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A B S T R A C T   

Novel Coronavirus is deadly for humans and animals. The ease of its dispersion, coupled with its tremendous 
capability for ailment and death in infected people, makes it a risk to society. The chest X-ray is conventional but 
hard to interpret radiographic test for initial diagnosis of coronavirus from other related infections. It bears a 
considerable amount of information on physiological and anatomical features. To extract relevant information 
from it can occasionally become challenging even for a professional radiologist. In this regard, deep-learning 
models can help in swift, accurate and reliable outcomes. Existing datasets are small and suffer from the bal-
ance issue. In this paper, we prepare a relatively larger and well-balanced dataset as compared to the available 
datasets. Furthermore, we analyze deep learning models, namely, AlexNet, SqueezeNet, DenseNet201, Mobile-
NetV2 and InceptionV3 with numerous variations such as training the models from scratch, fine-tuning without 
pre-trained weights, fine-tuning along with updating pre-trained weights of all layers, and fine-tuning with pre- 
trained weights along with applying augmentation. Our results show that fine-tuning with augmentation gen-
erates best results in pre-trained models. Finally, we have made architectural adjustments in MobileNetV2 and 
InceptionV3 models to learn more intricate features, which are then merged in our proposed ensemble model. 
The performance of our model is statistically analyzed against other models using four different performance 
metrics with paired two-sided t-test on 5 different splits of training and test sets of our dataset. We find that it is 
statistically better than its competing methods for the four metrics. Thus, the computer-aided classification based 
on the proposed model can assist radiologists in identifying coronavirus from other related infections in chest X- 
rays with higher accuracy. This can help in a reliable and speedy diagnosis, thereby saving valuable lives and 
mitigating the adverse impact on the socioeconomics of our community.   

1. Introduction 

Zoonotic diseases are caused by microbes that are transmitted from 
animals to humans [1]. The scope, scale and worldwide effect of zoonoses 
pose a risk not only to animals and humans but also to global health 
safety [2]. Approximately 1500 pathogens are recognized to induce in-
fections in individuals [3]. Among these infections, 61% of the recog-
nized and 75% of the emerging infectious diseases in humans are 
zoonotic in origin [2,4]. It is approximated that infectious illnesses cause 
nearly 16% of all the deaths and 44% of the deaths in low-income 
countries [2]. Annually, zoonotic illnesses cause 2.7 million mortalities 
and 2.5 billion illnesses in individuals [5]. Emerging zoonotic infections 
are responsible for various notable and disastrous epidemics [6]. 

Coronavirus is of zoonotic origin [7]. A study proposes that the 
virus is transferred to humans either by means of pangolins or bats [8]. 
No direct relationship between humans and other species is reported. 
However, the virus is an extremely mutated microorganism that can 
comfortably cross the species barrier [9,10]. It can affect the cells of 
human airways. As a result, it can induce pneumonia and critical res-
piratory diseases, kidney malfunction and can even cause death [11]. 
The pathogen can persist in the air and on various surfaces from several 
hours to multiple days [12]. Health executives have observed that the 
pathogen spreads through coughed and sneezed droplets of 5–10 μm 
and are around 30 times tinier than a human hair [12,13]. Many sci-
entists also believe that virus can persist in aerosol form [14,15]. 
World health organization (WHO) is currently assessing the role of 
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aerosol transmission [16]. Recently, WHO said that it cannot be ruled 
out in closed, crowded and poor ventilated settings [17]. Thrilling 
analysis foretells that sneezing can cause the particles of the virus to 
move up to 27 feet [18]. Its ease of dispersion, tremendous capability 
for ailment and death rate make it a likely candidate for a bio-warfare 
[19–21]. 

In USA, UK and Europe, the epidemic is extensively prevalent and 
millions of individuals are infected and thousands have died because of 
the infection. As of February 18, 2021, approximately 27.82 million 
cases are recorded and 490,717 people lost their lives in the United 
States [22]. The country’s topmost contagious disease specialist predicts 
that without proper safety measures, the lethal pathogen might kill up to 
2.4 million individuals [23]. The UK and the European states such as 
France, Italy, Germany and Spain recorded that about 15.88 million 
individuals became affected and 0.34 million lost their lives [22]. The 
British health executives believe that the virus can infect 80% of the 
population and 0.5 million individuals can lose their lives [24]. All over 
the globe, billions of people are either living their lives under lockdowns 
or in self-quarantine. If the virus is allowed to continue its route, the 
healthcare system will be overburdened, economics will crumble and 
millions of valuable lives will be lost [23,25]. 

The most commonly used techniques for the identification of coro-
navirus are enzyme-linked immunosorbent assay (ELISA) and Reverse 
transcription-polymerase chain reaction (RT-PCR) [26]. The primary 
screening method for recognizing COVID-19 is RT-PCR, which identifies 
the pathogen’s RNA from lower respiratory tract specimens. These 
specimens are collected in several ways, such as nasopharyngeal or 
oropharyngeal swabs. While RT-PCR is regarded as a golden standard 
[27,28], it is a time consuming, complicated and sensitive manual 
approach [29]. The test results can be affected by low sensitivity, sam-
pling errors and low viral load [30,31]. In the case of inadequate viral 
load, the results of the test can be falsely negative [28,32]. An alterna-
tive method used for COVID-19 screening employs chest radiographic 
images (i.e. X-rays or CT-Scans). Radiologists analyze these images to 
assess the apparent symptoms related to COVID-19. Initial studies 
revealed that patients show variations in chest radiographic images 
indicative of those concerned with SARS-CoV-2 viral infection [28,33]. 
Other studies suggest that radiographic analyses should be used as a 
principal mechanism for the screening of the virus in afflicted regions 
[28]. The radiography-based tests can be performed quickly and are 
readily available in our healthcare system. It gives them a real compli-
ment to PCR testing (in some cases, even showing higher sensitivity) 
[28,32]. A study based on 1014 cases recorded a 97% sensitivity of chest 
radiographic images for the diagnosis of COVID-19, while the average 
time interval within initial negative and positive RT-PCR was roughly 
five days [28]. The major issue with radiographic anaysis is that they 
require an expert radiologist to assess resulting medical images as the 
visual indicators can be difficult to interpret [34,35]. Though, 
computer-aided designs can help radiologists to instantly and accurately 
interpret radiographic images to recognize disorders that cause 
COVID-19 and other chestrelated infections. In current times, deep 
learning models can facilitate in early diagnosis, quick prevention and 
remedy of the infections caused by the novel virus [36]. 

A combination of convolutional neural networks (CNN) (e.g. Incep-
tionV3 [37] and AlexNet [38]), large-scale databases (e.g. ImageNet 
[39]) and an effective overfitting checking method (e.g. dropout [40]) 
have shown an improved prediction accuracy, performance and 
outstanding generalization ability to solve medical [41,42], biological 
[36,43] and complex computer vision tasks [44]. The advantage of deep 
networks for image classification is that a model is trained end-to-end 
but suffers from overfitting on modest datasets. It is a challenging task 
for deep networks to obtain the same good performance on small 
datasets as they can obtain on large datasets [45]. A solution to this 
problem is implementing pre-trained deep designs on a small dataset 
[46]. This technique is known as transfer learning which replaces the 
last few layers of the pre-trained model and fine-tunes it on a given 

dataset. The technique can be very useful if augmentation along with 
proper hyper-parameters are set and efficient fine-tuning strategies are 
applied. Another technique that is also being effectively applied on 
image classification tasks is ensemble learning. It fuses the features from 
various deep models into a classifier of high-grade quality thus, 
achieving better and reliable predictive performance. Image processing 
and deep learning models in bio-medical image processing and analysis 
have yielded promising results particularly in the field of chest radi-
ology. The techniques are generally used to conduct lung nodule clas-
sification [47], pulmonary tuberculosis identification [48] and 
especially for novel coronavirus classification in radiological images 
[35,49–52]. Next, a summary of pneumonia and COVID-19 related 
works from the current literature is presented., , 

Ayan and Ünver [53] proposed a quick diagnostic technique for 
pneumonia based on chest X-ray images using Xception and VGG-16. 
Their work shows that Xception generates better results in identifying 
pneumonia and VGG-16 performs good for healthy cases. Varshni et al. 
[54] apply six deep models (Xception, VGG-16, ResNet 50, 
DenseNet-169 and DenseNet-121) for feature retrieval on X-ray images 
and then use numerous machine learning classifiers (SVM, K-nearest 
neighbors, Naıve Bayes, and Random Forest) for classification. The re-
sults are further improved by optimizing the hyper-parameters. Stephen 
et al. [55] proposed a CNN model trained from scratch to classify and 
detect pneumonia in chest X-rays images [56]. The design retrieves 
relevant features from the images and uses them to classify the infection. 
The model achieved an accuracy of 93.73% on a meager dataset with the 
help of augmentation, hyper-parameter tuning and fine-tuning. In 
Ref. [57], the authors propose a compressed sensing based deep model 
for automatic classification of pneumonia using chest radiology images 
to help the medical professionals in early diagnosis of the disease. The 
dataset consists of 5863 X-ray images from Kaggle. Wide-ranging 
simulation outcomes have shown that the proposed technique predicts 
the presence of pneumonia with 97.34% accuracy. Chouhan et al. [58] 
devised an ensemble method that combines the outputs from different 
models to classify pneumonia in chest X-ray images using transfer 
learning. The ensemble model attained an accuracy of 96.4% with a 
recall of 99.62% on the test data. The outcomes of the convolution 
models on different abnormalities based on the freely available OpenI 
dataset [59] show that the same deep CNN model does not give 
acceptable results for all types of abnormalities [60]. Yet, ensemble 
model considerably increases the classification accuracy as compared to 
a particular deep learning model. 

Gozes et al. [50] presented a swift AI development cycle using a 
CNN-based analysis of CT-scan images. Xu et al. [51] proposed a 
three-class model that can distinguish among normal, viral and 
COVID-19 cases. The segmentation-based approach attains an accuracy 
of 86.7% on a dataset with 618 CT-scan images. Wang et al. [52] sug-
gested a deep design to retrieve graphical features from CT-scan images 
for COVID-19 classification. The design processes a dataset consisting of 
1065 CT-scan images (325 COVID-19 images and 740 viral pneumonia 
images) of patients. The model obtains a test accuracy of 79.3%. Ioannis 
et al. [61] presented a transfer learning technique for classifying various 
chest-related infections on a dataset with 504 normal, 700 bacterial 
pneumonia and only 224 COVID-19 X-ray images. Their technique’s 
specificity, sensitivity and accuracy were 96.46%, 98.66% and 96.78% 
respectively. Although various models were compared but results were 
based on a small number of COVID-19 instances. In Ref. [35], the au-
thors provide a combined public dataset and proposed a deep model 
called COVID-Net for the detection of COVID-19. The architecture relies 
on a tailored CNN model, which uses the chest X-rays as inputs. The 
dataset consists of 358 COVID-19, 5538 pneumonia, 8066 normal im-
ages. COVID-Net achieves an accuracy of 93.3% but COVID-19 class 
images were limited. Ucar and Korkmaz [62] train a pre-trained deep 
network SqueezeNet with the help of Bayesian optimization technique 
to identify COVID-19 re-lated infections in chest X-ray images. The 
dataset consists of 66 COVID-19, 1349 normal and 3895 pneumonia 
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X-ray images. Although the model shows promising results on the small 
dataset but its performance on a large COVID- 19 related dataset was not 
checked. Abbas et al. [63] exhibit a CNN model that performs dimen-
sionality reduction to transform a high dimensional feature space into a 
lower one. The dataset comprises 80 normal, 11 SARS and 105 
COVID-19 X-ray images. The model attains an accuracy of 95.12%. Khan 
et al. [64] employ the Xception model to automatically detect corona-
virus infec-tions in chest X-ray images. The dataset consists of 310 
normal, 330 bacterial pneumonia, 327 viral pneumonia and 284 
COVID-19 images. On this small dataset, the model achieves an accuracy 
of 89.6% while achieves an accuracy of 95% by combining the two 
pneumonia classes. Ashfar et al. [65] proposed a capsule network known 
as COVID-CAPS. The network achieves an accuracy of 95.7% on 94,323 
X-ray images related to common thorax disorders. Gian-chandani et al. 
[66] apply two deep ensemble models, one comprising of VGG16 and 
ResNet152V2 for binary (COVID-19, Normal) classification and another 
consisting of VGG16, DenseNet201 for three-class (COVID-19, bacterial, 
and viral) classification. For the binary model 1525 images are used for 
each class and for three-class models only 401 images are used for each 
class. Although results are good but may not reproduce for a larger 
dataset with many classes. A simple train, validation, test split is used, 
although cross-validation is mostly recommended for limited datasets. 
Singh et al. [67] applies genetic and parti-cle swarm optimization based 
CNN’s for screening of COVID patients. These genetic models apply a 
simple binary classification approach, they are slow to converge but still 
deliver good results. However, training, validation, and test curves are 
widely separated, which reflect overfitting. Hyperparameter tuning is 
also applied to further improve the model’s performance. The author 
[68] also applies ensemble learning using three CNN models (VGG16, 
DenseNet201, and ResNet152V2) on CT-Scan images to generate 
excellent results on a larger four class (COVID-19, pneumonia, tuber-
culosis, and normal) dataset. A simple train test split is applied instead of 
applying cross-validation. 

Most of the above mentioned approaches for the identification of 
pneumonia apply machine and deep learning methods along with fine- 
tuning, augmentation, and ensemble learning. These approaches have 
produced good results and are being used to recognize coronavirus 
related infections in chest radiology. Most of the above mentioned 
COVID-19 classification techniques were tested on small datasets to 
produce promising results, but there is no guarantee that these models 
would generate similar results on large datasets. Furthermore, most of 
those datasets were very unbalanced and most of the models did not 
employ hyper-parameter tuning, cross-validation, and statistical anal-
ysis. Table 1 provides a summary of the comparison of the research 
works related to CNN models. 

In this work, we prepared a relatively larger and well-balanced 

dataset consisting of X-ray images of patients with bacterial, viral and 
novel coronavirus infections. We also included X-ray images of healthy 
individuals. Fig. 1 shows some of the samples. These images are 
analyzed by applying transfer learning along with fine-tuning on pre- 
trained models to explain whether these pre-trained networks can pro-
vide better results when data is scarce. Apart from implementing fine- 
tuning and transfer learning, we also applied traditional data augmen-
tation methods like rotation and reflection [69], which resolves the 
scarcity issue of training data by enriching it with transformed original 
examples. Finally, we propose a deep ensemble learning model 
composed of MobileNetV2 and InceptionV3 models as shown in Fig. 2. It 
produces far better results than currently available fine-tuned pre--
trained architectures. The devised model obtains state-of-the-art per-
formance on image dataset associated to various chest X-ray infections. 

The contribution of our work can be summarized as follows.  

(i) We prepared a large and well-balanced dataset with four classes 
(viral, bacterial, COVID-19 and normal). Each class consists of 
1000 images.  

(ii) Our work integrates fine-tuning, augmentation, transfer learning 
and hyper-parameter tuning into one model. 

(iii) We propose a deep design by merging the features of Mobile-
NetV2 and InceptionV3 models using an ensemble approach. We 
have made architectural adjustments to deep models by adding 
three dense layers at the end of each model to learn more intricate 
features before merging their features through the addition layer. 
We also added a dropout layer after the addition layer to handle 
overfitting.  

(iv) We compare our ensemble model with state-of-the-art deep 
models in terms of four performance metrics namely specificity, 
recall, F-score and accuracy.  

(v) We also compared our ensemble model with another ensemble 
approach presented in the literature, to show that our model is far 
superior to the previous model.  

(vi) To statistically validate the performance of the proposed design, 
we employ 5-fold cross-validation with the paired two-sided t- 
test. 

2. Materials and methods 

A deep learning framework for feature fusion of deep models using 
ensemble learning is presented in Fig. 3. The proposed framework 
consists of seven main steps: (i) Image resizing of large-scale images (ii) 
Dataset splitting (iii) Data augmentation (iv) Fine-tuning of deep models 
(v) Merging best performing models using ensemble learning (vi) Add-
ing additional dense and dropout layers and finally performing 

Table 1 
A comparison of different CNN models for COVID-19 Classification.  

Approach No. Of 
Classes 

Dataset Details Aug- 
mentation? 

Dataset 
Balanced? 

Transfer 
Learning? 

5-fold 
CV? 

Ensemble 
Model? 

Statistical 
Comparison? 

Tuning Hyper 
parameters? 

[30] 5 N 191, B 54, T 57, V 
20, C 180  

× × × × ×

[35] 3 N 8851, P 6012, C 
180  

× × × × × ×

[62] 3 N 1349, P 3895 C 66  × × × × ×

[65] 5 Not specified × × × × × × ×

[70] 3 3 N 8066, P 5521 C 
183  

× × × × × ×

[71] 3 N 8851, P9579C99  × × × × × ×

[72] 4 N 7595, B 2780 C 
313, UP 6012 

× × × × ×

[73] 2 N 500, C 184  × × × × × ×

[74] 4 N 1203, B 931 V 660, 
C 68  

× × × × × ×

[75] 3 N 1579, V 1485 C 423  × × × × ×

[66] 3 N 401, V 401 C 401  × × ×
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classification on the proposed ensemble model. 
The classes column gives the number of classes in a dataset. In the 

dataset details column, N, B, V, T, P, UP, C represent the number of 
Normal, Bacterial, Viral, Tuberculosis, Pneumonia, Pneumonia of Un-
known type, Covid-19 instances respectively. Augmentation? column 
describes whether the research work uses data augmentation. Dataset 
Balanced? shows whether the dataset is balanced. Transfer Learning? 
means whether transfer learning was employed. Similarly the 5- fold 
CV? column indicates whether cross validation was used. The Ensemble 
Model? column shows whether the approach uses ensemble learning. 
The Statistical Comparison? column shows whether the approach per-
forms statistical comparison with other deep models. The last column 
Tuning Hyper parameters? shows whether the approach tunes hyper 
parameters during model training. 

Algorithm 1 describes the pseudo code of our proposed deep 
ensemble method. Initially, X-ray images, which are provided as input 
are resized according to the required image scale. Then, these rescaled 
images are split into training and test sets. We apply augmentation to 
these images to generate an augmented dataset. A list of different deep 
learning models is retrieved. These deep learning models are loaded, 
trained, fine-tuned and evaluated one by one. Each fine-tuned model is 
appended to Model-List one by one. Finally, the best two models are 
merged and some additional dense and dropout layers are added to 

further improve the ensemble model. We perform classification to 
obtain the class labels of the bacterial, viral, COVID-19 images as output. 

2.1. Data description and augmentation 

Our dataset consists of X-ray images belonging to four categories 
namely bacterial, viral, COVID-19 and normal. There are 4000 images in 
the dataset and each category has 1000 images. X-ray images of bacte-
rial, viral and normal categories were collected from the Kaggle dataset 
[76]. As far as the images of COVID-19 are concerned, 900 images were 
gathered from Mendeley dataset [77] and the remaining hundred im-
ages were collected from two open-source repositories namely (i) Italian 
Society of Medical and Interventional Radiology (SIRM) [78] and (ii) 
Radiopaedia [79]. 

Augmentation is employed to the proposed model to enhance the size 
of the training data, overcome over-fitting and devise a more general-
ized model. Differ-ent augmentation techniques like random rotation, 
random vertical/horizontal reflection and random vertical/horizontal 
shear are employed to generate an augmented dataset. During the 
experimentation, 80% of the dataset is used for training a model and the 
remaining 20% of the data is used for testing purposes.   

Fig. 1. Example posteroanterior chest radiograph images of our dataset.  

Fig. 2. Various phases of our proposed method.  
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2.2. Pre-processing 

The chest X-ray images in the dataset are massive in size, with few 
images with a dimensions of 1007 × 1024 pixels. These images are 
resized to a standard size 299 × 299 pixels. But we had to further tailor 
these resized images to meet the requirements of deep learning models. 
Pre-trained models like MobileNetV2 and InceptionV3 have an input 
size of 224-by-224 and 299-by-299 respectively. The images were finally 
resized and provided to the given deep model. Some of the chest X-ray 
images were cropped, which helped in eliminating the noise produced 
by the extended black background. 

2.3. Hyper-parameters tuning 

In our work, we tried to estimate the impact of various hyper- 
parameters on the performance of the selected deep models. These 
hyper-parameters include the number of epochs, learning rate and batch 
size. We have investigated five deep models namely AlexNet, Squeeze-
Net, DenseNet201, MobileNetV2 and InceptionV3. For each of these 
models, we have fine tuned the parameters. The different values of the 
learning rate that we tried are {9e-4, 9e-5, 1e-5, 9e-6, 7e-6, 5e-6, 3e-6, 
1e-6, 8e-7, 6e-7, 4e-7, 1e-7, 1e-8, 5e-10}. For the batch size, the values 
are {24, 36, 32, 48}. The values of number of epochs are {10, 30, 40, 50, 
85, 100, 135, 150, 200, 300, 400, 500, 600, 700, 800, 900, 950}. 

We found that mostly the deep models displayed the best results with 
the batch size values of {48, 32}. For the initial epochs, learning rate of 
{1e-8, 1e-7, 9e-6} were very fruitful and gradually we increased the 
learning rate. The details of various hyper-parameters used during the 
training of different deep models are presented in Table 2. To maintain a 
stable utilization of the GPU resource, we have identified the value 
twenty-four as the smallest batch size. 

2.4. Overview of convolutional neural networks (CNNs) 

The CNNs rely on the foundation of conventional neural networks 
and usually consist of a convolutional layer, a pooling layer and a fully 
connected layer. After the convolution operation, we generally perform 
pooling to reduce the dimensionality. This enables us to decrease the 
number of parameters that decreases the training time. It also helps in 
overcoming the overfitting problem. The pooling operation down sam-
ples each feature map individually, reducing the height and width while 
keeping the significant features intact. After these layers, various fully 
connected layers try to acquire mid-level feature maps. Executing full 
connection in these layers needs a large number of weight parameters. 
For further details, we refer the readers to Ref. [80]. 

The training of CNNs initiates in a feed-forward manner as it begins 
from the initial layer to the final output layer. Then, the error propagates 
in reverse order as it starts from the final layer to the convolution layer. 
Let p be a neuron in layer a, which accepts input from a neuron q of layer 
a − 1 in the forward pass. The input [81] is calculated as below. 

lna
p =

∑n

q=1
Wa

pqxq + bp (1)  

where bp and Wa
pq are the bias term and weight vector of the ath layer 

respectively. A nonlinear function such as rectified linear activation 
function (ReLU) [81] can be used to compute the output, which is given 
below.  

Outa
p =Max

(
0, lna

p

)
(2) 

All the nodes in the convolution and fully connected layers use 
Equations (1) and (2) to compute the input and output. The pooling 
layer utilizes a K × K square window sliding on the N × N features map, 
and takes the average or maximum value of the features inside the 
window. It therefore, reduces the spatial dimension of the feature map 
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from N × N to N/K × N/K as it generates a single value for the K × K 
region. We use the SoftMax function [82] to calculate the classification 
probability of every pathogen in the final layer as given below.  

Outa
p =

elna
p

∑
k eOutak

(3) 

Back propagation procedure is used to trained the CNN’s. It can be 
used to minimize the cost function [82] related to the unknown weight 
W, which is given below.  

C= −
1
m

∑m

n=1
ln(p(yn|Xn)) (4)  

where m represents the number of instances in a training set, Xn is the 
nth instance in the training set and yn is its corresponding label and its 
true classification probability is p (yn|Xn). Using stochastic gradient 
descent (SGD) over the mini-batches of magnitude N, the cost function is 
reduced and training costs are estimated by the mini batch cost. If Ws 

denotes the weights at iteration s for the convolution layer a and C is the 
cost of mini-batch, we will then update the weights [82] at the subse-
quent iteration as given below. 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γs = γ

[

sN
m

]

Vs+1
a = μvs

a + γ sαa
∂C
∂Wa

Ws+1
a = Ws

a + Vs+1
a

(5)  

where αa represents the learning rate of layer a, γ is the rate of sched-
uling, which diminishes the original learning rate α at the end of the 
specific number of epochs and μ denotes the momentum, which portrays 
the impact of previously updated weights in the recent iteration. 

2.5. Transfer learning and fine-tuning deep learning models 

During the training process, the weights of various layers of pre- 
trained mod-els are updated after every iteration, as given by Equa-
tion (5). There are 314 layers in total and 25 million training parameters 
in the InceptionV3 with a depth of 48 layers. On the other hand, in 
MobileNetV2, there are 155 layers and 3.5 million parameters with a 
depth of 53 layers. Different deep models have different number of 
training parameters and depths as shown in Table 3. 

For the training and optimization of these deep models, an abundant 
amount of data is a pre-requisite, as it serves as a fuel for these models. 
However, for a modest dataset, it is pretty challenging to acquire the 
appropriate local minimum for the cost function and the model will 
undergo overfitting. Originally pre-trained weights are applied for the 
MobileNetV2 and InceptionV3 models. These models are fine-tuned on 
our dataset by applying different values of the learning rate, batch size 
and the number of epochs. The initial layers in these models possess 
general features and the succeeding layers contain domain specific 
features. To preserve the features from the initial layers and decrease the 
pace of learning in the remaining transferred layers, the primary 
learning rate is fixed to a small value. However, to increase the pace of 
learning in the newly appended layers than in the transferred layers, the 
rate is set to a higher value in the fully connected layer. The final fully 
connected layer of the model consists of 1000 neurons that correspond 
to classes in the ImageNet. To gain the do-main specific features of novel 
coronavirus and other infections in X-ray images, this layer is set to 4 
neurons according to the number of classes in our dataset. The pre- 
trained models and ensemble learning are explained in the following 
sub-sections. 

2.5.1. MobileNetV2 
MobileNetV2 is a deep convolutional network with 53 layers. The 

Fig. 3. Flowchart of various steps of our proposed method.  
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model is an extension of MobileNetV1, which proposes a depth wise 
separable con-volution layer, which miraculously lessens the size and 
complexity cost of the design. The current design introduces a more 
beneficial module with an inverted residual structure, where the input 
and output of the residual block are narrow bottleneck layers. The in-
termediate layer is an expanded representation that uses lightweight 
depth wise convolutions to filter features. Moreover, non-linearities are 
removed in the thinner layers to maintain the representational ability 
[83]. MobileNetV2 can generate state-of-the-art performances in image 
classification. 

2.5.2. InceptionV3 
InceptionV3 is a pre-trained deep architecture that consists of 48 

layers. The architecture is trained on the ImageNet repository that 
consists of more than a million images [37]. The architecture can 
categorize images into 1000 classes. As a result, the architecture re-
trieves valuable features for a broad category of images. InceptionV3 is 
an enhanced variant of InceptionV2 that achieves enormous proficiency 
in image classification tasks by factorizing 5 × 5 convolution layers into 
two simplistic 3 × 3 layers. The representational bottleneck is elimi-
nated by adding a regularization part to the loss function. The novel 
InceptionV3 model narrows down overfitting and achieves label 
smoothing to a large amount. The design also factorizes a 7 × 7 
convolution layer and joins many discrete layers with batch normali-
zation routine, providing even higher accuracy with less computational 
complexity. Fig. 4 shows the complete design of the InceptionV3 
module. 

2.5.3. Ensemble learning for classification 
These kinds of networks possess nonlinear architectures that acquire 

com-plex associations from the input data by stochastic optimization 
and back-propagation. Thus, making them greatly sensitive to random 
weight initializations and the noise present in the training data. These 
concerns can be alleviated by employing an ensemble model by training 
numerous deep models and fusing their predictions, where a particular 
model’s shortcomings are compensated by the predictions of the other 
deep model. Combined predictions are demonstrated to generate better 
results than a specific deep model [72]. 

There are many ensembles learning strategies stated in the literature 
like stacking, max voting, weighted averaging, boosting, simple and 
blending and several others that minimize the error and improve per-
formance and generalization of deep models. Various research works 
[47,78,84] depict that ensemble models generate better results for the 
classification of tuberculosis in X-ray images. An averaging ensemble 
method utilized to pre-trained models assisted researchers in improving 
cardiomegaly classification using chest X-ray images [60]. 

Initially, we conduct feature extraction from InceptionV3 and 
MobileNetV2. But before extracting features, three dense layers are 
appended to these deep models, which help the models in learning 

intricate features. The succeeding addition layer helps in merging fea-
tures from these models. Then, a 0.5 dropout layer is added before 
classification, which helps in overcoming the hurdles of overfitting and 
long training time [85]. Finally, the ensemble learning model performs 
classification, which produces far better results than any particular deep 
learning design. 

3. Results 

This section presents the experimental results of the five deep 
learning models. Initially, we select the best two models and retrieve 
features from these pre-trained models by employing the ensemble 
method. Finally, for classifi-cation, a fully-connected, SoftMax layer and 
classification layer are appended after the dropout layer to the ensemble 
model. We evaluate the performance of these deep models under four 
different perspectives. When these deep models are (i) trained from the 
start (ii) fine-tuned without pre-learned weights (iii) fine-tuned with all 
layers unfrozen and (iv) augmentation and fine-tuned with all layers 
unfrozen. For each above strategy, specificity, recall, F-score and accu-
racy are determined for deep models on the COVID-19 dataset, as shown 
in Table 4. We can find the following observations.  

(i) When the dataset is limited, conventional shallow CNN models 
produce better results as compared to deeper models. This can be 
seen from the performance metrics of these CNN models trained 
from start. The CNN models produce comparatively low speci-
ficity, recall, F-score and accuracy because they are not thor-
oughly trained, due to an immense number of parameters and 
inadequate training instances.  

(ii) Fine-tuning can also assist in improving performance metrics like 
F-score and accuracy etc. of these CNN models, even if trained 
from the start. The results show that the CNN models only fine- 
tuned on the primary COVID-19 dataset can considerably 
improve F-score and accuracy, even if no pre-trained weights are 
used during the training process. 

(iii) Pre-trained weights are used for deep models in the last two ap-
proaches. Results show that these pre-trained weights help in 
substantially increasing the performance of models.  

(iv) Augmentation is also very effective in enhancing a deep model’s 
performance mainly when the training data is limited. The deep 
models along with standard augmentation techniques can make 
these models accomplish improved performance. As shown by 
the results, the strategy where aug-mentation is applied models 
show an increase up to 1.77% in F-score and up to 0.84% in 
accuracy.  

(v) Our proposed deep ensemble model produces a specificity, recall, 
F-score and accuracy of 98.97%, 96.89%, 96.89%, 96.90%, and 
98.45% respectively. The model generates results better as 
compared to any of the selected CNN models. The proposed 
design employing augmentation and fine-tuning procedures to 
accomplished an increase of up to 4.24% in F-score, and up to 
2.02% in accuracy over all the selected models.  

(vi) We compare our results with a previous ensemble approach [66] 
that uses VGG16 and DenseNet201 models, to show that our 
model is superior in all respects. The model was trained using the 
same hyper-parameters as suggested in the study, only the batch 

Table 2 
The range of hyper-parameters used for different pre-trained models.  

Deep Model Batch 
Size 

Learning Rate 

AlexNet 48, 32 5e-10, 1e-8, 8e-7, 
6e-7, 1e-7, 1e-6, 1e-5 

SqueezeNet 48, 32, 
24 

1e-8, 8e-7, 1e-7, 
1e-6, 9e-5 

DenseNet201 48, 32 1e-7, 1e-6,1e-5 
MobileNetV2 48, 32, 

24 
1e-8, 6e-7, 4e-7, 1e-7, 
9e-6, 5e-6, 3e-6, 1e-6, 
8e-5 

InceptionV3 36, 32, 
24 

1e-8, 1e-6, 8e-5, 2e-5, 
1e-5 

Our ensemble model (InceptionV3 +
MobileNetV2) 

48 9e-8, 9e-7, 7e-7, 4e-7, 
1e-7, 
7e-6, 1e-6  

Table 3 
The number of training parameters and depth of Pre-trained Models.  

Pre-trained Model Depth Weight Parameters 

AlexNet 8 61 million 
SqueezeNet 18 1.24 million 
DenseNet201 201 20.0 million 
MobileNetV2 53 3.5 million 
InceptionV3 48 25 million  
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size was set to 24 to speed up the training process and attain high 
accuracy. However, the model only achieved specificity, recall, 
FScore, and accuracy of 91.35%, 74.05%, 65.34%, and 87.04%, 
respectively. This clearly depicts that deep CNN models need 
large training data and hundreds of epochs to generalize well for 
unseen examples. 

(vii) The confusion matrices further elaborate the results of the pro-
posed model for the COVID-19 dataset as shown in Fig. 5. The 
results of all the ma-trices of five-fold cross validation show that 
there are ten misclassifications in the Normal class and 1 
misclassification in the COVID-19 class. How-ever, mis-
classifications are relatively high in the other two classes (bac-
terial 32 and viral 81).  

(viii) Fig. 6 shows ROC curves for 5-fold cross-validation to elaborate 
the performance of the presented model. The ROC curve indicates 
that the ensemble model performs very good on the COVID-19 
dataset. 

Over-fitting can be a significant hurdle, particularly with a small 
number of training instances. A model may achieve significant accuracy 
on the training data but it may not generalize well for new examples. So, 
a vital issue to review is that whether there is over-fitting or the sug-
gested design has generalized well for given examples. To make this 
comparison, we evaluate the performance of the model by evaluating 
the gap within the training and validation curves against the number of 
epochs. The more widespread is the space between the curves, the 
greater is over-fitting. 

Fig. 7 shows the change in accuracy and loss between training and 
valida-tion curves for the proposed ensemble model as the number of 
epochs increases. The curve is related to fold-2 of the model, which was 
further trained to increase the performance of the model. The curve 
further shows a slight increase in ac-curacy and a decrease in loss after 
10 epochs. The figure also demonstrates that the validation and train 
curves move side by side without a gap, which shows that there is no 
over-fitting and the proposed model has generalized correctly for the 
training examples. 

3.1. Statistical analysis procedure 

To statistically estimate the performance of our proposed model 
against its competing models, we repeated our evaluation procedure 5 
times. Then, we follow the steps given below.  

(a) We consider the 5 accuracy values of our model and those of a 
competing model and apply a paired two-sided t-test at the 5% 
significance level.  

(b) Our null hypothesis is that the difference between accuracy 
values of our model and those of a competing model comes from a 
normal distribution with mean equal to zero and unknown 

variance. The alternative hypothesis is that the mean is not equal 
to zero. 

The same statistical analysis procedure has been applied on F scores, 
recall and specificity. Our results in Table 4 show that our model is 
statistically significant than the other models. 

3.2. A comparison against previous works on coronavirus classification 

A comparison of our work with previously applied approaches for the 
classification of COVID-19 in chest X-ray images is presented in this 
section. This elaborates that only limited COVID-19 images are used in 
most of these approaches, secondly, datasets are mostly unbalanced, 
thirdly, 5- Folds cross-validation is applied by only by few approaches, 
and finally, statistical comparison of deep models and hyper-parameter 
tuning is not applied by any of the approaches. While considering the 
performance metrics in Table 5, the proposed ensemble model out-
performs the considered state-of-the-art approaches, achieving an 
overall classification accuracy of 98.45%. 

4. Discussions 

The COVID-19 pandemic has adversely affected the health of people 
and worldwide economies. Speedy diagnosis has often been substandard 
and sero-logical tests have not been freely available. The likelihood to 
use chest X-ray images along with ensemble learning as part of the 
diagnostic technique could help us in the battle against COVID-19 in-
fections and different respiratory pathogens that might emerge in the 
days to come [72]. Machine and deep learning techniques are producing 
excellent outcomes in different fields [73,88] but they earned vital 
attention because of the new outbreak of diseases like COVID-19 [74,89] 
and Ebola [90]. These methods can help in the quick and precise diag-
nosis of a disease. Deep CNNs in particular are highly effective in the 
image classification tasks and various pre-trained deep models exist for 
upcoming tasks while applying transfer learning, fine-tuning, and 
augmenta-tion techniques. These techniques are a benchmark in several 
domains such as object classification [91], image identification [46], 
biomedical image analysis [92], bacterial classification [31,80,93], and 
especially disease classification using chest X-rays [94]. A specific type 
of these deep models known as the ensemble learning model performs 
image classification, which generates far better results than any indi-
vidual deep learning model [72]. Our study reveals that transfer 
learning from the non-biological tasks can substantially enhance current 
methods of classification for radiology images while also separately 
yielding feasible performances for a small dataset as shown in Table 4. 
Some notable investigations [78,79,84] by researchers produce confir-
mation that transfer learning can generate outstanding outcomes, 
especially in the case of small datasets [78,95]. Fine-tuning is utilized on 
multiple pre-trained deep models using Chest X-ray images, to help deep 
models converge swiftly and acquire features related to a specific 
domain. The current study unveils that fine-tuning a deep model is 
essential for its reusability [96]. With such a design, we maintain the 
initial architectural model, and the pre-learned weights, are appro-
priated to initialize the pre-trained deep model. The learned weights are 
therefore renewed through-out the procedure of fine-tuning, helping the 
model to discover features specific to the related problem. Recently, 
several types of research have confirmed that fine-tuning is effective and 
effective for different types of classification issues in the biological field 
[97]. 

In the proposed ensemble model, two best performing deep models 
(MobileNetV2 and InceptionV3) selected for ensemble learning. The 
ensemble model, possessing the characteristics of both models, was fine- 
tuned to attain domain-specific features, which are necessary for the 
identification of novel coro-navirus and other chest related infections in 
X-ray images. 

MobileNetV2 depends on a streamlined architectural design that Fig. 4. InceptionV3 module.  
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applies depth-wise separable convolutions with different layers for 
filtering and merging. The factorization has the impact of substantially 
diminishing computational cost and design dimensions [98]. Such type 
of network possesses a lesser number of parameters to adjust, as 
compared to standard Convolution networks, which reduces overfitting. 

A recent investigation manifested that pre-trained InceptionV3 
model and fine-tuned using chest X-ray films relating to the examination 
of pulmonary nodules, accomplished fantastic results for the diagnosis 
of thoracic disease, similar to the conclusion of expert radiologists [99]. 
Another research also utilizes the InceptionV3 model and transfer 

learning using chest X-rays for the classification of pneumonia [58]. The 
InceptionV3 architecture utilizes factorized inception blocks, facilitating 
the interface to pick appropriate kernel-sizes for the convolution layers. 
That allows the design to gain both high and low-level features with 
larger and smaller convolution layers [83]. 

The research also depicts that augmentation can significantly help in 
reducing overfitting and improving the performance of deep models. All 
pre-trained models applied augmentation technique produced an increase 
of 1.54–4.24% increase in F-score, and 0.74–2.02% increase in accuracy 
over prior models, as in Table 4. Investigations also maintain our opinion 

Fig. 5. Confusion matrices for 5-fold cross-validation.  
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that augmentation can help in increasing the performance and producing 
a more generalized prototype without the menace of overfitting [88,95]. 
The current research also depicts that merging features from deep models 
using ensemble learning can help in increasing the accuracy and over-
coming deficiencies of individual models. As a result, F-score and accu-
racy of the model increased over all the applied deep models by 
1.54–4.24% and 0.74–2.02%, respectively. 

Various researches propose that contrary to the conventional CNN 
models, ensemble learning models by merging deep CNN’s, acquire 

more useful features from images in the training data. These ensemble 
models have accomplished outstanding results in image classification 
tasks in various domains [89,100,101], along with pneumonia classifi-
cation [58], cardiovascular tissues identification [102] and especially in 
the area of radiology images [90,103]. 

5. Conclusions and future works 

In the current research, a new coronavirus classification procedure is 

Fig. 6. ROC curve of the deep ensemble model for 5-fold cross-validation.  

Table 4 
A comparison of performances of our ensemble model and various deep learning models.  

Model Methods Specificity Recall F-score Accuracy 

Our ensemble method (InceptionV3+MobileNetV2)  98.97 ± 0.22 96.89 ± 0.65 96.90 ± 0.65 98.45 ± 0.32 
Ensemble method [66] (Vgg16+Densenet201)  • 91.35 ± 0.42 • 74.05 ± 0.96 • 65.34 ± 1.10 • 87.04 ± 0.57 
AlexNet Trained on ODS-NPTW 76.15 ± 0.37 28.48 ± 1.46 24.18 ± 1.82 64.36 ± 0.64 

FT on ODS-NPTW 92.69 ± 0.70 78.11 ± 2.20 77.77 ± 2.17 89.03 ± 1.03 
FT on ODS-PTW 97.41 ± 0.43 92.21 ± 1.25 92.20 ± 1.33 96.13 ± 0.62 
FT on ADS-ALUF • 97.67 ± 0.46 • 93.05 ± 1.08 • 92.96 ± 1.13 • 96.50 ± 0.64 

SqueezeNet Trained on ODS-NPTW 75.28 ± 0.31 25.85 ± 0.95 14.00 ± 1.32 62.91 ± 0.69 
FT on ODS-NPTW 92.46 ± 0.49 77.30 ± 1.13 77.35 ± 1.15 88.69 ± 0.65 
FT on ODS-PTW 97.24 ± 0.38 91.77 ± 0.87 91.78 ± 0.95 95.87 ± 0.54 
FT on ADS-ALUF • 97.73 ± 0.25 • 93.21 ± 0.47 • 93.19 ± 0.47 • 96.60 ± 0.33 

Densenet201 Trained on ODS-NPTW 74.64 ± 1.43 23.73 ± 4.03 22.20 ± 4.68 61.99 ± 2.14 
FT on ODS-NPTW 87.46 ± 0.74 62.36 ± 2.49 62.55 ± 2.33 81.21 ± 1.01 
FT on ODS-PTW 97.36 ± 0.43 92.08 ± 1.35 92.04 ± 1.41 96.05 ± 0.65 
FT on ADS-ALUF • 97.91 ± 0.38 • 93.67 ± 1.35 • 93.67 ± 1.33 • 96.86 ± 0.32 

MobileNetV2 Trained on ODS-NPTW 74.48 ± 0.57 23.46 ± 1.73 14.29 ± 0.85 61.74 ± 1.06 
FT on ODS-NPTW 92.33 ± 0.54 77.04 ± 1.06 76.68 ± 1.13 88.50 ± 0.74 
FT on ODS-PTW 97.91 ± 0.21 93.76 ± 0.63 93.71 ± 0.66 96.86 ± 0.32 
FT on ADS-ALUF • 98.24 ± 0.27 • 94.71 ± 1.01 • 94.68 ± 1.01 • 97.36 ± 0.42 

InceptionV3 Trained on ODS-NPTW 72.16 ± 0.58 16.57 ± 1.33 16.31 ± 1.00 58.24 ± 0.59 
FT on ODS-NPTW 85.01 ± 0.41 55.02 ± 1.09 55.29 ± 1.17 77.53 ± 0.52 
FT on ODS-PTW 98.08 ± 0.45 94.19 ± 1.63 94.21 ± 1.60 97.11 ± 0.70 
FT on ADS-ALUF • 98.49 ± 0.38 • 95.42 ± 1.31 • 95.43 ± 1.28 • 97.74 ± 0.58 

ODS, ADS, NPTW, PTW, ALUF, FT stands for original dataset, augmented dataset, no pre-trained weights, pre-trained weights, all layers un-frozen, fine-tuned. A •
denotes that our deep learning ensemble model is statistically better than its competing model. 

F. Ahmad et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 134 (2021) 104401

11

devised, which takes advantage of ensemble learning, transfer learning, 
fine-tuning, and data augmentation techniques for differentiating be-
tween various chest infections. Ensemble learning assists in blending the 
qualities of separate models while overcoming deficiencies of specific 
models. Transfer learning addresses the need for an abundant quantity 
of training data. Fine-tuning aids the model converge quickly and attain 
domain-related features. Data augmentation makes datasets more 
diverse, which enhances the generalization capacity of the model and 
thus assists in handling overfitting. The suggested design comprises of 
MobileNetV2 and InceptionV3 designs, which produces far better clas-
sification performance than any of the selected deep models. We also 
compared our model with another ensemble approach presented in the 
literature, to show that our model is far superior to the presented 
approach. The model attained aa specificity, recall, F-score and accuracy 
of 98.97%, 96.89%, 96.90%, and 98.45%, which can significantly 
beneficial for radiologists and diagnostic staff in the accurate classifi-
cation of the novel coronavirus and other bacterial and viral infections 
in chest X-rays. As a result, the proposed model can assist in the accurate 

and swift diagnosis of chest related infections and thereby limiting the 
social and economic impact on the community. 

Although the results are good, the dataset is still limited and noisy. 
For viable deep learning solutions that can be accepted as a standard for 
classifying COVID-19 in X-rays, there is a need to develop a significantly 
larger dataset without any background noise. As future work, a deep 
lung segmentation model like U-Net can be used to extract the Lung 
counter from the noisy X-ray image to develop a significantly larger 
dataset for COVID-19, which can then be used as input for CNN models. 
This can be a leap towards a highly accurate and practical deep learning 
solution for the community. 

Consent to participate 

The authors declares their consent for participation. 

Fig. 7. Learning curves for training and validation accuracy (blue, black doted lines) and training and validation loss (orange, black dotted lines) of fold-2 of fine- 
tuned, pre-trained, ensemble model for various infections in X-rays. 

Table 5 
A comparison of Our model with previous approaches for COVID-19 Classification. 
(c) In case the null hypothesis is rejected, the performance of our model is statistically different from the other model. We consider it to be a win for our model if the 
mean accuracy value of our model is greater than that of the competing model. We denote it be a •. Otherwise, it’s a loss for our model. We denote it by a ◦.  

(d) If t-test does not reject the null hypothesis, the performance of our model is not statistically different from the other model and we consider it to be a tie. A tie 
will be represented by no symbol.  

Approach Classes COVID-19 
Images 

Balanced 
Dataset? 

5-folds CV? Statistical 
Comparison? 

Tuning Hyper parameters? Accuracy 

Our Model 4 1000     98.45% 
Covid-Net [35] 3 180 × × × × 93.3% 
CoroNet [64] 4 284 × × × × 89.6% 
XGB [86] 4 130 × × × 79.52% 
DELT [87] 4 305 × × × 90.13% 
COVID-ResNet [74] 4 68 × × × × 96.23%  

F. Ahmad et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 134 (2021) 104401

12

Consent for publication 

The authors declares their consent for publication. 

Code availability 

Code will be shared on request. 

Authors’ contributions  

(i) We prepared a large and well-balanced dataset with four classes 
(viral, bacterial, COVID-19 and normal). Each class consists of 
1000 images.  

(ii) Our work integrates fine-tuning, augmentation, transfer learning 
and hyper-parameter tuning into one model. 

(iii) We propose a deep design by merging the features of Mobile-
NetV2 and InceptionV3 models using an ensemble approach. We 
have made architectural adjustments to deep models by adding 
three dense layers at the end of each model to learn more intricate 
features before merging their features through the addition layer. 
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test. 
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