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“Yesterday’s home runs don’t win today’s games” 
Babe Ruth (attributed) 

Stereotactic body radiotherapy (SBRT) is a safe and effective 
locoregional therapy for inoperable patients with localized or recurrent 
hepatocellular carcinoma (HCC) and may be used as bridging therapy 
ahead of liver transplantation [1]. Compared to radiofrequency ablation 
(RFA), transarterial chemoembolization (TACE), and radioembolization 
(TARE), SBRT uniquely allows for risk-adapted prescription of ablative 
dosing to the entire tumor target across a range of tumor sizes and 
peritumoral vascularity. Recent clinical practice guidelines offer vari-
able endorsement of SBRT as a standard-of-care treatment option for 
HCC. These range from recommended use of SBRT by the American 
Association for the Study of Liver Diseases (AASLD) and the American 
Society for Radiation Oncology (ASTRO) to omission of radiotherapy by 
the Barcelona Clinic Liver Cancer (BCLC) group [2–5]. How can we 
advocate for SBRT to be duly considered in day-by-day, multidisci-
plinary HCC management? 

Yesterday’s Home Runs Re-examined 

We can highlight the lessons learned from recent comparative studies 
to promote SBRT as an ideal locoregional therapy for unresectable HCC 
(Table 1). Features of an ideal locoregional therapy include excellent 
local control, survival benefit, minimized morbidity, and cost- 
effectiveness (Table 2). 

Local control 

SBRT appears to provide superior and more durable local control 
(LC) when compared to TACE. LC is approximately 2–4 times higher 
following SBRT in a number of recent retrospective and prospective 
studies. Significantly superior LC rates (p < 0.001) were reported with 
SBRT at 1-year (97 % versus 47 %) and 2-years (91 % versus 23 %) in a 
propensity score analysis of a retrospective single-institution cohort 
with 1–2 unresectable HCC tumors (n = 209 patients [125 post-SBRT, 84 
post-TACE], Child-Pugh [CP]-AB) [6]. In this study, macrovascular in-
vasion (MVI) was associated with worse LC following TACE (HR 9.9, p <
0.001). Two prospective randomized controlled trials (RCT) have been 
published comparing TACE and SBRT [7,8]; both were closed early, one 
due to slow accrual and the other meeting pre-specified endpoints early, 
underscoring the challenge of generating high-quality comparative ev-
idence with large sample sizes. SBRT was associated with superior LC 
(HR 0.15 [95 % CI, 0.04–0.4], p = 0.0002), corresponding to almost four 
times higher 1-year LC (84 % vs 23 %), in a single-center phase 3 trial of 
SBRT versus a second course of TACE (21 %) or bland embolization (79 
%) (n = 40 patients, BCLC-AB, CP-AB) [7]. While accrual was slow, this 
trial was closed early when the threshold number of events was reached. 
In the poorly accrued TRENDY trial, a multi-center phase 2 RCT among 
patients ineligible for further surgery and RFA (n = 28, CP-A, one tumor 
per patient), time to local recurrence was longer following SBRT versus 
TACE (>40 months versus 12.0 months, HR 0.15 [95 % CI, 0.02–1.21], 
p = 0.075) [8]. On post-hoc per-protocol analysis of TRENDY, SBRT had 
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a LC rate of 100 % at 1 and 2 years, which was more than double the LC 
rate of TACE (p = 0.019). The worse LC of TACE may be attributable to 
treatment-induced damage to peritumoral vasculature, thereby creating 
hypoxic conditions that promote recurrence among sublethally-treated 
clones [9]. As we await the results of a multi-national phase 3 RCT of 
SBRT versus TACE for unresectable HCC (IAEA E33036) [10], we can 
advocate for SBRT over TACE in many scenarios including high risk of 
TACE-related toxicity, poor response to or progression post-TACE, and 
HCC with MVI if locoregional therapy is under consideration. 

Superior LC is observed following SBRT versus RFA in large retro-
spective studies. Numerically higher freedom from local progression 
(FFLP) was reported for SBRT at 1 year (97.4 % vs 83.6 %) and 2 year 
(83.8 % vs 80.2 %) in a propensity score analysis of a single-center 
retrospective cohort with inoperable HCC (n = 224 patients [63 post- 
SBRT, 161 post-RFA], primarily CP-AB [11]. Re-ablations within 12 
months, which occurred for 10 % of patients, were not considered local 
failures in this study. Accounting for early re-ablations, SBRT would 
have had an even greater advantage in FFLP. Subgroup analyses were 
performed to identify factors associated with improved LC in this study; 
although tumor size ≥ 2 cm was identified as favouring SBRT (HR 3.35 
[95 % CI, 1.17–9.62], p = 0.025), BCLC stage was not included in the 
propensity matching. SBRT resulted in significantly higher local control 
(HR 0.45 [95 % CI, 0.35–0.58], p < 0.001), particularly for large (>3 
cm) subphrenic tumors and after TACE, in a large multi-national pro-
pensity score analysis (n = 2064 patients, 1568 post-RFA and 496 post- 
SBRT, 88 % CP-A) accounting for BCLC factors [12]. Superior LC was 
durable in this analysis, with 3-year cumulative local recurrence rates of 
21.2 % and 27.9 % following SBRT and RFA, respectively (p < 0.001). 
Study-level meta-analyses of published retrospective data have 
confirmed the superior LC of SBRT versus RFA, across three large pro-
pensity score studies matching BCLC factors (HR 0.39 [95 % CI, 

0.30–0.51], p < 0.001) and 14 comparative studies (OR 0.45 [95 % CI, 
0.36–0.56], p < 0.001) [13,14]. Prospective randomized data 
comparing the local effectiveness of SBRT and RFA across clinical sce-
narios is pending. Higher LC with SBRT may be extrapolated from a 
positive single-center phase 3 non-inferiority RCT of hypofractionated 
proton therapy versus RFA (144 patients, CP-AB7, ≤ 2 tumors, < 3 cm) 
[17], which demonstrated numerically higher local progression-free 
survival (LPFS) with PBT (94.8 %) than with RFA (83.9 %). A phase 3 
non-inferiority RCT comparing FFLP following SBRT and RFA for small 
(≤3 cm) unresectable HCC is underway (NCT05433701). The LC of RFA 
may be limited by the heat-sink effect, wherein convection cooling from 
large vessels may result in incomplete ablation of perivascular disease 
[15], as well as by tumor size and distance of tumor edge from the 
ablation zone [16]. In contrast, SBRT allows for prescription of ablative 
dose to the entire tumor. We can advocate for SBRT over RFA in situa-
tions including larger tumors, peri-vascular disease, and post-TACE, and 
appraise randomized data as it emerges. 

Comparative LC outcomes for SBRT and TARE with Yttrium-90 (Y- 
90) are limited. Two single-center retrospective studies have been per-
formed and published in abstract form [18,19]. Median FFLP was 
similar between SBRT and TARE (9 versus 8 months, p > 0.05) in a series 
of 239 patients (98 post-SBRT and 187 post-TARE with Y-90) with le-
sions < 10 cm or 1000 cc [18]. Similar 1-year LC was reported following 
SBRT and Y-90 (87 % vs 89 %, p = 0.76) in a cohort of 87 patients (24 
post-SBRT, 63 post-TARE) [19]. Two prospective randomized studies 
(NCT05157451 and NCT04235660) were attempted but ultimately 
terminated due to lack of feasibility and inability to recruit patients. In 
the absence of strong comparative clinical data, some practitioners 
favour Y-90 over SBRT owing to the differential dosimetry of these 
modalities. Y-90 allows for greater extremes of intratumoral hot and 
non-ablative cold spots, due to radioembolization of neovasculature 

Table 1 
Lessons learned from recent comparative studies of stereotactic body radiotherapy and other locoregional therapies for unresectable HCC.  

LC Superior LC with SBRT versus TACE (~2–4 times) [6–8]; also noted with HF-PBT [32]   

• Consider SBRT over TACE where high risk of TACE-related toxicity, poor response to or progression after prior TACE, HCC with MVI where LRT 
is considered 

Superior LC with SBRT versus RFA [11–14]; also noted with HF-PBT [17]   

• Consider SBRT over RFA for larger tumors (especially subphrenic) and poor response to or progression after prior TACE 
Limited data comparing SBRT and TARE with Y-90 suggests comparable LC [18,19]  

OS and PFS Similar OS following SBRT as compared to TACE [6–8], RFA [11,13], and TARE [18], where LRT has established role 
Extrapolate superior PFS with SBRT versus TACE from HF-PBT literature [32] 
Improved median OS (Δ 3.5 months) and PFS (Δ 3.7 months) with addition of SBRT to Sorafenib for locally advanced HCC with MVI [27]   

• Await efficacy and safety data from future trials of current SoC systemic therapy (i.e. Atezolizumab/Pembrolizumab) þ/- SBRT  
• Avoid off-trial concurrent SBRT and Atezolizumab/Bevacizumab, particularly when tumor proximal to luminal GI structures  
• Consider off-trial SBRT prior to Atezolizumab/Bevacizumab only upon MDD and individualized decision making  

Toxicity and QoL Lower toxicity with SBRT versus TACE [6–8,33,34] 
Similar toxicity with SBRT as RFA and Y-90 [11–13,19] 
Similar toxicity and improved QoL when adding SBRT to Sorafenib [27]   

• Use SBRT if LRT is considered for patients on TKI given no increase in toxicity  

Cost-effectiveness Use of SBRT over TACE eliminates need for hospitalization [36] 
SBRT may have less treatment-related costs for patients and health systems than TACE and TARE [19,32,37]  

Technical 
Considerations 

SBRT allows optimized prescription of ablative dose to the entire tumor target across a range of tumor sizes and peritumor vascularity 
TACE may induce damage to peritumoral vasculature, creating hypoxic conditions promoting recurrence [9] 
RFA may be limited by the heat-sink effect, which may result in incomplete ablation of perivascular disease [15] 
TARE with Y-90 has unclear dosimetry; aggressive escalation of median (partial) doses less likely to predict treatment response than coverage of GTV with 
ablative dose [21,22] 

Abbreviations: LC = local control; OS = overall survival; PFS = progression-free survival; QoL = quality-of-life; SBRT = stereotactic body radiotherapy; TACE =
transarterial chemoembolization; HF-PBT = hypofractionated proton beam therapy; HCC = hepatocellular carcinoma; MVI = macrovascular invasion; LRT =
locoregional therapy; RFA = radiofrequency ablation; TARE = transarterial radioembolization; Y-90 = Yttrium-90; PFS = progression-free survival; SoC = standard-of- 
care; GI = gastrointestinal; MDD = multidisciplinary discussion; TKI = tyrosine kinase inhibitor; GTV = gross tumor volume. 
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heterogeneously distributed within tumors, while SBRT generates a 
comparatively homogenous distribution of ablative dose throughout 
tumors [20]. Enthusiasm for Y-90 has increased with the publication of 
the LEGACY trial, a multi-center retrospective single arm study in which 
very high median doses (410.1 Gy, range: 199.7–797.6 Gy) were 
delivered to solitary unresectable HCC and complete pathologic necrosis 
was noted with doses in excess of 400 Gy [21]. Although these median 
doses are higher than what can be delivered with SBRT, they may not be 
necessary for durable local control. Confounding by indication may 
impact the attribution of high median doses to response, as tumors 
amenable to high doses may also be more amenable to volumetric 
coverage by ablative dose. Coverage of the gross tumor volume with 
ablative dose, rather than aggressive escalation of median (partial) 
doses, is likely to better predict treatment response to Y-90 for HCC [22]. 
When volumetric dose coverage is ablative, even modestly high 

prescription doses yield excellent LC outcomes following SBRT [23,24]. 
We must better understand the dosimetry of high-dose Y-90 radio-
embolization and quantify the comparative effectiveness of SBRT and Y- 
90 radioembolization as locoregional therapies. 

Overall and progression-free survival 

While SBRT results in a similar overall survival (OS) as TACE, RFA, 
and TARE across comparative effectiveness studies in unresectable HCC 
without MVI [6–8,11,13,18], the addition of SBRT to systemic therapy 
may improve OS and progression-free survival (PFS) for locally 
advanced HCC with MVI. This is a clinical scenario where other 
locoregional therapies have yet to demonstrate an additive survival 
advantage and the current standard-of-care is systemic therapy alone 
[2–4,6,25,26]. SBRT prior to Sorafenib improved median OS (15.8 vs 

Table 2 
Summary of comparative outcomes of locoregional treatments from recent studies.  

Abbreviations: SBRT = stereotactic body radiotherapy; TACE = transarterial chemoembolization; CP = Child-Pugh; NR = not reported; CTCAE = Common Terminology 
Criteria for Adverse Events; TAE = transarterial embolization; BCLC = Barcelona Clinic Liver Cancer; KPS = Karnofsky Performance Status; RFA = radiofrequency 
ablation; ECOG = Eastern Cooperative Oncology Group; QLQ-C30 = EORTC Core Quality-of-Life Questionnaire; QLQ-HCC18 = EORTC Quality-of-Life Questionnaire – 
Hepatocellular Carcinoma/Primary Liver Cancer Module; EQ-5D = European Quality-of-Life 5 Dimensions Questionnaire; PS = performance status; PIQ-6 = Pain Item 
Questionnaire (6 itmes); PCS = physical component summary of Short Form 36 (SF-36) Health Survey; MCS = mental component summary of Short Form 36 (SF-36) 
Health Survey; USD = United States Dollars; FFLP = freedom from local progression; GI = gastrointestinal; CLRR = cumulative local recurrence rate; LC = local 
control; CMR = cumulative mortality rate; OS = overall survival; HCC = hepatocellular carcinoma; TARE = transarterial radioembolization; ST = systemic therapy; 
MVI = macrovascular invasion; FACT-Hep = Functional Assessment of Cancer Therapy - Hepatobiliary. 
* Post-hoc, per-protocol analysis. 
** Assuming 60 patient per year. 
*** After adjustment for PS, metastases, CP-A5 vs 6, degree of MVI. 
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12.3 months, p = 0.0554) and PFS (9.2 vs 5.5 months, p = 0.0001) in 
RTOG 1112, a multi-center phase 3 RCT in 177 patients (CP-A, Zubrod 
performance status 0–2) with HCC unsuitable for resection, transplant, 
RFA, or TACE [27]. Patients on this trial had very advanced disease: 82 
% were BCLC- C, 74 % had MVI (63 % with advanced degree of MVI), 
metastases (4 %), and five or less tumors with median sum of maximum 
diameter 6.7 cm in the SBRT arm (maximum 20 cm allowed). The OS 
benefit in RTOG 1112 was statistically significant (HR 0.72 [95 % CI, 
0.52–0.99], p = 0.042) after adjusting for performance status, metas-
tases, CP-A5 versus 6, and degree of MVI. Since the inception of RTOG 
1112, the standard-of-care systemic therapy for patients with locally 
advanced HCC has changed from Sorafenib to the combination of Ate-
zolizumab and Bevacizumab [2–4]; as such, the trial was closed early. 
Clinical trials will be required to assess the OS and PFS benefit of adding 
SBRT to Atezolizumab and Bevacizumab in unresectable HCC with MVI, 
as well as the ideal sequence of local and systemic therapy. To date, the 
combination of SBRT and immunotherapy appears to be safe in the 
treatment of HCC [28,29]. Limited retrospective evidence suggests that 
high-dose radiotherapy combined with Atezolizumab and Bevacizumab 
may be well-tolerated [30]. A phase 1 trial is underway assessing the 
safety of SBRT delivered during cycles of both Atezolizumab and Bev-
acizumab in the treatment of HCC (NCT05488522). Until safety data 
from clinical trials are reported, concurrent use of SBRT and these 
agents, particularly Bevacizumab, is not recommended. Concurrent use 
of Bevacizumab and SBRT is not recommended for tumors proximal to 
luminal gastrointestinal (GI) structures, due to the potential risks for 
perforation and bleeding [31]. SBRT prior to Atezolizumab and Bev-
acizumab for unresectable HCC with MVI should only be considered 
upon multidisciplinary discussion and individualized decision making, 
considering limited locoregional options for aggressive tumors, poten-
tial delays in starting systemic therapy (e.g. if awaiting variceal band-
ing), and the pattern of failure among these patients. The role of SBRT in 
first-line treatment for unresectable HCC with MVI will continue to be 
refined in future clinical trials in the coming years. 

Extrapolating from the proton therapy literature, SBRT may also 
improve PFS compared to TACE for unresectable HCC amenable to 
locoregional therapy. Hypofractionated proton therapy was associated 
with a significant improvement in median PFS compared to TACE (not 
reached versus 12 months, p = 0.002) in a multi-center phase 3 trial of 
74 patients (CP-AB) with unresectable HCC not previously treated with 
locoregional therapy [32]. Although there are differences between 
photon and proton radiotherapy, it may be reasonable to infer a PFS 
benefit with any high-dose conformal radiotherapy for this population. 
NRG GI003 (NCT03186898), an on-going multi-center phase 3 RCT 
comparing proton and photon radiotherapy, will help determine 
whether oncologic outcomes are superior with proton therapy. 

Toxicity and quality of life 

SBRT has lower toxicity than TACE and similar toxicity to RFA and 
TARE. Grade 3 + toxicity was lower following SBRT versus TACE in 
retrospective and prospective studies (0–8 % vs 13) [6,8]. Grade 2 +
toxicity was lower following SBRT (23 % versus 65 %) in the preliminary 
analysis of a single-center phase 2 feasibility RCT of bridging SBRT 
versus TACE (NCT02182687) [33]. Higher quality-of-life (QOL) scores 
were also reported in terms of post-treatment improvement in pain in 
this trial [34]. The complete study manuscript is pending for this trial 
and a multi-center phase 3 trial (NCT03960008) is underway from the 
same group, further comparing these two bridging therapies [35]. SBRT 
and RFA have equally low toxicity rates (0–11 %) with no statistical 
differences (p > 0.05) across propensity score analyses of single- 
institutional and multi-national experiences [11–13]. Similar (p =
0.99) treatment-related toxicity rates were also reported between SBRT 
(50 %) and TARE with Y-90 (52.4 %) in the single-institutional retro-
spective experience reported by deBettencourt et al [19]. While RTOG 
1112 reported no difference in treatment-related grade 3 + toxicity rates 

between SBRT added to Sorafenib (47 %) and Sorafenib alone (42 %) for 
patients with locally advanced disease (p = 0.52) [27], it also reported 
greater improvement in QoL at 6 months post-treatment with SBRT and 
Sorafenib (35 %) than with Sorafenib alone (10 %). The low toxicity 
rates and favourable quality-of-life (QoL) outcomes of SBRT make it an 
attractive locoregional therapy across clinical indications for unresect-
able HCC, especially when Sorafenib or other tyrosine kinase inhibitors 
are being considered. 

Cost-Effectiveness 

We must limit the financial toxicity of locoregional therapy for pa-
tients and health systems. SBRT may be more cost-effective than TACE 
and TARE. Using SBRT instead of TACE eliminates the need for post- 
treatment hospitalization [36], as patients receiving TACE are often 
hospitalized after each of treatment while those receiving SBRT are not. 
This is estimated to result in 242,500 United States Dollars (USD) of 
annual cost savings for hospitals, due to reduced inpatient days [37]. 
Furthermore, SBRT is associated with less treatment-related costs than 
TACE. The total cost of 5-fraction SBRT was calculated as 45,083 USD 
and cost of fiducials calculated as 17,448 USD, for a total cost of 62,531 
USD [37]. In comparison, total cost of TACE with two treatments was 
127,230 USD. Underscoring the cost-effectiveness of radiotherapy over 
TACE, significantly fewer days of post-treatment hospitalization were 
noted with hypofractionated proton therapy than with TACE (24 vs 166, 
p < 0.001) and total mean cost per patient was 28 % lower for those who 
received proton therapy (25,410 USD) rather than TACE (35,484 USD) 
[32]. Limited data comparing SBRT and TARE also suggest improved 
cost-effectiveness with radiotherapy (12,885 versus 19,393 USD) [19]. 

Seventh-inning Stretch 

We should continue to improve upon the strengths of SBRT as a 
locoregional therapy for HCC and expand indications for its use as a 
standard-of-care treatment option. A number of emerging strategies may 
further widen the therapeutic index of SBRT in HCC. 

SMART: Stereotactic magnetic resonance-guided adaptive radiotherapy 

Uncertainties in SBRT planning and delivery limit the ablative dose 
safely delivered to tumors abutting hepatobiliary and luminal GI organs- 
at-risk (OAR). SMART reduces these uncertainties by using on-table MR 
imaging from an MR-linear accelerator for daily anatomical and posi-
tional adaptation and motion management [38], thereby permitting 
reductions in planning target volumes (PTV) and dose escalation. Pro-
spective single-arm and retrospective studies of SMART for HCC, chol-
angiocarcinoma, and liver metastases have shown 2-year LC of 73–100 
% (median: 80 %), grade 3 toxicity of 0–8 %, and no grade 4 + toxicity 
following biologically effective dose (BED10) prescriptions of 72–105 Gy 
(median: 93 Gy) [39]. Contrasting with HCC, liver metastases may have 
higher LC with BED10 > 100 Gy [23,24,40]; RASTAF (NCT04242342), 
an ongoing phase 2 non-randomized trial of SMART for liver tumors, is 
investigating dose-escalation with 50 Gy in 5 fractions (BED10 = 100 Gy) 
for tumors near OARs and 60 Gy in 5 fractions (BED10 = 132 Gy) for 
tumors away from OARs. To assess non-inferiority in Grade 3 + GI and 
hepatobiliary toxicity between SMART and conventional cone-beam CT 
guided-SBRT, the phase 2 MAESTRO study (NCT05027711) randomizes 
liver metastases amenable to BED10 ≥ 100 Gy to one of these treatments. 

Intensity-modulated stereotactic body proton therapy 

Protons can be used to reduce the integral liver dose associated with 
photon SBRT, potentially minimizing the risk of hepatic toxicity asso-
ciated with radiotherapy [41]. A retrospective single-institutional re-
view of stereotactic body proton therapy (SBPT) for 81 liver metastases 
in 46 patients, 56.5 % of whom had two or more treated tumors, 
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reported no grade 3 + toxicities [42]. Conformality and toxicity of SBPT 
with passive-scatter technology may be further improved by utilizing 
modern radiotherapy techniques for planning (e.g. robust optimization) 
and delivery (e.g. pencil beam scanning, fiducial-based or cone-beam CT 
image-guidance) allowing intensity modulated proton therapy (IMPT). 
A low median value mean liver dose (12.3 Gy relative biological effec-
tiveness) and percentage of patients having a 2 + increase in CP score 
(16 %) was reported in the single published series of IMPT, including 
SBPT (7/37 patients), for HCC [43]. There are challenges associated 
with dose delivery with intensity-modulated SBPT due to particle range 
uncertainties, target motion, and interplay effect, necessitating further 
investigation of clinical outcomes in larger series. A phase 2 single-arm 
trial of SBPT for HCC (NCT04805788) is in-progress; the primary 
endpoint is the 3-month rate of patients having a 2 + increase in CP 
score, and secondary endpoints include other toxicity and oncologic 
outcomes. 

Single-fraction SBRT 

Single-fraction SBRT is an appealing radiotherapy strategy for 
selected lesions away from the biliary tree and luminal GI structures, 
potentially offering comparable convenience with other locoregional 
therapies, less interference with systemic therapy, and higher cost 
effectiveness. There is growing data for single-fraction SBRT of liver 
metastases demonstrating low toxicity and excellent control with doses 
of 18–40 Gy [44,45]. Long-term outcomes of single-fraction SBRT from 
larger series are warranted to ensure efficacy and safety. 

Novel SBRT and systemic therapy combinations 

Innovative strategies are required to exploit the immune-modulating 
properties of SBRT in various permutations and combinations with 
immunotherapy, thereby potentiating further improvements in both 
local and systemic control in HCC. The addition of immunotherapy to 
SBRT has demonstrated gains in 12-month OS (92 % vs 74 %, p = 0.034) 
and objective response rate (88 % vs 50 %, p = 0.006) in a propensity 
score analysis of a retrospective multi-institution cohort with ≤ 3 
unresectable HCC tumors (n = 75 patients [25 post-SBRT and immu-
notherapy, 50 post-SBRT alone], Child-Pugh [CP]-A5-B7) [29]. Pre- 
clinical studies are needed to better understand the synergies of SBRT 
and immunotherapy, particularly regarding optimal immunogenic 
treatment volumes and dosing, predictive biomarkers of treatment 
response, and the role of HCC tumor microenvironment in modulating 
this response [46]. While RTOG 1112 tested a sequential strategy of 
SBRT followed by systemic therapy, the sequencing and timing of these 
treatment modalities merit further investigation to maximize efficacy 
and safety. Personalized ultrafractionated stereotactic adaptive radia-
tion therapy (PULSAR) is a paradigm wherein fractions of high dose 
radiation are given weeks apart to allow for interfractional biologic 
change to ensue. When combined with immunotherapy, PULSAR is 
hypothesized to synergistically maximize anatomic adaptation and 
systemic response in HCC [47]. Clinical studies of this approach are 
awaited to support the feasibility and efficacy of this approach [48]. 

Neoadjuvant SBRT 

SBRT could be considered in neoadjuvant treatment strategies for 
patients with locally advanced HCC [33–36], extrapolating from its use 
as a bridge to transplant. An RCT of neoadjuvant radiotherapy for 
resectable HCC with tumor thrombus of the portal vein main trunk or 
side branches (n = 164 patients [82 neoadjuvant radiotherapy, 82 
hepatectomy alone]) demonstrated significant improvements in 12- 
month post-operative OS, HCC-related mortality (HR 0.35 [95 % CI, 
0.23–0.54], p < 0.001), and HCC recurrence rates (HR 0.45 [95 % CI, 
0.31–0.64], p < 0.001) [49]. Multi-modality neoadjuvant combinations 
of SBRT with local and systemic therapies may also hold promise. 

START-FIT, a prospective single-arm phase 2 trial (n = 33 patients, CP 
A5-B7), showed that a neoadjuvant regimen consisting of TACE (day 1), 
followed by SBRT (day 28) and then Avelumab (14 days post-SBRT) 
converted 55 % of patients with locally advanced, initially unresect-
able HCC towards curative treatment [50]. Further work in this space 
may expand the indications for SBRT and increase the number of pa-
tients who can benefit from curative management. 

Winning Today’s Games 

We need as many home runs as possible to address unmet needs of 
patients with HCC, amidst rising global incidence and limited estab-
lished locoregional treatment options for patients with advanced disease 
[4]. SBRT adds to the oncologic armamentarium with attractive ad-
vantages in LC, survival, morbidity, and cost-effectiveness. Promising 
data from single-center or small phase 2 RCTs have added to the evi-
dence base for radiotherapy in unresectable HCC [8,32], thus far 
deemed low-to-moderate quality in clinical practice guidelines [3]. In 
the spirit of Carl Sagan, the absence of high-quality evidence is not high- 
quality evidence of absence. Additional multi-institutional phase 3 RCTs 
are awaited to substantiate use of SBRT with the highest quality 
comparative evidence. We must advocate for multidisciplinary support 
of such trials, as we need speedy accrual to obtain the level of evidence 
we all desire to inform contemporary practice [7,27]. 

As we await further comparative evidence for SBRT and associated 
emerging strategies in HCC, we can continue advocating for consider-
ation of this treatment modality in the daily multidisciplinary manage-
ment of patients with HCC. We can advocate for SBRT locally by 
discussing cases at tumor board conferences, educating multidisci-
plinary colleagues about the comparative advantages of SBRT as a 
locoregional therapy (Tables 1 and 2), and encouraging referrals of all 
patients considered for locoregional therapy to both Interventional 
Radiology and Radiation Oncology (RO). We can advocate for SBRT 
internationally by increasing our participation as ROs in disease society 
committees, lobbying for inclusion of SBRT in multidisciplinary man-
agement guidelines [5], and updating SBRT guidelines to provide 
guidance and caution for complex contemporary clinical situations, such 
as peri-Bevacizumab SBRT, re-irradiation, SBRT after prior Y-90 TARE, 
and significant multifocal disease. The future is bright for SBRT In the 
management of unresectable HCC, and with continued efforts, we hope 
more patients can benefit from this excellent standard-of-care treatment. 
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