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Abstract
Insulin signaling in bone-forming osteoblasts stimulates bone formation and promotes the

release of osteocalcin (OC) in mice. Only a few studies have assessed the direct effect of

insulin on bone metabolism in humans. Here, we studied markers of bone metabolism in

response to acute hyperinsulinemia in men and women. Thirty-three subjects from three

separate cohorts (nZ8, nZ12 and nZ13) participated in a euglycaemic hyperinsulinemic

clamp study. Blood samples were collected before and at the end of infusions to determine

the markers of bone formation (PINP, total OC, uncarboxylated form of OC (ucOC)) and

resorption (CTX, TRAcP5b). During 4 h insulin infusion (40 mU/m2 per min, low insulin), CTX

level decreased by 11% (P!0.05). High insulin infusion rate (72 mU/m2 per min) for 4 h

resulted in more pronounced decrease (K32%, P!0.01) whereas shorter insulin exposure

(40 mU/m2 per min for 2 h) had no effect (PZ0.61). Markers of osteoblast activity remained

unchanged during 4 h insulin, but the ratio of uncarboxylated-to-total OC decreased in

response to insulin (P!0.05 and P!0.01 for low and high insulin for 4 h respectively). During

2 h low insulin infusion, both total OC and ucOC decreased significantly (P!0.01 for both).

In conclusion, insulin decreases bone resorption and circulating levels of total OC and ucOC.

Insulin has direct effects on bone metabolism in humans and changes in the circulating levels

of bone markers can be seen within a few hours after administration of insulin.
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Introduction
Bone is increasingly recognized as an effector in energy

metabolism via its interactions with other tissues (1, 2).

The role of bone-derived osteocalcin (OC) as a novel

endocrine regulator of glucose and lipid metabolism was

originally identified in mice, in which OC was shown to
act as a hormone to increase proliferation of pancreatic

b cells, insulin secretion and insulin sensitivity (3, 4).

Osteocalcin is specifically expressed in osteoblasts and

osteocytes, and it is secreted into the circulation during

bone formation (5). The structure of OC is characterized by
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vitamin-K-dependent g-carboxylation which gives the

protein high affinity to hydroxyapatite (HA) in bone

matrix (6). Only the uncarboxylated form of OC (ucOC)

appears to induce the expression of insulin and adipo-

nectin in b cells and adipocytes (4), putatively via the

activation of GPRC6A (7, 8).

Bone is a potential target for insulin, which may exert

positive effects on bone density and strength (9, 10).

Clinical observations in patients with types 1 and 2

diabetes mellitus suggest that insulin may act as an

anabolic agent in bone and preserve bone mass in humans

(11, 12). Insulin receptors have been detected in osteo-

sarcoma cell lines and rodent osteoblasts (10, 13, 14, 15),

osteoclast-like cells (16) and in primary human osteoblasts

differentiated from bone marrow-derived mesenchymal

stem cells (17). In vitro, insulin signaling promotes

osteoblast differentiation and OC expression in mouse

calvarial osteoblasts (18). The role of insulin receptor

signaling in vivo was demonstrated by deleting insulin

receptors specifically in the mouse osteoblasts (19, 20).

Insulin signaling in osteoblasts stimulated bone formation

and increased peak bone mass during development (19).

In addition, the studies suggested that insulin down-

regulates the expression of osteoprotegerin, thereby

indirectly up-regulating bone resorption and the release

of matrix-bound OC, particularly in its uncarboxylated

form (20). These data proposed a two-directional regulat-

ory pathway, where bone protein (OC) regulates b-cells

and insulin release, while insulin participates in the

release of OC from the skeleton (21). Whether a similar

regulatory system is present in humans is controversial

(22, 23). Several studies in humans have reported a

relationship between OC and various measures of glucose
Table 1 Characteristics of the three cohorts analyzed using eugly

clamped at 5 mmol/l in all experimental cohorts.

Cohort 1

Median

Insulin infusion rate (mU/m2 per min) 40
Clamp duration (min) 240
Gender (F/M) 3/5
Age (years) 54.4
Height (cm) 171.6
Weight (kg) 96.9 7
BMI (kg/m2) 32.7
Waist-to-hip ratio 0.99
Fasting plasma glucose (mmol/l) 5.4
Fasting serum insulin (mU/l) 10.0
Serum insulin at the end of insulin infusion (mU/l) 63.0
Whole body glucose uptake (mol/kg per min) 30.5
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metabolism, but the results have been inconsistent and

mostly assessed total OC levels (22, 23, 24, 25, 26, 27). The

discrepancies between different study designs, popu-

lations, and comorbidities create uncertainty when

evaluating the role of OC in glucose metabolism in

human physiology. Studies are further complicated by

the difficulties in accurately measuring circulating levels

on ucOC and the controversy regarding the optimal assay

design for ucOC (28). It is also unclear whether changes in

osteoblast function and bone metabolism can be observed

in response to hyperinsulinemia in humans in vivo.

Here, we employed the euglycemic hyperinsulinemic

clamp technique (29) to study whether insulin affects

markers of bone remodeling, particularly OC, in humans.

A few studies have applied this technique to assess acute

insulin-driven changes in bone metabolism (30, 31, 32)

with the focus on physiological variations in circulating

levels of insulin. We analyzed in parallel three cohorts,

in which insulin infusion rate (40 or 72 mU/m2 per min)

and duration of the clamp (2 or 4 h) varied to achieve

physiological or supraphysiological insulin concentrations

in the presence of normoglycemia. This experimental

set-up should isolate the direct effects of insulin on bone.
Subjects and methods

Study subjects

Three separate cohorts were recruited (Table 1). Eight

healthy volunteers without any chronic diseases or regular

medications participated in cohort 1 (five men and three

women) with median age of 54.4 years and BMI of

32.7 kg/m2 (33). Cohort 2 consisted of 12 healthy young
caemic hyperinsulinemic clamp technique. Plasma glucose was

(nZ8) Cohort 2 (nZ12) Cohort 3 (nZ13)

Range Median Range Median Range

– 72 – 40 –
– 240 – 120 –
– 0/12 – 13/0 –

37–63 23.5 18–34 73.7 69–79
168–177 179.2 173–190 161.8 150–168
1.7–108.2 68.3 63.6–91.0 64.9 55.3–100.7
24.5–34.5 21.4 18.3–28.7 26.1 19.8–37.4
0.86–1.07 0.86 0.76–0.91 0.89 0.79–0.96
4.7–6.6 5.4 4.9–5.9 5.8 5.3–6.4
4–16 3.0 2–6 8.0 3–19
34–75 105.0 69–114 76.0 51–99

11.9–46.5 54.7 46.3–81.5 26.7 8.7–53.3
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men with median age of 23.5 years and BMI of 21.4 kg/m2

(34). Cohort 3 consisted of 13 healthy elderly women

(median age 73.7 years) with median BMI of 26.1 kg/m2.

All subjects were normoglycemic.
Study design

All cohorts were studied after an overnight fast using

euglycaemic hyperinsulinemic clamp. Cohort 1 had a

hyperinsulinemic (40 mU/m2 per min, termed ‘low

insulin’ hereinafter) euglycemic (5 mmol/l) clamp for

4 h. Cohort 2 also had a 4-h euglycemic clamp but with

supraphysiological insulin infusion rate (72 mU/m2 per

min, termed ’high insulin’ hereinafter). The elderly

women in cohort 3 had a shorter protocol of hyperinsu-

linemic (40 mU/m2 per min) euglycemic clamp for 2 h. All

studies were approved by the Ethical Committees of

Helsinki University Central Hospital (cohorts 1 and 2) or

Turku University Hospital (cohort 3) and a written

informed consent was given by all study participants.

The studies were carried out according to the principles of

Declaration of Helsinki.

The clamp study was initiated after an overnight fast

at 0900 h and blood samples were collected at the

beginning of the study before infusions (0 min) and at

the end of infusions (120 or 240 min, depending on the

experimental protocol, Fig. 1). Serum was stored in

aliquots at –70 8C until analysis and all samples were

analyzed in duplicate in a blinded fashion. Whole body

insulin sensitivity was calculated as glucose disposal rate

(GDR, or M value; mmol/kg per min) during the last hour of

the clamp (22).
1

Cohort 1 (n=8)

Cohort 2 (n=12)

Cohort 3 (n=13)

0 ' 60 '

= sample for bone marker an

Time (min)

Hyperinsulinemic eug

Figure 1

Experimental design. Glucose was clamped at 5 mM and insulin infusion rates w

with triangles. Samples were analysed for PINP, CTX, TRAcP5b, TotalOC and uc
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Serum total and ucOC

Serum total OC (total OC) was determined with two-site

immunoassay using previously described protocols

(35, 36). Two-site immunoassay for total OC is based on

monoclonal antibodies (Mabs) 2H9 and 6F9 and detects

the N-terminal midsegment of the OC molecule (37). In

brief, 200 ng of biotinylated 2H9 and 100 ng of europium-

labelled 6F9 per well was used. Synthetic peptide of human

OC amino acids 1–49 (Advanced Chemtech, Louisville,

KY, USA) was used as a calibrator. Streptavidin-coated

microwell plates were from Kaivogen (Turku, Finland) and

other immunoassay reagents (Delfia Assay Buffer, Wash

Solution and Enhancement solution) from Perkin Elmer

Life Sciences (Turku, Finland). Time-resolved fluorescence

was measured with Victor2 Multilabel Counter (Perkin-

Elmer Life Sciences). Intra- and inter-assay variations for

the assay are reported to be !5 and !8% respectively (35).

ucOC was determined with in-house assay protocol based

on HA binding, as previously used in mouse studies (3).

The amount of OC bound to HA is dependent on

carboxylation status and the amount of HA used (38),

and we optimized the amount of HA best suitable for

serum samples. In the optimized assay protocol, 100 ml of

diluted sample was mixed with 1 mg HA slurry (Type I,

buffered aqueous suspension, Sigma) and incubated for

15 min on ice. Supernatant was collected by centri-

fugation (8000 g, 5 min) and OC content in the unbound

fraction (containing ucOC) was measured with the total

OC immunoassay procedure based on antibodies 2H9 and

6F9 previously described, allowing us to compare total OC

and ucOC values. Serum samples were diluted 1:1 prior to
20 '

Ins 40 mU

Ins 72 mU

Ins 40 mU

240 '180 '

alysis

lycemic (5 mM) clamp

ere 40 or 72 mU/m2 per min. Timepoints for sample collection are indicated

OC.
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analysis (7.5% BSA in Tris–HCl pH 7.8). Protocol was

validated with synthetic peptides of carboxylated human

OC (with g-carboxyglutamic acid at positions 17, 21 and

24, from Advanced Chemtech) and uncarboxylated

human OC (with glutamic acid at positions 17, 21 and

24, from Peptide 2.0, Chantilly, VA, USA).
Serum CTX, TRAcP5b and PINP

Bone resorption and osteoclast activity was assessed by

measuring serum levels of C-terminal crosslinked telopep-

tides of type I collagen (CTX) and tartrate-resistant acid

phosphatase 5b (TRAcP5b) using serum IDS-iSYS CTX-I

(CrossLaps) ELISA and BoneTRAP (TRAcP 5b) ELISA (both

from IDS Ltd, Boldon, Tyne and Wear, UK). Bone

formation was assessed by measuring serum intact

N-terminal propeptide of type I collagen (PINP) using

IDS-iSYS Intact PINP assay (IDS Ltd, UK). According to the

manufacturer, intra- and inter-assay variations for the

assays are for bCTX-I !6 and !10%, for TRAcP5b !6 and

!6% and for PINP !4 and !6% respectively. Measure-

ments were performed by ValiRx Finland Plc (Oulu,

Finland). In addition, the plasma levels of 25-hydroxy

vitamin D (25(OH)D), the predominant circulating

metabolite of vitamin D, were measured with automated

electrochemiluminescence binding assay (Cobas 8000,

Roche Diagnostics) in cohort 3.
Statistical analysis

The data are given as medians with range or interquartile

range. Bone markers were non-normally distributed

(Shapiro-Wilk’s test !0.95) and the statistical differences

between values before and after infusion were calculated

using Wilcoxon’s signed rank test. Spearman’s test was

used to study the correlations between variables. For

statistical analysis we used SPSS, version 22 (SPSS, Inc) and

the level of significance was set at P!0.05.
Results

Glycemic control during studies

Low insulin infusion rate increased serum insulin levels

sixfold (PZ0.012) in cohort 1 and eightfold (PZ0.003) in

cohort 3. High insulin infusion rate (cohort 2) resulted in

a 30-fold increase in serum insulin (PZ0.003) and 67%

higher insulin level during clamp as compared to cohorts 1

and 2. Plasma glucose levels remained at 5 mmol/l during

insulin infusions in all cohorts (data not shown). Whole
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body glucose uptake had variation in all cohorts. In cohort

1 (overweight men and women), the median GDR value

was 30.5 mmol/kg per min (range 11.9–46.5). The median

GDR value in cohort 2 (young men with normal body-

weight) was 54.7 mmol/kg per min (range 46.3–81.5) and

in cohort 3 (elderly women), the median GDR was

26.7 mmol/kg per min (range 8.7–53.3). In cohort 3, the

median plasma level of 25(OH)D was 75.2 nmol/l, and

only two subjects (15%) had insufficient levels of

circulating 25(OH)D (i.e. below 50 nmol/l by the Finnish

National Guidelines).
Bone resorption in response to euglycemic

hyperinsulinemia

After 4 h insulin infusion, there was a small but significant

decrease in bone resorption marker CTX (median K11%,

PZ0.035, Fig. 2A). High-dose insulin exposure resulted

in a similar, but more pronounced suppression of bone

resorption measured by CTX (median K32%, PZ0.008,

Fig. 2B). In contrast, shorter 2 h insulin infusion did not

alter serum CTX (medianC1.0%, PZ0.61. Fig. 2C). Levels

of osteoclast-derived TRAcP5b, a marker of osteoclast

number, varied and no consistent pattern in response to

insulin were observed. A small, but significant decrease of

4.6% (PZ0.01) was observed in 2 h insulin exposure and

a decreasing trend was observed also after the longer 4 h

exposure (median K13%, PZ0.05). However, no decrease

was detected in TRAcP5b in cohort 2 (PZ0.27). The

changes in bone markers in response to insulin infusion

are summarized in Fig. 2 and Supplementary Figure 1,

see section on supplementary data given at the end of

this article.
Bone formation in response to euglycemic

hyperinsulinemia

PINP, a marker of bone formation, remained unchanged

during both high and low as well as long and short insulin

infusions (PO0.05 for all). The circulating levels of total

OC remained unchanged in response to insulin in 4 h

hyperinsulinemic clamps (PO0.05 in both cohorts). In

contrast, the level of ucOC was reduced by a median of

27% in response to high insulin infusion rate (PZ0.010,

Fig. 2B) and a similar, although not significant, decrease

was observed with low insulin infusion rate (median

K25%, PZ0.069, Fig. 2A). The ratio of uncarboxylated-

to-total OC was decreased in response to insulin exposure

both with low (PZ0.012) and high (PZ0.005) insulin

infusion. Shorter 2-h insulin exposure resulted in decrease
This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

http://www.endocrineconnections.org/cgi/content/full/EC-15-0022/DC1
http://www.endocrineconnections.org
http://dx.doi.org/10.1530/EC-15-0022
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


PINP CTX TRACP5b TotalOC ucOC
–100

–80

–60

–40

–20

0

20

40

60

80
Cohort 2

Insulin 72 mU/m2 per min, 240 min

C
ha

ng
e 

fr
om

 b
as

el
in

e 
(%

)

A

B

C

PINP CTX TRACP5b TotalOC ucOC
–100

–80

–60

–40

–20

0

20

40

60

80

C
ha

ng
e 

fr
om

 b
as

el
in

e 
(%

)

Cohort 1

Insulin 40 mU/m2 per min, 240 min

PINP CTX TRACP5b TotalOC ucOC
–100

–80

–60

–40

–20

0

20

40

60

80
Cohort 3

Insulin 40 mU/m2 per min, 120 min

P=0.53 P=0.008** P=0.27 P=0.35 P=0.010*

P=0.67 P=0.035* P=0.050* P=0.67 P=0.069

P=0.10 P=0.61 P=0.01* P=0.002** P=0.009**

C
ha

ng
e 

fr
om

 b
as

el
in

e 
(%

)

Figure 2

%-changes in bone markers in response to A) 4 h euglycemic hyper-

insulinemic (40 mU/m2 per min) clamp (cohort 1), B) 4 h euglycemic

hyperinsulinemic clamp with high (72 mU/m2 per min) insulin infusion rate

(cohort 2) or C) 2 h euglycemic hyperinsulinemic (40 mU/m2 per min) clamp

(cohort 3). Results are shown as %-change from the baseline (0’) value. The

lines inside the boxes represent the 50th percentile; the limits of the boxes

represent the 25th and 75th percentiles, and the whiskers the 10th and

90th percentiles. Individual samples are shown with crosses and the mean

value with a square. P values for the changes (from baseline to the

endpoint, Wilcoxon signed ranks test) are shown below the x-axis

(**P!0.01 and *P!0.05).
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in both total OC (K22%, PZ0.002) and ucOC (K35%,

PZ0.009, Fig. 2C). The ratio of uncarboxylated-to-total

OC varied and was not significantly altered (PZ0.53). We

also performed all analyses by excluding the two obese

individuals (BMI O30) in the 2 h insulin exposure

experiment. The main findings were the same after the

exclusions, with a decrease of 22% in totalOC (PZ0.005)

and 38% in ucOC (PZ0.019) and no change in

uncarboxylated-to-total OC ratio (PZ0.51).
Associations between bone markers and

insulin sensitivity

We also explored the association between GDR, a measure

of insulin sensitivity, and baseline levels of bone markers.

Insulin sensitivity was positively associated with baseline

bone resorption measured by CTX (rZ0.91, PZ0.002) in

cohort 1. Correlations with other bone markers were not

significant, although a similar trend of positive association

was seen for PINP (rZ0.62, PZ0.102), total OC (rZ0.67,

PZ0.071), and ucOC (0.62, PZ0.102). Insulin sensitivity

of elderly women in cohort 3 also tended to associate with

several bone markers, although the associations were not

statistically significant (CTX rZ0.48, PZ0.12; PINP rZ

0.48, PZ0.12; total OC rZ0.37, PZ0.22; ucOC rZ0.44,

PZ0.14). In cohort 2 consisting of young individuals with

low BMI and high baseline bone turnover, no associations

between insulin sensitivity and baseline bone markers

were found (data not shown). This may be due to their

higher insulin sensitivity but it is also possible that the

relationship between insulin and bone metabolism

depends on physical condition, age and/or gender (39).
Discussion

Our data indicate that acute pharmacological changes in

circulating insulin levels have immediate effects on bone

metabolism in humans. Insulin suppresses bone resorp-

tion (CTX) and decreases the levels of total OC and ucOC

in dose- and time-dependent manner.

Bone resorption marker was decreased while no

change was seen in bone formation markers 4 h after

insulin exposure. This suggests that insulin may act as an

anabolic agent for bone metabolism, by shifting the

balance in the favor of bone formation. However, no

direct effect of insulin on osteoblasts can be confirmed on

the basis of the current study, since we observed no change

in the circulating levels of PINP or total OC after 4 h. This

is in conflict with the mouse studies reporting increased

bone formation and OC secretion upon activation of
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insulin receptor signaling (19, 20). Furthermore, resorp-

tion marker CTX was decreased in response to 4 h insulin

infusion, opposite of increased bone resorption predicted

by the mouse models. By measuring bone markers 2 or 4 h

after insulin exposure we were thus unable to confirm the

direct stimulatory effect of insulin on bone observed in

mice. Species-specific differences in OC between mice and

humans, such as the differences in the regulatory elements

of OC gene and the relatively low sequence conservation,

may complicate the extrapolation of the findings of mouse

models to humans (22, 23, 40).

Significant suppression in bone metabolism is

observed after ingestion of glucose and the effect of

postprandial insulin release on bone metabolism is usually

of greater magnitude than the effects observed in our study

(36, 41). Part of the postprandial effect may be mediated by

insulin but also by the incretins, such as GIP (42) or GLP-2

(43), or even glucose itself may directly affect the bone

cells (44). The objective of our study was to test the effects

of insulin on bone metabolism with a steady glucose level.

The suppression of bone metabolism observed after

hyperinsulinemic euglycemic clamp suggests that insulin

also has direct effects in the bone microenvironment. The

differential responses in CTX and OC after 2 and 4 h

insulin infusion suggest that bone markers and total and

uncarboxylated forms of OC have different kinetics in

response to insulin. We cannot, however, exclude that

insulin also regulates other aspects of bone metabolism

over a different time period, or that the skeletal effects may

be different in acute and chronic metabolic challenge

in humans.

Small clamp studies isolating the effect of insulin on

bone markers have suggested that acute changes in insulin

levels do not regulate bone metabolism in humans (30, 31).

Basu et al. (31) used a 2–3 h stepped insulin infusions

accompanied by hyperglycemic (9.3 mmol/l) clamp and

failed to observe changes in bone markers, including CTX

and uncarboxylated OC. We used high insulin infusion,

longer exposure time and glucose was clamped at normal

physiological concentration (5 mmol/l). Longer exposure

to higher insulin may have uncovered some effects which

were not observed previously. Clowes et al. (30) used a 2 h

hyperinsulinemic euglycemic clamp with high insulin

infusion rate (80 mU/m2 per min) and reported no

significant change in bone formation and resorption

markers, which is in line with our 2 h hyperinsulinemic

euglycemic clamp, except for OC. In our study, the

association between insulin sensitivity and bone turnover

was weak, if any. Insulin sensitivity was positively,

although not significantly, associated to bone turnover
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in two of the cohorts, but not in the cohort consisting of

young men with normal body weight. Levinger et al. (32)

observed a positive association between whole body

insulin sensitivity and OC in middle-aged obese men

and another study reported a borderline association

between total OC and insulin resistance which appeared

to be mediated by BMI (45). Based on these findings, the

proposed link between insulin sensitivity and bone

metabolism remains uncertain in humans and further

studies are required.

The strengths of our study include the use of two

different insulin infusion rates and durations. Our main

finding of a decrease in circulating CTX levels and to lesser

extent also uncarboxylated-to-total OC ratio by insulin is

corroborated by similar data from three independent

cohorts. The three different cohorts cannot, however, be

directly compared to each other due to differences in

baseline characteristics. We assessed the carboxylation of

OC with in-house HA binding method. The assay

performance was greatly dependent on the diluent and

the amount of HA, as reported (38), and a detailed

characterization of assays based on HA binding is

warranted. The limitations of our study include the

small number of subjects, due to the highly laborious

and invasive study protocol. Due to the small sample size,

it was not possible to statistically adjust for confounding

factors or to take into account the gender differences (39).

Differences in baseline characteristics of the cohorts, such

as age and BMI, may explain some of the differences

observed in the magnitude of responses. Further limi-

tation is the unavailability of PTH measurements. Previous

studies have reported a transient reduction in PTH in

response to insulin (30) and it remains to be evaluated

whether the decrease in PTH mediates the changes in bone

metabolism.

In summary, pharmacologically elevated insulin

levels decrease bone resorption and the levels of total

and ucOC within a few hours in euglycemic conditions.

Acute insulin exposure does not directly regulate bone

formation in humans, as assessed by the circulating

marker of bone formation (PINP).
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