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Abstract

Drawing on the recent advances in complex network theory, urban mobility flow patterns,

typically encoded as origin-destination (OD) matrices, can be represented as weighted

directed graphs, with nodes denoting city locations and weighted edges the number of trips

between them. Such a graph can further be augmented by node attributes denoting the vari-

ous socio-economic characteristics at a particular location in the city. In this paper, we study

the spatio-temporal characteristics of “hotspots” of different types of socio-economic activi-

ties as characterized by recently developed attribute-augmented network centrality mea-

sures within the urban OD network. The workflow of the proposed paper comprises the

construction of temporal OD networks using two custom data sets on urban mobility in

Rome and London, the addition of socio-economic activity attributes to the OD network

nodes, the computation of network centrality measures, the identification of “hotspots” and,

finally, the visualization and analysis of measures of their spatio-temporal heterogeneity.

Our results show structural similarities and distinctions between the spatial patterns of differ-

ent types of human activity in the two cities. Our approach produces simple indicators thus

opening up opportunities for practitioners to develop tools for real-time monitoring and visu-

alization of interactions between mobility and economic activity in cities.

Introduction

The ever-growing availability of large scale data sources pertaining to human activities in con-

temporary cities and the fact that the socio-economic and technological systems lend them-

selves adequately to representation through discrete elements and interactions between them

have led recent years to witness an unprecedented increase in modelling of such complex sys-

tems using network theory [1].

In urban science, there has been a significant research interest towards understanding

urban systems particularly through modelling road structures, human mobility, traffic flow,

and economic activity through a complex networks approach [2–4]. In such a setting, distinct

elements in a city such as road junctions or neighbourhoods are typically represented as the
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network nodes, while the heterogeneous connections or interactions between them, such as

road segments, passenger flows, activity correlations represent the edges in the network [5, 6].

Further, depending on the focus of the research, various statistical and graph-theoretical prop-

erties of the network can be studied to gain valuable insights about the urban spatial, temporal

and socio-economic structures. Following this approach, several studies have analysed mobile

phone usage, taxi or private car GPS trajectories, smart card, geo-located social media, and

classical census data for inferring systemic patterns both at the individual and aggregate level

[7–11].

An area of research of particular interest in complex network theory is the study of the

importance of nodes or edges in a network through centrality measures. Such measures are

typically based on local and global network connectivity structures and include a variety of

types: degree [12], closeness [13], betweenness [14], eigenvector [15], PageRank [16], etc.

However, these conventional centrality metrics measure the importance of nodes by consider-

ing only the network topology regardless of the intrinsic information on these nodes such as

their behaviour, type or some other, domain-specific attribute. Since many kinds of real-world

networks call for such node attributes, several centrality measures have recently been proposed

extending the widely used centrality measures to accommodate node attributes [17–19]. This

becomes especially relevant in urban modelling, as locations in a city possess quantitative and

qualitative characteristics irrespective of the connectivity structure of the network of interac-

tions with other locations. Such characteristics may describe the availability and quantity of

such urban features as parking lots, restaurants, real estate prices, population density, etc.,

qualitatively enhancing urban networks.

Another important line of research in complex networks is temporal network theory: the

study of the evolution and behaviour of networks over time. Temporal networks integrate net-

work science with time-series analysis and contribute greatly to the modelling of epidemic

spreading, transportation optimization, biological systems, as well as social networks [20].

Although some recent work has focused on analysing the spatial patterns of different urban

features [5, 21], studying urban networks with centrality measures [17, 22, 23], as well as

modelling the evolution of urban interaction networks over time [24], we still have a poor

understanding of the interplay between urban location characteristics and the networks of

interactions between these locations. All the more so, the temporal evolution of this interplay

remains an unexplored area of research.

Having this gap as motivation, the objectives of this paper are to analyse and study the spa-

tial distribution of the central nodes by activity type over time in urban origin-destination

(OD) networks. More specifically, we focus on the spatial arrangement of the most central

nodes of the OD network as identified by the Adapted PageRank Algorithm (APA) [17] addi-

tionally considering activity related to food and retail services over time in Rome and London.

We find that although the daily temporal patterns of the most central places in attributed OD
flows in the two cities display structural similarity, the spatial distributions of food and retail

related activity over time differ, indicating a more polycentric structure in London. The pro-

posed pipeline from raw GPS and open source point-of-interest (PoI) data to the resulting

data visualization offers a workflow with the potential for creating tools for monitoring the

changes in mobility patterns and in their relations to various socio-economic activities over

time. This would allow urban practitioners to monitor daily/weekly mobility patterns for ana-

lysing the effects of urban interventions or temporary events, but also to study long-term

trends in these patterns for urban policy making.

To achieve the objectives the structure of this paper is as follows: the theoretical tools

employing graph theoretical methods for characterising centrality (Adapted PageRank Algo-

rithm), a measure of statistical heterogeneity (the Gini coefficient) for describing the
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distribution of the obtained centrality values, a non-parametric technique for identifying “hot-

spots” of high centrality values, and a spreading index characterising the spatial spread of the

“hotspots” in the two cities are presented in Previous Work Section. The data set and methodol-
ogy Section describes the dataset used for the proposed study and summarises the methodol-

ogy underpinning the experiments. The proposed methodology is validated and the numerical

results from studying real urban OD networks in London and Rome are discussed in Numeri-
cal Results Section. Finally, Conclusion Section 5 concludes the paper.

Related work

The city is one of the most complex dynamic anthropogenic systems. To analyse this complex-

ity, spatial networks have been widely used for modelling city objects and the interactions

between them, and different approaches have been proposed with regards to the choice of

objects and the various types of interactions between them [1, 22, 25]. In modelling cities with

these simple mathematical objects called graphs, a variety of properties such as the relative

importance of city locations through network centrality measures can further be studied.

Network centrality measures have been used in different problem settings across many

research fields related to economic geography [26], road networks [22], and urban mobility

[23]. [26] study the impact of social network structures exemplified by central nodes computed

with the PageRank algorithm in the US startup mobility networks on the innovation perfor-

mance of cities.

In studying street networks, [22, 25], for instance, analyse the distributions of various types

of centrality measures computed on the street networks of different cities and find them to

reveal the distinction between self-organized and planned cities. Another work [27] utilises

betweenness centrality measures in street networks across cities worldwide to find universal

bimodal betweenness regimes corresponding to trees and loops explaining high and low cen-

trality values, respectively. Similarly, conventional centrality measures have also been used in

studying human mobility, particularly on inter- and intra-urban OD networks. In particular,

[28] reveal node betweenness centrality in an inter-urban OD network displaying a positive

correlation with population and wealth, while [23] study the statistical properties of between-

ness centrality in intra-urban OD networks in different cities.

Conventional centrality measures suffer from the drawback of not taking account of exoge-

nous information on the nodes. In this regard, there exist studies that have attempted to over-

come this by extending centrality measures to include node attributes. [17, 18] propose a

centrality measure based on the PageRank to study the key areas of city activity on the street

network enriched with geo-referenced retail and services data on the nodes. [29] take a differ-

ent approach, introducing distance decay and attractiveness modifications to the PageRank

algorithm to incorporate the effects of distance and attractiveness in choosing a particular des-

tination over another.

Computing measures of network centrality gives us the relative importance of the nodes

(locations) in an urban network. However, choosing the most important locations requires

some discussion. In the field of spatial analysis, a “hotspot” usually refers to a location with an

attribute value relatively higher than that of its neighbouring locations. The study of the spatial

characteristics of “hotspots” has been the focus of research in such different fields as criminol-

ogy [30], transportation [31], or epidemiology [32]. In the context of urban mobility, “hot-

spots” may be seen to reflect travel intensity between different areas [33, 34]. With the

availability of large data streams of ever more granular location data, “hotspot” analysis is

becoming a widely practiced tool in urban mobility research [35, 36]. There exist many tech-

niques for urban “hotspot” detection. The first is based on spatial statistical analysis,
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particularly on spatial autocorrelation indicators for detecting neighbouring areas with dissim-

ilar value intensities [37]. Another “hotspot” detection method is based on kernel density esti-

mation by using a spatial search method [38]. In [39], the authors have applied this method to

study the spatial distribution of popular locations. In the context of urban mobility OD net-

works, a “hotspot” detection technique of particular interest has been presented in [40] and

further applied in [41], in which the authors develop a method borrowing from economics to

construct a Lorenz curve and based on the choice of a threshold exploiting the intuition that

the more skewed the distribution of values of interest in a city, the less “hotspots” there will be.

We will discuss this method in detail in the Identifying the hotspots Section as part of our work.

After “hotspot” detection following the described approach, the authors in [40] and [41] study

the coarse grained mobility patterns in a city by breaking down the urban mobility OD matrix

into a 2 × 2 block matrix corresponding to combinations between “hotspot” and “non-hot-

spot” locations. The authors in [42] also study and discover universal coarse grained mobility

patterns in cities, but instead of using a threshold-based approach, they resort to a non-

parametric clustering method for identifying “hotspots”.

So far, we have discussed static networks as the object of study with tools from network the-

ory. However, since many real-world phenomena require modelling their behaviour over

time, temporal network theory has become a valuable tool in many fields. This is the case with

urban mobility which demonstrates important temporal patterns, the study of which could

greatly inform urban planning, policy making, and management. A number of studies has

attempted to analyze urban mobility from a temporal perspective. [43] use centrality measures

for temporal prediction on OD networks built from cellular traffic data. [24], study temporal

OD networks with change detection techniques for identifying “change points” in time, in

which the entire structure of the graph changes.

There have also been recent applications of graph neural networks on temporal sequences

of graphs, mostly in a prediction setting. For instance, based on the length of prediction win-

dows, previous studies of traffic forecast can be divided in dynamical modelling [44] based on

mathematical tools and physical knowledge, and data-driven methods [45, 46] based on classi-

cal statistical and machine learning.

Previous work

In this section, the centrality measure applied to rank the attributed nodes in the OD networks,

statistical dispersion measures describing the centrality value distributions, as well as a mea-

sure of spatial spread are presented in detail.

The Adapted PageRank algorithm (APA)

The PageRank model [47] was proposed to compute a ranking for every Web page based on

the graph of the Web. The objective is the calculation of a vector (PageRank vector) which

establishes a ranking of all the pages analyzed according to their importance.

The PageRank vector is the dominant eigenvector of the matrix known as Google matrix G0

(see [16] for an algebraic definition and characteristics of this matrix). This matrix is a stochas-

tic square matrix with non-negative elements and the sum of the elements in each column

being equal to unity. It introduces a parameter α such that 0< α< 1 known as damping factor.
This parameter represents the probability that a random surfer in the Web jumps from a page

to any other in the network.

Among its spectral features, G0 is stochastic and positive, so it can be directly applied the

Perron-Frobenius theorem to assure the existence and uniqueness of the PageRank vector~x.

To delve into the characteristics of the PageRank model, see [48, 49].
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In 2012, [17] proposed an adaptation of the original PageRank model called Adapted

PageRank Algorithm (APA) for spatial networks with data, although the original algorithm

was initially thought for urban street networks. Afterwards, the APA model was modified

introducing variants [18]. The base of the APA model is the construction of an stochastic and

positive matrix MAPA that keeps the spectral properties of the Google matrix. Then, it is possi-

ble to compute a unique eigenvector that constitutes the classification of the nodes according

to their importance in the network.

As the Google matrix had two terms, one related to the node’s connections and the other

related to the probability of surfing among the pages, the matrix MAPA has two terms, the first

related to the connectivity and the second term related to the data associated to every node. So,

a data matrix D of size n × k is constructed where the rows are the nodes and the columns are

the attributes of the node’s information object of the analysis.

Therefore, MAPA is constructed from the adjacency matrix A and the data matrix D as

MAPA ¼ ð1 � aÞP þ aV; ð1Þ

where P is the probability matrix computed from the adjacency matrix, and V is a matrix that

collects the whole data associated to the nodes. Regarding the probability matrix P, it is con-

structed from the adjacency matrix A, as

pij ¼

1

cj
if aij 6¼ 0;

0 otherwise;
1 � i; j � n;

8
><

>:
ð2Þ

where cj represents the sum of the j-th column of the adjacency matrix.

Remark that P has the following characteristics: it is nonnegative and stochastic by columns.

See [17] to know more details about the spectral properties of P.

The parameter α introduced in 1 determines the importance we attach to the data within

the calculation of centrality, since the matrix V is responsible for collecting data on the net-

work. Just as in the Google matrix, the damping factor allowed us to evaluate the possibility

that a random navigator would go to any node in the network, in the Adapted PageRank algo-

rithm, the parameter α allows us to decide the greater or lesser importance of the data com-

pared to the own connectivity of network nodes. Following the definition of Google matrix,

parameter α is also defined between 0 and 1, in order to make the MAPA matrix stochastic by

columns.

The APA algorithm proposed by the authors can be summarized as:

Algorithm 1: APA algorithm for computing the node’s centrality.
Input: Let G = (V, E) be a graph representing a network with n nodes,
let be D the data matrix associated to nodes of G and let be ~v0 the
weighted vector.
Output: ~x representing ranking of the nodes in the graph G
begin
Compute the matrix P from the graph G according to (2)
Compute ~v ¼ D~v0

Normalize ~v, and denote it as ~v�

Construct V as V ¼~v�~eT
Construct matrix MAPA following the expression (1)
Compute the eigenvector ~x of the matrix MAPA associated to eigenvalue

λ = 1
end

Vector~x constitutes the Adapted PageRank vector and provides a classification or ranking

of the network nodes according to both the connectivity and the presence of data.
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Gini coefficients

After computing the node rankings with the APA centrality for each activity type for each

hour of the day, we need measures of heterogeneity to assess their distributions in time and

space.

The first type of measure commonly used to assess how heterogeneous a variable is distrib-

uted, is the Gini coefficient, borrowed from economics. It is defined as

GI ¼
Pn

i¼1

Pn
j¼1
j~xi � ~xjj

2n2�~x
; ð3Þ

where~xi is the APA value at location i = [1, 2, . . ., n] and �~x ¼ ð1=nÞ
P

i~xi.

The Gini coefficient, originally used to measure wealth and income inequality, can be

applied to quantify the heterogeneity of other variables as well. In the case of characterising

heterogeneity of values at different locations in a city, the Gini coefficient will take on the value

of zero if the variable of interest is distributed uniformly across city locations. Conversely, it

takes on its maximum value when all of the variables of interest are concentrated in a single

location, leading to a Gini coefficient of GI = 1 − 1/n, which is very close to 1 for large n.

However, being a measure of statistical dispersion, the Gini coefficient is agnostic to the

spatial arrangement of the APA values in the city. As demonstrated in [50] and [51], a reshuffl-

ing of the spatial configuration can yield the exact same Gini coefficient.

In order to obtain a Gini coefficient that carries meaningful spatial information, we further

use the Spatial Gini index proposed in [50]. In essence, it is a decomposition of the classical

Gini with the aim of considering the joint effects of inequality and spatial autocorrelation.

More specifically, it exploits the fact that the sum of all pairwise differences can be decomposed

into sums of geographical neighbors and non-neighbours:

GI ¼
Pn

i¼1

Pn
j¼1

sAi;jj~xi � ~xjj

2n2�~x
þ

þ

Pn
i¼1

Pn
j¼1
ð1 � sAi;jÞj~xi � ~xjj

2n2�~x
;

ð4Þ

where sAi;j is an element of the geographic spatial adjacency matrix.

The Gini index can be interpreted as follows: as the positive spatial autocorrelation

increases, the second term in 4 increases relative to the first, since geographically adjacent val-

ues will tend to take on similar values. On the contrary, negative spatial autocorrelation will

cause an opposite decomposition, since the difference between non-neighbours will tend to be

less than that between geographical neighbours. In either case, this offers the possibility to

quantify the contributions of these two terms. The results obtained from this approach can be

tested for statistical significance by using random spatial permutations to obtain a sampling

distribution under the null hypothesis that the APA variate is randomly distributed in space.

Spreading index

Despite their informative relevance, the Gini coefficient and its spatial variant exploit the

mean �~x, which, under fat-tailed distributions, as many socio-economic variables tend to be,

may be undefined. In such cases, as shown in [52], the Gini coefficient cannot be reliably esti-

mated with non-parametric methods and will result in a downward bias emerging under fat

tails.

Another downside of measuring heterogeneity of the obtained APA values with the Gini

approach is that it does not offer the possibility to study the spatial arrangement of the
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“hotspots”—locations with very large APA values. The “hotspots” are defined as the grid cells

with an APA value above a certain threshold~x� (see Fig 5). For choosing this threshold we

resort to a non-parametric method introduced in [40]. Once we have identified the “hotspots”

as cells with APA values larger than the chosen threshold~x�, we can use the spreading index
introduced in [51] for measuring the average distance between the “hotspots”, normalized by

the average city distance to enable cross-city comparisons:

Z ~x�ð Þ ¼
1

Nð~x�Þ

P
i;jdði; jÞ1ð~xi>~x�Þ1ð~xj>~x�Þ

1

N

P
i;jdði; jÞ

; ð5Þ

where Nð~x�Þ is the number of pairwise distances of grid cells with an APA value greater than

~x�, N is the number of pairwise distances between all grid cells covering the city, d(i, j) is the

distance between cell i and cell j, and 1ð~xi>~x�Þ is the indicator function for identifying the cells

with APA values greater than~x� for computing the distances. The spreading index is essentially

the average distance between cells with~xi >~x�, normalized by the average distance between

all city cells. If the cells with large APA values are spread around across the city, this ratio will

be large. Conversely, if the high value cells are concentrated close to each other, as in a mono-

centric city, this ratio will be small.

The data set and methodology

This paper studies the spatio-temporal characteristics of urban mobility in Rome and London,

two of the most emblematic and active cities in the world, both from socio-economic and tour-

istic points of view.

The workflow of building the data sets is as follows:

1. The urban territory has been subdivided into n Cartesian grid cells of size 1 × 1 km, and

each such quadratic cell is considered a node in the graph.

2. The raw GPS trajectories of around 10000 private cars spanning two years have been

obtained from proprietary car insurance data for research purposes. The data have been

cleaned, processed, and superimposed on the grid. Then, trip origin and destination GPS

positions have been identified by interpreting the engine ignition on/off interval for each

vehicle. Time intervals between 10 and 35 minutes showed robust outcomes, and 20 min-

utes were chosen for identifying car trips. The extracted origin-destination points are then

mapped to the respective grid cells.

3. The OD networks have been built from the extracted origin-destination pairs described by

the weighted adjacency matrix, WA 2 Rn�n
, the element WA

ij of which represents the num-

ber of car trips starting at node (cell) i and ending at node j.

4. Data matrix D 2 Rn�p
contains the data associated with each node referring to economic

activity related to shopping activity and food-services. It contains three columns that sum-

marize this data, so p = 3. The first column collects the number of car displacements from

each node to the other nodes. The second column collects the data related to the shopping

or commercial activity of each node. In this column we have added the following attributes:

shops and shopping malls. The third column summarizes the data referring to the food-ser-

vices economic sector. We have added the following attributes: restaurants, fast food, bars,

cafes. All the features corresponding to food and retail activity per cell has been extracted

from geo-referenced data from OpenStreetMap [53].
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All the data used in this study can be consulted in the following doi: https://figshare.com/s/

d61592a380dd508102b2.

These datasets of a temporal sequence of OD networks (see Figs 1 and 2) on a typical day

undergo further analysis described in detail in the sections below. We then publicly release a

custom data set of location centralities over time obtained from the temporal OD flows men-

tioned above, augmented with node attribute data describing food and retail services activity

in city locations.

Fig 1. Car GPS trajectories over 1 × 1 km cells in Rome.

https://doi.org/10.1371/journal.pone.0239319.g001
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After the city territories have been tessellated into 1x1km grid cells, the raw GPS data has

been processed, trip origins and destinations have been extracted and the OD networks have

been built for each hour of the day both in London and Rome, we proceed to computing the

location centralities with the Adapted PageRank Algorithm. Then, we analyze the heterogene-

ity of the APA values in both cities during a typical day and during a typical week by using the

Gini coefficient. Finally, in order to obtain a clearer picture of the spatial distribution of the

APA values, we calculate the spreading index and its modification introduced in The time-
space spreading index (TSI) subsection. The methodology can be summarized in Fig 3.

Fig 2. Origin-destination (OD) flow network in Rome with some popular travel locations highlighted.

https://doi.org/10.1371/journal.pone.0239319.g002
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Numerical results

In this section we conduct the numerical experiments for the study and outline the principal

findings. We then undertake a detailed discussion of the results in the forthcoming section.

Computing the APA centrality

We proceed to compute the APA values using Algorithm 1 for the following three kinds of

networks:

1. Mobility flow network only.

2. Flow network with nodes attributed with information related to retail (shops, shopping

malls, retail stores).

3. Flow network with nodes attributed with information related to food services (bars, restau-

rants, cafes).

Note that for each of these networks we use the corresponding data column of matrix D

that is in accordance with the economic activity being evaluated.

The APA values of the Rome and London grid cells at different times of the day can be seen

in Fig 4. In this Figure, the values of the APA centrality of each of the nodes with respect to the

mobility flows have been calculated using Algorithm 1. In the upper row the most central

nodes in the city of Rome are clearly shown, at different times of the day; in the lower row the

same calculations made in London are shown. Without delving into details, for now, a greater

concentration of the most important nodes in the city of Rome is observed for all the chosen

times, while in London the most central nodes are in much more dispersed locations. Precisely

Fig 3. Flowchart of the methodology.

https://doi.org/10.1371/journal.pone.0239319.g003
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the study of this dispersion and the characteristics associated with the distribution of centrality

values will be one of the axes of this work.

The spatial as well as empirical cumulative distributions (ECDF) of the computed APA val-

ues in Rome and London are presented in Fig 5. As can be seen, the APA distributions in both

cities are asymmetrically distributed: most of the cells have a very low centrality value, while

only a handful of cells have a large centrality value. However, experiments aimed at identifying

the analytical distributions yielded different results in the two cities. We conducted the fitting

with the Python package “powerlaw” [54]. Parameters obtained via maximum likelihood esti-

mation and the statistical goodness-of-fit measures show differing results for the two cities: a

truncated power law distribution for Rome (p = 0.004), and a log-normal-like distribution in

the case of London (p = 0.06). Although the exact distribution is irrelevant here, this finding

suggests that different data-generating mechanisms might be in place in the two cities.

Computing the Gini coefficients

We now proceed to analyzing the heterogeneity of the APA values in both cities, as described

in Gini Coefficients subsection. In particular, as it is shown in Fig 6 (left), the daily average Gini

coefficients in Rome and London take on values roughly 0.67 and 0.48, respectively. The tem-

poral variation of the data is higher in London. In the same Figure, we further observe a

slightly higher Gini coefficient during the night hours in both cities, in accordance with the

fact that most flows are associated with much fewer areas and thus yield a larger degree of con-

centration of activity during these hours.

With the aim of finding whether the Gini and Spatial Gini coefficients capture any differ-

ence between working days and weekends, both coefficients computed daily are represented

in Fig 7. No significant change across the days of the week can be observed neither in Rome

Fig 4. The APA values for the mobility flow network in Rome (up row) and London (down row) at different times of the day.

https://doi.org/10.1371/journal.pone.0239319.g004
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nor in London, while only a negligible rise of the coefficient on the weekend can be seen in

London.

Despite the fact that some conclusions can be drawn from observing a relatively higher

Gini coefficient during the night hours in both cities and on the weekends in London, the tem-

poral evolution of the Gini coefficient, as can be seen in Figs 6 and 7, conveys little significant

information. Also, as mentioned in Gini Coefficients subsection, it tells us nothing about the

spatial distribution of the APA values.

In order to understand the temporal behaviour of the spatial component of the Gini coeffi-

cient, we resort to decomposing the Gini coefficient as described in Gini Coefficients subsec-

tion. In essence, we are interested in finding how much of the Gini coefficient is due to non-

neighbour heterogeneity. To achieve this, we follow the approach described in [50] and use the

non-neighbour term in the Gini decomposition as a statistic to test for spatial autocorrelation:

GI2 ¼

Pn
i¼1

Pn
j¼1
ð1 � sAi;jÞj~xi � ~xjj

2n2�~x
: ð6Þ

The expression (6) can be interpreted as the portion of overall heterogeneity associated

with non-neighbour pair of grid cells. Inference on this statistic is carried out by computing a

pseudo p-value by comparing the GI2 obtained from the observed data to the distribution of

Fig 5. (a)-(b) Food service and retail activity APA distributions in Rome, (d)-(e) in London, (c)-(f) Log-log plots of empirical ECDFs in Rome and London at

12:00pm.

https://doi.org/10.1371/journal.pone.0239319.g005
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Fig 6. Gini (left) and Spatial Gini (right) coefficients during the day for flow only, food service, and retail activity in Rome and London.

https://doi.org/10.1371/journal.pone.0239319.g006

Fig 7. Gini (left) and Spatial Gini (right) coefficients during the week for flow only, food service, and retail activity in Rome and London.

https://doi.org/10.1371/journal.pone.0239319.g007

PLOS ONE Ranking places in attributed temporal urban mobility networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0239319 October 14, 2020 13 / 25

https://doi.org/10.1371/journal.pone.0239319.g006
https://doi.org/10.1371/journal.pone.0239319.g007
https://doi.org/10.1371/journal.pone.0239319


GI2 values obtained from random spatial permutations. It should be noted that this inference

based on random spatial permutations is on the spatial decomposition of the Gini coefficient

given by the expression (4), and not the value of the Gini coefficient itself.

Following the described approach, we proceed to the numerical experiments, varying the

neighbourhood radius in the expression (6) from 1.5 to 6 kilometers. Both in Rome and Lon-

don, the random spatial permutation approach yielded a statistically significant spatial decom-

position for all hours of the day (p = 0.01). As demonstrated in Figs 6 and 7, the temporal

profiles of the Spatial Gini coefficients closely follow the Gini profile. As the neighbourhood

radius increases, the inequality due to non-neighbour APA values decreases, since the growing

neighbourhood captures more and more of the inequality. We find a superlinear growth in the

rate of decline of the Spatial Gini coefficient with increasing the neighbourhood radius, with a

faster decline in Rome, suggesting a higher spatial concentration of urban flow in Rome.

Identifying the hotspots

In order to obtain a clearer picture of the spatial structure of the “hotspot” cells with high APA

values over time, we aim to compute the spreading index for flow, food services, and retail

activity at different hours of the day in both Rome and London.

Fig 8 shows “hotspot” locations with APA values greater than the 50th, 75th, and 90th per-

centiles in Rome (a) and London (b). Remark the differences in “hotspot” locations in both cit-

ies for several percentiles. The “hotspot” concentration in Rome is significantly higher than in

London, where we see spatial spread.

It is essential to perform a meaningful choice of the ~x� for identifying the “hotspots” in Eq

(5). With the aim of choosing a threshold which will retain information without turning to

noisy behaviour, we resort to a heuristic technique proposed in [40] based on the Lorenz curve

from economics, see Fig 9.

Fig 8. Hotspot locations with APA values greater than the 50th, 75th, and 90th percentiles in (a) Rome and (b) London.

https://doi.org/10.1371/journal.pone.0239319.g008
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For a given distribution of data, the construction of the Lorenz curve proceeds as follows.

For a set of values of cardinality n, the values are ordered in a non-decreasing sequence ~xi with

i = 1. . .n. The incomplete sums Li � ð
Pi

j¼1
~xjÞ=ð

Pn
j¼1
~xjÞ are then plotted against Fi� i/n. As

described in [40], we note that the mean value~�x corresponds to the projection point of the tan-

gent of slope 1 on the x-axis and inverting Fð�xÞ ¼ Fx. The ~xLB value is found from the intersec-

tion of the x-axis with the tangent of the Lorenz curve at Fi = 1 (red line). This method, called

“LouBar”, is inspired by the classical technique for determining the scale for an exponential

decay. Indeed, if the decay from F = 1 were an exponential exp − (1 − F)/a where a is the scale

to be determined, the described method would yield 1 � ~xLB ¼ a.

In Fig 10 we plot the spreading indices for different threshold values ~x� over time in Rome

and London. For low values of ~x� , the plots show relatively constant, low variance spreading

indices over time, while for very large threshold values the spreading indices tend to become

noisy.

In fact, the thresholds ~x� ¼~�x and ~x� ¼ ~xLB form an interval ½~�x; ~xLB � containing all reason-

able choices for determining the “hotspots”. However, since the lower bound~�x results in a

curve with little variation during the day, and since values from the interval closer to the Lou-

Bar value give similar results to the Loubar value itself, we will proceed with this choice (see

Fig 10).

Fig 9. Lorenz curve for a data distribution.

https://doi.org/10.1371/journal.pone.0239319.g009
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Computing the spreading index

In this section, we present the results of studying the spreading index profiles on a typical day

in Rome and London, and build hypotheses regarding their interpretations.

Having chosen the threshold value ~x� , we compute the hourly profiles of the spreading indi-

ces for flows only, food services, and retail activities in Rome and London. Since the data sets

of raw GPS trajectories at our disposal span two years, we extract hourly OD networks across

the working days and obtain sampling distributions and corresponding 95% confidence inter-

vals of spreading indices at each hour with the aim of testing our results for robustness (Fig

11). The wider confidence intervals in the night hours are due to less available data for these

hours.

First, we find a significant difference in the spreading index hourly profiles of Rome and

London. During a typical day, the former varies from around 0.4 to 0.7, while the latter varies

from around 0.65 to almost 0.9, suggesting a considerably higher concentration of “hotspots”

during the day in Rome compared to London.

Next, we see structural similarities in the hourly patterns of the spreading indices in both

cities. As shown in Fig 11, the spreading indices for all types of activities demonstrate a similar

inverted U-like pattern, with the spreading index increasing considerably during the night

hours, bulging during the morning and evening hours, and declining during the late evening

hours. The rapid rise of the index during the night hours could possibly be attributed to the

fact that most mobility during these hours is due to flows on highways located in the periphery

of both cities, thus yielding a higher η, while the bulging of the index at morning and evening

hours is likely due to core-periphery commuting flows.

We further observe a large gap of around 0.1 between the flow only η profile and those of

food services and retail in London, while similar, albeit smaller gaps in Rome can be observed

only during the late evening and night hours (shaded areas in Fig 11, whereas the profiles for

all types of activities collapse very close to each other during the working hours. This gap can

likely be attributed to the “London congestion charge” https://tfl.gov.uk/modes/driving/

congestion-charge, which has dramatically reduced private cars in central London since its

introduction, while most of food services and retail stores and shops are located in the central

Fig 10. Spreading indices over time for various thresholds~x� in (a) Rome and (b) London.

https://doi.org/10.1371/journal.pone.0239319.g010
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part of London, bringing the spreading index down for these activities. In Rome, on the other

hand, a similar gap exists only during the night and early morning hours, which one can intui-

tively expect since most of the food services and shops have a central location, decreasing η,

while during these hours most of the flows are due to inter-peripheral highway flows which

increase η.

In Fig 12, the spreading indices across the days of the week are shown. We use the 104

weeks of available data to build an empirical 95% confidence interval for the spreading index.

We see the already familiar gap between the flow only and the other two types of activities in

London. Further, we detect a statistically significant (p< 1e−5) change in the index for Lon-

don, while no significant change appears to be present in Rome.

The time-space spreading index (TSI)

We have previously computed and tracked the spreading index η over a typical day in Rome

and London. The spreading index, being based on Euclidean distances between the cell cen-

troids, represents geographic space, but fails to capture urban mobility. In particular, due to

congestion in cities at peak hours, travel times can be said to distort the perception of space. If

travel times are considered as a measure of distance, geographically very close locations in the

city center might turn out to be further away than geographically further placed locations in

the city periphery with low traffic. For this reason, we enable the spreading index to capture

Fig 11. Spreading indices for flow only, food services, and retail activity in Rome and London during a typical day.

https://doi.org/10.1371/journal.pone.0239319.g011
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urban mobility by introducing the time-space spreading index (TSI), essentially weighting the

distances in the calculation of the spreading index η by the pairwise average travel times:

TSI ~x�ð Þ ¼
1

Nð~x�Þ

P
i;jtði; jÞ1ð~xi>~x�Þ1ð~xj>~x�Þ

1

N

P
i;jtði; jÞ

; ð7Þ

where t(i, j) is the average travel time from cell i to cell j, and is obtained using the Google Dis-

tance Matrix API.

This constitutes an important dimension for studying the spatio-temporal characteristics of

the “hotspots” in the mobility networks.

Therefore, we then proceed to analyze the time-space spreading index TSI of the three activ-

ities during a typical day in Rome and London.

The spreading indices and TSIs for Rome and London are shown in Fig 13. While the two

measures are very close to each other during the night hours, they start to deviate significantly

during the rest of the day. At these hours, the TSI in both cities is considerably higher than the

spreading index, hinting at the above-mentioned space-time distortion, in which geographi-

cally close central locations become further apart because of longer travel times due to traffic,

Fig 12. Spreading indices for flow only, food services, and retail activity in Rome and London during the week.

https://doi.org/10.1371/journal.pone.0239319.g012
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effectively increasing the TSI compared to the spreading index. This effect is shown in Fig 14,

where the time-weighted distances used in computing the TSI are visualised with multidimen-

sional scaling (MDS) [55].

Note that the confidence intervals for the TSI values are wider than those of the spreading
indices since additional uncertainty is introduced in the calculation of the TSI by including

travel times contingent on volatile traffic conditions (Fig 13).

We also note the two peaks of higher TSI values during the morning and evening commut-

ing hours forming a circadian rhythm in both cities. A peculiar observation is the mismatch of

the peaks between the two cities. Rome seems to be “late” by roughly an hour (vertical shaded

areas in Figs 13 and 15).

In Fig 15 we plot the differences TSIð~x�Þ � Zð~x�Þ during the day in Rome and London. We

observe this difference during the day to be consistently greater in Rome, suggesting conges-

tion to have a larger impact on the spatio-temporal characteristics of the “hotspots” in Rome.

The TSI for the hotspots of the three types of activities during a typical day in both cities are

displayed in Fig 16. One can note a gap in London between the flow only temporal TSI profile,

and the food services and retail TSI profiles, consistent with a similar gap in the case of the

spreading index discussed in Computing the Spreading index subsection.

Fig 13. Spreading index and time-space spreading index (TSI) with corresponding 95% confidence intervals during a typical day in Rome and London.

https://doi.org/10.1371/journal.pone.0239319.g013
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Conclusion

In this paper, we have proposed a generic end-to-end workflow for analyzing spatio-temporal

characteristics of urban mobility induced “hotspots” for different types of activities in cities,

and have demonstrated it in case studies in Rome and London. The proposed workflow com-

prised data mining of GPS data, the subdivision of the urban territory into regular grid cells,

construction of temporal OD networks, addition of socio-economic activity attributes to the

OD network nodes from PoI data, computation of the attribute-enhanced APA centralities in

the OD networks on an hourly or daily basis, identification of “hotspots”, and visualisation

and analysis of measures of their spatial heterogeneity. The obtained results led us to a series of

hypotheses regarding their nature, the study of which will be the target of future work.

In particular, we observed an increase in both the Gini coefficients as well as the spreading
indices during the night hours, suggesting higher inequality and spatial spread, respectively.

However, a further decomposition of these measures would be required to determine what

share of these inequality and spatial spread is due to core-periphery, inter-peripheral, or high-

way transit flows. Also, future work will be aimed at understanding whether there is a hierar-

chy of “hotspots” and how it evolves over time. Further, the hypothesis that the peculiar gap

between the flow only and food services and retail spreading index profiles in London has to

Fig 14. Retail APA values at 18:00 in Rome represented with pairwise time-weighted distances between grid cells using multidimensional scaling (MDS).

The inset shows the same set of values in geographical space.

https://doi.org/10.1371/journal.pone.0239319.g014
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do with the congestion charge, and whether our approach can be adopted as a traffic manage-

ment indicator, requires further study.

Another direction for future work would be the choice of other “hotspot” identification

techniques, including that described in [42], and to study the effects of spatial resolution of the

grid on their results.

Further yet, we note that a methodology needs to be developed and tested for using the

measures proposed in this paper as monitoring tools in connection with specific urban plan-

ning policies in a particular city. For instance, deciding critical values of the proposed mea-

sures, beyond which action would be required on the part of the urban planners.

Notwithstanding the mentioned shortcomings, our approach has direct utility to urban

planners and policy makers. It highlights the road map for creating analysis, visualisation,

Fig 15. Tracking the difference TSIð~x� Þ � Zð~x� Þ in Rome and London during a typical day.

https://doi.org/10.1371/journal.pone.0239319.g015
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early warning, or trend detection tools with simple information-rich measures for monitoring

city-wide spatial characteristics of mobility related to various socio-economic activities. The

proposed workflow from raw data input to analysis and visualisation is generic enough to

accommodate other types of spatial movement data (e.g., call detail, smart card, etc.) as well as

other socio-economic activities in cities over both short and long terms.
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