15-nm gold-conjugated 2E9 antibody. All synthetic filaments were decorated with both antibod- 
ies. White arrows indicate the position of 5-nm gold beads and black arrows indicate the position of 15-nm gold beads. Bar, 100 nm. 

zation of muscle in ATP-containing buffers may preferen- 
tially release newly added thick filaments (54). Thus, our 
observations may be explained if recently added myosin fila- 
ments enriched in neonatal MHC are at the periphery of the 
myofibril and are more easily extracted by our procedures. 
If  this hypothesis is correct, it may be possible, by using im- 

munoelectron microscopy, to demonstrate directly the pe- 
ripheral localization of  neonatal MHC at this stage of matu- 
ration. 

Since three classes of  filaments were isolated from de- 
veloping pectoral muscle, some form of compartmentaliza- 
tion of myosins or their mRNAs may exist in muscle cells. 

Figure 6. Immunogold labeled thick filaments divided into five regions. A grid was constructed that when overlaid on micrographs of native 
thick filaments divided them into five equal regions, ends (1 and 5), mid-portions (2 and 4), and central zone (3) are indicated. The number 
of gold beads was counted in each region of the labeled filaments. Bar, 100 nm. 
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Figure 7. Distribution of gold beads in homogeneous filaments. (a) 
Filaments from the PM of 12-d embryos were reacted with gold- 
conjugated EBI65 and the number of gold beads in each of the five 
regions described in Fig. 6 was determined. The number above 
each of the bars in the histogram represents the percentage in that 
region of the total beads counted; (b) filaments from the PM of 10-d 
chicks reacted with gold-conjugated 2E9 antibody; and (c) fila- 
ments from the PM of l-yr chickens reacted with AB8 antibody 
were analyzed as described above. A total of 795 filaments were 
counted in a, 787 in b, and 750 in c. The data indicate that the epi- 
tope recognized by each antibody is equally accessible along the 
length of the filament. 
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Figure 9. Distribution of gold beads in heterogeneous filaments 
from the PM of 44-d chickens. Myosin filaments isolated from the 
PM of 44-d chickens were reacted with 15-nm 2E9 antibody and 
with 5-nm gold-conjugated AB8 antibody. The distribution of label- 
ing for each antibody in filaments that were decorated by both anti- 
bodies was determined as described in Fig. 7. The number above 
each of the bars in the histogram represents the percentage in that 
region of the total beads of each size counted. The total number of 
double-labeled filaments analyzed was 605. Although to a lesser de- 
gree than in Fig. 8, labeling with the anti-neonatal antibody in the 
center of the filament is greater than at the ends. 

Differential distribution of myosins has been demonstrated in 
developing muscle cells in culture (8), in regenerating mus- 
cle fibers (24), at the neuromuscular junction (42), and in 
muscle fibers undergoing fiber type transformation (51). 
These regional differences may be the result of the expres- 
sion of different mRNAs by myonuclei within the same fiber. 
Recently, it has been reported that mRNAs that encode 
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Figure 8. Distribution of gold beads in heterogeneous filaments 
from the PM of 19-d embryos. Myosin filaments isolated from the 
PM of 19-d embryos were reacted with 5-nm gold-conjugated 
EB165 and 15-nm gold-conjugated 2E9. The distribution of gold 
beads on filaments decorated with both antibodies was analyzed as 
in Fig. 7. The number above each of the bars in the histogram 
represents the percentage in that region of the total beads of each 
size counted. The total number of double-labeled filaments ana- 
lyzed was 625. The results show that the embryonic antibody uni- 
formly decorated filaments, while the neonatal antibody preferen- 
tially labeled the center of filaments. 

cytoskeletal proteins, such as actin and vimentin, have 
specific cytoskeletal localizations (25). These studies cou- 
pled with co-translational assembly of MHCs in cultured 
muscle cells (23) may explain the biosynthesis of discrete 
classes of thick filaments. 

Since there is no evidence that entire myofibrils disassem- 
ble or turn over en masse (28, 59), myosin exchange has been 
proposed as a mechanism for replacing myosin isoforms in 
developing muscle (40). However, the persistence of fila- 
ments containing different MHCs argues against a rapid rate 
of exchange in vivo. It has been reported that the rate of ex- 
change was significantly reduced in filaments assembled 
from myosin and C protein (Saad, A. D., E. Zlotchenko, and 
I. Tan, unpublished observations). If accessory proteins 
stabilize myosin filaments in vitro, one would expect a sig- 
nificantly slower rate of exchange within the complex struc- 
ture of the myofibril. 

We also observed that neonatal MHC appears to be prefer- 
entially localized in the central bare zone in thick filaments 
composed of more than one isoform. This is not the result 
of a difference in the availability of the epitope recognized 
by the anti-neonatal MHC antibody since the antibody reacts 
equally well with all regions of the myosin filament. A dif- 
ferential localization of different myosins has previously 
been reported in nematode muscle where one of the isoforms, 
myosin A, is also preferentially localized in the central re- 
gion of the filament (14, 15, 31). Although our observation 
is the first direct demonstration of differential distribution of 
a myosin isoform in thick filaments from vertebrate muscle, 
it has previously been observed that cardiac myosin isoforms 
are differentially localized in the A band of myofibrils during 
thyroid hormone-induced isoform transitions (57) and that 
slow myosin is found in the central region of the A band of 
myofibrils in myotubes containing both fast and slow MHC 
isoforms (44). 
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The expression of neonatal MHC in pectoral muscle corre- 
sponds with a period of rapid fiber hypertrophy, a concomi- 
tant increase in the diameter of myofibrils, and an accumula- 
tion of myosin thick filaments (19, 45, 46). Neonatal MHC 
is centrally localized in both early stages of muscle matura- 
tion in which it is first being expressed (Fig. 8), and in later 
stages of muscle growth in which it is being replaced by the 
adult isoform (Fig. 9). This suggests that its specific localiza- 
tion in thick filaments is the result of an intrinsic property 
of this isoform rather than the timing of its appearance. 

The localization of neonatal myosin in the central bare 
zone suggests that this isoform may play a specific role in 
thick filament assembly. If the majority of filaments that we 
observe are newly formed, then perhaps neonatal myosin 
preferentially nucleates de novo assembly. This would be 
consistent with in vitro studies of myosin assembly in which 
synthetic thick filaments are thought to form from the bare 
zone outward (10). However, there are other models of fila- 
ment assembly. Accessory proteins appear to be involved in 
the nucleation of microtubules and microfilaments (18, 56). 
Recently, it has been proposed that there is a core structure 
in thick filaments from nematode muscle that acts as a tem- 
plate for the addition of myosin subunits (15, 16). If this pro- 
posal is correct, then the regulation of myosin assembly in 
vivo may be specified by uncharacterized proteins of the 
myofibril. This would explain why conclusions based on 
studies of synthetic filaments formed from purified myosin 
would differ from conclusions of studies of filaments formed 
in vivo. That factors other than the myosin precursor pool are 
involved in native thick filament formation is suggested from 
our studies since only a single homogeneous class of myosin 
filaments is produced when embryonic and neonatal myosin 
are copolymerized in vitro (Fig. 5). 

In conclusion, we have shown that in developing pectoral 
muscle the myosin isoform composition of native thick fila- 
ments is more complex than would have been predicted 
based on studies of synthetic filaments. While our results do 
not rule out myosin exchange in native filaments, the hetero- 
geneity of the filament population that we observed can only 
be maintained if its rate is considerably slower than predicted 
from in vitro experiments. Furthermore, we demonstrate the 
preferential localization of neonatal myosin to the central 
bare zone of many thick filaments whether it is copolymer- 
ized in vivo with embryonic or adult myosin. This suggests 
that some MHC isoforms may play specific roles in myofibril- 
logenesis in vivo. 
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