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Abstract

Motivation: Genetic heterogeneity is the phenomenon that distinct genetic variants may give rise

to the same phenotype. The recently introduced algorithm Fast Automatic Interval Search (FAIS)

enables the genome-wide search of candidate regions for genetic heterogeneity in the form of any

contiguous sequence of variants, and achieves high computational efficiency and statistical power.

Although FAIS can test all possible genomic regions for association with a phenotype, a key limita-

tion is its inability to correct for confounders such as gender or population structure, which may

lead to numerous false-positive associations.

Results: We propose FastCMH, a method that overcomes this problem by properly accounting for

categorical confounders, while still retaining statistical power and computational efficiency.

Experiments comparing FastCMH with FAIS and multiple kinds of burden tests on simulated data,

as well as on human and Arabidopsis samples, demonstrate that FastCMH can drastically reduce

genomic inflation and discover associations that are missed by standard burden tests.

Availability and Implementation: An R package fastcmh is available on CRAN and the source

code can be found at: https://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-

biology/fastcmh.html

Contact: felipe.llinares@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) typically test the associ-

ation of individual markers, such as SNPs, with a phenotypic trait of

interest (Wellcome Trust Case Control, 2007). Genetic heterogeneity,

the fact that multiple genomic markers might affect the phenotype in

a similar way (Burrell et al., 2013), can be leveraged to improve statis-

tical power in GWAS. Indeed, the individual signal carried by each

marker is often too weak to be discovered in a single SNP study.

However, genetic heterogeneity motivates aggregating multiple neigh-

boring markers to obtain a stronger signal that is easier to detect. This

naturally leads to the problem of testing the association of genomic re-

gions with a phenotype of interest. Since the number of genomic re-

gions scales quadratically with the number of markers in the dataset,

testing all genomic regions for association is extremely challenging

both computationally and statistically. To give a sense of scale, in a

typical GWAS dataset with a million SNPs, one would need to per-

form approximately 500 billion association tests. Because of this,

most existing approaches such as gene tests or burden tests are in

practice limited to test only a reduced number of arbitrarily
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predefined genomic regions, e.g. exons or genes or to test fixed-size

genomic windows (Lee et al., 2014). Therefore, these methods are un-

able to discover signals that do not significantly overlap with some of

the genomic regions defined prior to inspecting the data.

In a recent study, Llinares-L�opez et al. (2015a) presented FAIS, an

approach to find all genomic regions associated to a phenotype of inter-

est under a model of genetic heterogeneity. The proposed method solves

both the statistical and computational challenges derived from the sheer

number of association tests to be performed through the concept of test-

ability, originally proposed by Tarone (1990). The key idea in Tarone’s

trick is that there are untestable hypotheses, which can never achieve

statistical significance, and thus can be ignored in the multiple testing

correction procedure without causing more false-positives to be found.

While Tarone’s trick has lead to algorithms that combine statistical

power with computational efficiency, none of the related methods could

correct for covariates such as age, gender, or population stratification.

Ignoring these may lead to many false-positive associations

(Vilhj�almsson and Nordborg, 2013), limiting the applicability of FAIS

in GWASs. Papaxanthos et al. (2016) proposed a significant pattern

mining algorithm that can account for categorical covariates. They con-

sider the general problem of itemset mining, which aims at finding arbi-

trary combinations of features in a dataset of interest. In that setting, the

number of association tests to be performed scales exponentially with

the number of features, making the approach unsuitable for genome-

wide analyses.

We here present FastCMH, a novel method that combines both

the search strategy of FAIS and pattern mining with categorical cova-

riates. Compared to FAIS, FastCMH gains the key ability to correct

for confounding without sacrificing scalability to genome-wide data.

We performed exhaustive experiments on simulated data, a study

of COPD and five Arabidopsis thaliana datasets. We show that

FastCMH inherits the computational efficiency and high statistical

power of FAIS, while dramatically decreasing the amount of false

positives due to confounding. An exhaustive comparison with mul-

tiple kinds of burden tests reveals that, by testing all possible genomic

regions instead of a small set of predefined candidates or of fixed-size

genomic regions, our approach can discover associated genomic re-

gions that would otherwise be missed. In the COPD study, we find

three significant genomic regions that are associated with the disease

and are supported by the literature, none of which are discovered by

either single-marker tests or the burden tests that we performed.

2 Problem statement

In this section, we provide the necessary background for the remain-

der of this article. In Section 2.1, we precisely state the problem we

solve: discovering genomic regions that are significantly associated

with a binary phenotype of interest. Then, in Sections 2.2 and 2.3,

we introduce the Cochran–Mantel–Haenszel (CMH) test and

Tarone’s trick, respectively.

2.1 Overview
Consider a dataset consisting of n individuals subdivided into n1

cases and n2 ¼ n� n1 controls according to a binary phenotype y.

For each individual i 2 f1; . . . ;ng, we assume a genotypic represen-

tation in the form of an ordered sequence of l binary genomic

markers, gi ¼ ðgi½1�; gi½2� . . . ; gi½l�Þ with gi½t� 2 f0;1g. For example,

these binary markers could be the result of a dominant/recessive/

over-dominant encoding of SNPs or be obtained based on external

information such as functional annotations. Furthermore, for each

individual i 2 f1; . . . ;ng, we record a categorical covariate c with k

states, i.e. ci 2 f1; 2; . . . ; kg.
Under a model of genetic heterogeneity, several genomic markers

in close proximity might have evolved to affect the phenotype in

the same manner. However, their individual effect sizes might

be too weak to reach significance in a single-marker GWAS.

Assuming that most individual markers in a genomic region t 2 [ts;

te], where [ts; te] ¼ fts; ts þ 1; . . . ; teg, have the same direction of ef-

fect motivates aggregating them into a new genomic meta-marker gi

ð[ts; te]Þ ¼ maxðgi½ts�; gi½ts þ 1�; . . . ; gi½te�Þ for the entire region. This

is equivalent to defining gið[ts; te]Þ ¼ 1 if the genomic region [ts; te]
for individual i contains any genomic marker encoded as 1 (typically

minor alleles or risk alleles under the model of choice), and gið[ts; te]
Þ ¼ 0 if it only contains genomic markers encoded as 0. We refer the

reader to Supplementary Section S1.3 for a generalized definition of

the meta-marker. For genomic regions in which these assumptions

apply, the region meta-marker gð[ts; te]Þ will exhibit a stronger sig-

nal than any of the individual markers, allowing the discovery of

novel genome-wide significant multivariate associations. This situ-

ation is illustrated in Figure 1, where the markers contained in re-

gions [ts;1; te;1] (green) and [ts;2; te;2] (red) are all weakly associated

with the phenotype y. In contrast, their respective meta-markers gið[
ts;1; te;1]Þ and gið[ts;2; te;2]Þ exhibit a much stronger association.

Nevertheless, significant associations in a GWAS often originate

merely as the result of confounding by external covariates such as

gender, age, population structure or environmental factors. It is es-

sential to account for these covariates in any method that tries to as-

sess the association between genotype and phenotype. This is also

represented in Figure 1. The association with the phenotype y of the

meta-marker of region [ts;2; te;2] (in red) is a spurious association ex-

clusively mediated by the covariate c (origin of the sample), whereas

the meta-marker of region [ts;1; te;1] (in green) remains associated

after correcting for the effect of the covariate.

Existing methods can either (i) correct for covariates, but only

test individual markers or highly constrained, predefined sets of

markers such as entire genes or fixed-size windows (Listgarten et al.,

2013) or (ii) test all possible genomic regions without constraints on

location or size, without allowing covariates to be taken into ac-

count (Llinares-L�opez et al., 2015a).

In this article, we present FastCMH, the first algorithm able to

find all genomic regions [ts; te];1 � ts � te � l, such that their

corresponding meta-marker gið[ts; te]Þ is significantly associated

with the case/control phenotype y given the effect of a covariate c,
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Fig. 1. Schematic illustration of how individually weak signals inside a gen-

omic region can be reinforced in meta-markers. In this example, n1 ¼ n2 ¼ 5,

l¼20 and k¼2
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while strictly correcting for multiple hypothesis testing under

family-wise error rate (FWER) control.

To achieve its goal, FastCMH combines the scheme proposed by

Llinares-L�opez et al. (2015a) to explore the search space consisting

of all possible genomic regions with the novel approach presented

by Papaxanthos et al. (2016) to correct for categorical covariates in

significant pattern mining. In the remainder of this section we intro-

duce the CMH test and Tarone’s trick, the two fundamental con-

cepts on which FastCMH relies. A full description of FastCMH is

provided in the next section.

2.2 Testing the association of discrete random variables

given a covariate using the CMH test
For each genomic region [ts; te], we need to test whether its meta-

marker gið[ts; te]Þ and the phenotype y are statistically associated

given the covariate c. Mathematically, this means testing the condi-

tional statistical dependence of two binary random variables (the

meta-marker and the case/control phenotype), given the value of a

categorical random variable with k categories (the covariate).

The CMH test (Cochran, 1954; Mantel and Haenszel, 1959) is

based on contingency tables, in the same way as Fisher’s exact test

(Fisher, 1922) and Pearson’s v2 test (Pearson, 1900) are. However,

unlike these methods, the CMH test does not build a single contin-

gency table, but rather builds k tables, where each one corresponds

to a different category of the confounder. For each 2�2 contin-

gency table h, with h ¼ 1; . . . ;k, cell counts are computed based on

all individuals for which ci ¼ h:

Here, nh is the number of individuals with ci ¼ h, divided into n1;h cases

and n2;h controls. Similarly, xh is the number of individuals with ci ¼ h

for which the meta-marker gið[ts; te]Þ takes value 1, ah of which are

cases and xh � ah controls. Using the cell counts fnh;n1;h; xh; ahgk
h¼1,

we can compute the P-value pð[ts; te]Þ for genomic region [ts; te] under

the CMH test as explained in Supplementary Section S1.2.1. A genomic

region [ts; te] is found to be significantly associated with the phenotype

y given the covariate c if pð[ts; te]Þ � d, where d is the adjusted signifi-

cance threshold. In this study, we compute d according to Tarone’s trick,

presented in Section 2.3.

2.3 FWER control using Tarone’s trick
As discussed in Section 1, one of the main challenges in significant

pattern mining is a consequence of the enormous number of associ-

ation tests that need to be performed. In our setup, in a dataset with

l genomic markers, lðl�1Þ
2 ¼ Oðl2Þ genomic regions would need to be

tested for association with the phenotype. For example, a typical

GWAS dataset with l ¼ 106 SNPs would result in approximately

500 billion association tests. Besides the computational challenge,

this creates a large multiple hypothesis testing problem which, if un-

accounted for, would lead to millions of false-positives being re-

ported. For this reason, we correct for multiple hypothesis testing

using FWER control, a criterion that places an upper bound on the

probability of making any false discoveries (the FWER) by a user-

defined target threshold a.

The most common approach to control the FWER is the Bonferroni

correction (Dunn, 1961), which uses an adjusted significance threshold

dbon ¼ a=b, with b being the total number of association tests per-

formed. However, in our setup, b ¼ Oðl2Þ is too large, resulting in very

low statistical power. Instead, state-of-the-art methods in significant

pattern mining obtain the adjusted significance threshold using

Tarone’s trick, as it tends to greatly outperform Bonferroni correction

in terms of statistical power while retaining strict FWER control.

The key concept behind Tarone’s trick is that, for certain associ-

ation tests based on contingency tables, a minimum attainable

P-value pmin can be computed as a function of the table margins.

Examples of these association tests are Fisher’s exact test or Pearson’s

v2 test. If an association test has a minimum attainable P-value pmin

greater than the adjusted significance threshold d, the test can never

be significant, and thus it can never cause a false-positive. In Tarone’s

terminology, these tests are said to be untestable. Tarone showed

that, in order to control the FWER, the adjusted significance thresh-

old only needs to account for testable association tests.

To apply Tarone’s trick in our setup, we define RTðdÞ ¼ f[ts; te]
jpminð[ts; te]Þ � dg as the set of testable genomic regions at signifi-

cance level d. Any regions not contained inRTðdÞ are untestable and

do not contribute to the FWER. Tarone’s trick chooses the adjusted

significance threshold as dtar ¼ maxfd j d � a=jRTðdÞjg. In real-

world datasets, usually jRTðdtarÞj � b, making Tarone’s trick far

less conservative than Bonferroni correction.

Tarone’s trick has been recently applied to (i) itemset mining

(Terada et al., 2013; Minato et al., 2014; Llinares-L�opez et al.,

2015b), (ii) subgraph mining (Sugiyama et al., 2015), and (iii) to

mine associated genomic regions with the previously mentioned

FAIS algorithm (Llinares-L�opez et al., 2015a). However, none of

these methods were able to incorporate covariates to correct for con-

founding. In the next section, we show how to overcome this funda-

mental limitation of FAIS by combining it with the novel approach

for pattern mining with categorical covariates.

3 Method

In this section, we introduce FastCMH, the first algorithm able to dis-

cover, with high statistical power and efficiency, all genomic regions ex-

hibiting a statistically significant association with a case/control

phenotype under strict FWER control while conditioning on a categor-

ical covariate. In Section 3.1, we provide a high-level description of

FastCMH. Next, Section 3.2 describes how to efficiently perform its key

step of identifying all genomic regions that are deemed testable.

3.1 The FastCMH algorithm
High-level pseudocode of FastCMH is shown in Algorithm 1.

Additional implementation details can be found in Supplementary

Section S1.1. Conceptually, our method involves three main steps.

Variables gið[ts; te]Þ ¼ 1 gið[ts; te]Þ ¼ 0 Row totals

y ¼ case ah n1;h � ah n1;h

y ¼ control xh � ah n2;h � xh þ ah n2;h

Col. totals xh nh � xh nh

Algorithm 1. FastCMH

Input: Dataset G ¼ fgi; yi; cign
i¼1, desired FWER a

Output: Set of non-overlapping conditionally associated

genomic regions Rsig;filt ¼ f[ts; te] j pð[ts; te]Þ � dtarg
1: ðdtar;RTðdtarÞÞ  get testable regionsðG; aÞ
2: Rsig;raw  f[ts; te] 2 RTðdtarÞ jpð[ts; te]Þ � dtarg
3: Rsig;filt  filter overlapping regionsðRsig;rawÞ
4: Return Rsig;filt
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First, in Line 1, we invoke the routine get testable regions to

compute Tarone’s adjusted significance threshold dtar and retrieve

the corresponding set of testable genomic regions RTðdtarÞ under the

CMH test. The enormous number of candidate genomic regions,

often in the order of hundreds of billions, or even trillions, makes

the routine get testable regions, described in detail in Algorithm 2,

the most challenging and crucial part of FastCMH.

Second, in Line 2, P-values pð[ts; te]Þ obtained from CMH tests

are evaluated for all testable genomic regions [ts; te] 2 RTðdtarÞ.
Since a large proportion of all candidate genomic regions are not

testable, and thus can never be significant, Tarone’s trick allows us

to greatly reduce the computational burden of this step without

causing any additional false negatives. Those testable regions [ts; te]
2 RTðdtarÞ whose P-values pð[ts; te]Þ are below Tarone’s adjusted

significance threshold dtar are deemed significant and stored in

Rsig;raw.

Third, while all genomic regions in Rsig;raw are significantly asso-

ciated with the phenotype—given the effect of the covariate—both

the exhaustive nature of the search and linkage disequilibrium tend

to generate disjoint clusters of significant genomic regions that have

a high overlap with each other. To eliminate this redundancy which

might otherwise complicate the analysis of the results, we invoke the

routine filter overlapping regions in Line 3. This procedure groups

all significant genomic regions in Rsig;raw into disjoint clusters of

overlapping regions, generating a new set Rsig;filt containing only the

most significant genomic region for each cluster and discarding the

rest (see Supplementary Section S1.1.1 for additional details).

Finally, the setRsig;filt is returned as FastCMH’s output.

3.2 Getting testable regions in FastCMH
As mentioned before, efficiently finding Tarone’s adjusted signifi-

cance threshold dtar and the set of testable genomic regions RTðdtarÞ
is the key algorithmic step in FastCMH. A naive enumeration ap-

proach, which would require computing the minimum attainable

P-value pminð[ts; te]Þ for all lðl�1Þ
2 ¼ Oðl2Þ candidate regions, would

not scale to the number of genomic markers l in typical GWAS data-

sets. For this reason, the routine get testable regions of FastCMH

combines the branch-and-bound approach used by its predecessor

FAIS with the novel search space pruning criterion developed for

the CMH test in Papaxanthos et al. (2016).

The routine get testable regions initializes the adjusted signifi-

cance threshold d to 1, the largest value it could possibly attain, and

initializes the set of testable genomic regions RTðdÞ to the empty set,

as shown in Line 1 of Algorithm 2. In Line 2, the search space of

genomic regions Rcand is initialized to contain all possible candidate

genomic regions, i.e.Rcand ¼ f[ts; te] j 1 � ts � te � lg.
After initialization, in Line 3, the algorithm enumerates the gen-

omic regions in Rcand in the same order as the FAIS algorithm in

Llinares-L�opez et al. (2015a): enumerating first in increasing order

of region length, i.e. smaller regions first, and then, among all re-

gions having the same length, in increasing order of starting pos-

ition. For each genomic region [ts; te] being processed, we perform

the steps described below.

First, in Line 4, we compute the minimum attainable P-value

for the CMH test, pminð[ts; te]Þ, using the closed-form expression

shown in Supplementary Section S1.2.2. Then, we check whether

the region is testable at the current significance threshold d, i.e. if

pminð[ts; te]Þ � d. If it is, the region is added to the set of testable

regions RTðdÞ in Line 5 and Tarone’s condition a=jRTðdÞj is

checked in the following line. If the condition is found to be vio-

lated, it means that the current significance threshold d is too

large and must be decreased (Line 7). By decreasing d, some al-

ready processed genomic regions that were found to be testable,

i.e. pminð[ts; te]Þ � d for a larger value of d, might now become

untestable. Those genomic regions are retrieved and removed

from RTðdÞ in Lines 8 and 9, an operation that can be imple-

mented in O(1) time if an appropriate data structure is used for

storing RTðdÞ in memory.

The last step in processing a candidate genomic region [ts; te] is

also the most relevant for computational efficiency: the pruning step in

Line 10 of Algorithm 2. If the pruning condition evaluates to True for

region [ts; te], in Line 11, we remove from the search space Rcand all

candidate genomic regions [t0s; t
0
e] that contain the region [ts; te] cur-

rently being processed. This step can dramatically reduce the size of

Rcand, allowing our method to be many orders of magnitude faster

than a naive enumeration. As illustrated in Supplementary Figure S2,

by storingRcand as a tree, the removal of pruned candidates can be per-

formed in O(1) time. Due to the use of the CMH test for association

testing, the pruning condition can no longer be based solely on the min-

imum attainable P-value pminð[ts; te]Þ of the region [ts; te] currently

being processed, as for FAIS and other significant pattern mining

approaches which do not take covariates into account. Instead,

FastCMH uses the pruning criterion proposed by Papaxanthos et al.

(2016), which computes a lower bound ~pminð[ts; te]Þ � pminð[ts; te]Þ
for the minimum attainable P-value pminð[ts; te]Þ of each candidate

genomic region [ts; te]. In their study, the authors show that ~pminð[ts;

te]Þ > d is a valid pruning condition for the CMH test and provide an

Oðk log kÞ algorithm to evaluate ~pminð[ts; te]Þ, which we use in Line

10 of Algorithm 2. Pseudocode of the algorithm used to evaluate the

pruning condition, as well as mathematical details of its derivation in

the context of mining associated genomic regions can be found in

Supplementary Section S1.2.3.

The routine get testable regions naturally terminates when all

candidate regions in Rcand have either been pruned or processed. At

that point, the algorithm has converged and we can return dtar and

RTðdtarÞ as the final values of d andRTðdÞ.

4 Experiments

In this section, we empirically evaluate the performance of

FastCMH in different scenarios, assessing its power, speed and

Algorithm 2. get testable regions

Input: Dataset G ¼ fgi; yi; cign
i¼1, desired FWER a

Output: Tarone’s adjusted significance threshold dtar and set

of testable genomic regions RTðdtarÞ
1: d 1; RTðdÞ  1
2: Rcand  f[ts; te] j 1 � ts � te � lg
3: for [ts; te] 2 Rcand do " Regions in Rcand enumerated

firstly in increasing order of length and then starting position

4: if pminð[ts; te]Þ � d then

5: RTðdÞ  RTðdÞ [ f[ts; te]g
6: while d > a=jRTðdÞj do

7: Decrease d
8: P  f[ts; te] 2 RTðdÞ j pminð[ts; te]Þ > dg
9: RTðdÞ  RTðdÞnP
10: if pruning conditionð[ts; te]Þ then

11: Remove all [t
0

s; t
0

e] � [ts; te] from Rcand

12: Return dtar  d and RTðdtarÞ ¼ RTðdÞ
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ability to correct for confounders. Our analyses are performed on

simulated datasets, on data from the COPDGene study and of the

model organism A. thaliana. We then compare the results of

FastCMH with those obtained from performing a set of burden tests,

which are a common method to conduct association mapping.

4.1 Simulation study
We conducted a wide range of simulation analyses to evaluate the

performance of FastCMH, as well as to compare it with other meth-

ods and algorithms. Two of these analyses are presented in this sec-

tion, and the remaining ones have been included in the

Supplementary Material.

4.1.1 Assessing power, false detection proportion and speed

Comparison partners:

We compare FastCMH, our proposed method, with two alternative

approaches: (i) FAIS-v2, a version of the method proposed by

Llinares-L�opez et al. (2015a) using Pearson’s v2 test, which uses

Tarone’s trick but cannot account for confounding and (ii) BonfCMH,

which does not use Tarone’s trick, but does use the CMH test.

Data generation:

A dataset is generated so that there is exactly one truly significant

genomic region and one confounded genomic region, that is, a re-

gion whose genomic meta-marker is highly correlated with the (con-

founding) covariate c, with c itself being correlated with the

phenotype y. In our experiments, both regions contain ‘ ¼ 5

markers each. The parameter ps 2 ½0; 1� controls the strength of the

signal in the truly significant region; when ps is closer to 1, then the

truly significant regions are easier to find. On the other hand, the

parameter qcon 2 ½0; 1� controls the strength of association between

the confounding covariate and the phenotype; when qcon is close to

1, then the level of confounding is very high. The significant and

confounded regions are then generated based on ps and qcon.

Additional details can be found in Supplementary Section S2.1.1.

Power and false-detection proportion:

There are two complementary situations where FastCMH has im-

proved performance. First, it has improved detection performance

of truly significant regions, due to its use of Tarone’s testability cri-

terion, when compared to BonfCMH. In Figure 2a, both FastCMH

and FAIS-v2 have higher power than BonfCMH for ps 2 ½0:3; 0:8�
and FastCMH has slightly higher power than FAIS-v2. Second, it

will often (correctly) omit regions that appear to be significant, but

are actually highly correlated with the covariate rather than the

phenotype. Figure 2b shows that FastCMH and BonfCMH do not de-

tect these confounded genomic regions, whereas FAIS-v2 does. We

consider the detection of these regions to be false-positives. The

Type I error rate obtained in these experiments is shown in

Supplementary Section S3.1.1, proving that both FastCMH and its

comparison partners satisfy FWER control. In Supplementary

Section S3.1.2, a variation of this experiment is performed in which

we show that the power and false discovery proportion of FastCMH

are mostly unaffected by the number of categories, provided the re-

sulting contingency tables have enough observations.

Speed:

Figure 2c shows that FastCMH is also dramatically faster than

BonfCMH for large l. For example, BonfCMH would take over 24 hr

to process a dataset with l � 5� 105 (vertical grey dashed line),

whereas FastCMH would take less than a minute. Moreover,

FastCMH is virtually as fast as FAIS-v2, showing that our method

can correct for confounders with negligible runtime overhead.

Supplementary Section S3.1.3 also contains experiments that show

that the runtime of FastCMH scales linearly with the number of

samples n. In addition to the methods described above, we show in

Figure 2d that our implementation of FastCMH is several orders of

magnitude faster that a naive implementation of Tarone’s trick

applied to CMH. In fact, the computation time of this naive method

increases exponentially as k increases, whereas FastCMH increases

only almost linearly, in Oðk log kÞ. This empirically confirms the

theoretical result by Papaxanthos et al. (2016) regarding the scal-

ability of their search space pruning condition for the CMH test.

4.1.2 Comparison with burden tests

Burden tests are methods aimed at identifying genomic regions of

contiguous markers that are significantly associated with a pheno-

type. The regions tested by the burden tests must always be defined

a priori. As an example, the gene-based burden tests rely on biolo-

gical knowledge about the location of the coding regions of genes,

and only test markers located within those regions. Another ex-

ample is the partitioning of the genome in windows of fixed length,

followed by the execution of burden tests on each window.

To allow for a fair comparison to FastCMH, we performed simu-

lations using burden tests with window-based approaches as these

perform a genome-wide scan and thus analyze all genomic markers.

(a) (b) (c) (d)

Fig. 2. (a) A comparison of the power of FastCMH, FAIS-v2 and BonfCMH for detecting true significant regions, as ps varies. The parameters are chosen as:

n¼500, l ¼ 106, k¼ 2 and ps ¼ qcon 2 ½0:05; 0:95�. (b) The proportion of confounded significant regions falsely detected by each of those three algorithms. The

parameters have the same values as for (a). (c) A comparison of the runtimes for the three methods, where the dashed section for BonfCMH represents approxi-

mated values. Both axes are plotted on the log-scale. The set of parameters is as follows: n¼500, k¼4, l 2 ½102; 107�. (d) The difference in runtime between

FastCMH and a naive implementation of a procedure combining Tarone’s trick and the CMH test. The dashed section of the naive method represents approxi-

mated values. We chose: n¼500, l ¼ 105; k 2 f1; 2; . . . ; 30g
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We considered two different types of windows: non-overlapping

and sliding windows.

First, we conducted burden tests on non-overlapping windows of

a fixed length w. In this approach, it is known that the statistical

power strongly depends on the relative location of the window

boundaries with respect to the associated genomic regions (Schmid

and Yang, 2008).

To overcome this limitation, we also conducted burden tests on

sliding windows with a stride (or shift) of one marker between two

consecutive windows. In this way, the sliding windows cover several

potential alignments of the window boundaries with respect to the

starting locations of the associated genomic regions. This ensures

that the power of the burden tests does not depend on the (random)

partitioning of the associated regions induced by the tested windows

(Lee et al., 2014).

We therefore conducted several simulations to illustrate how the

choice of the window length w, prior to the execution of the burden tests,

and the choice of the stride affect the power of the burden tests. We then

compared the performance of the burden tests to that of FastCMH,

which is more flexible as it screens all possible (and testable) windows.

The data generation process is an extension of the one described

in Section 4.1: the dataset contains n¼500 samples and l ¼ 105

markers. The phenotype y is a binary variable. We introduced a con-

founding covariate c with k¼2 categories. Each dataset includes

seven truly associated genomic regions of lengths ‘ 2 ½2; 4;6;8; 10;

12; 14� and seven confounded genomic regions with the same

lengths. We compared our approach to five different settings of

window-based burden tests, each of them testing a different window

size w 2 ½2;4;6; 8; 10�. The starting position of each window was ei-

ther separated from the starting position of its neighboring window

by a stride (or shift) of one genomic marker—sliding windows—or

by the length w of the window—non-overlapping windows (see

Supplementary Section S1.5.1 for more details). The results were

averaged over 200 iterations.

Figure 3 shows the power of the burden tests with Encoding (II)

(see Supplementary Section S1.5), and the power of FastCMH as a

function of the strength of the association ps between the associated

genomic regions and the phenotype. The figure illustrates the results

for both non-overlapping windows (Figure 3a) and for sliding windows

(Figure 3b). The power of the burden tests represents the proportion of

truly associated genomic regions that are retrieved by the tests.

In both cases, we observe that FastCMH achieves better power

than both window-based tests, regardless of the size of the tested

windows. This is mainly due to the flexibility of our method

FastCMH, which is able to simultaneously detect associated regions

of different lengths, combined with an efficient correction for multiple

hypothesis testing. In contrast, the window-based tests exhibit low

power for all window sizes. This is due to the fact that the associated

genomic regions are split over several tested windows, which are in

general weakly correlated with the phenotype as they combine part of

the associated markers with non-associated ones. Moreover, as soon

as the correlation between the signal and the phenotype is large

enough, i.e. larger than ps ¼ 0:6, FastCMH’s statistical power remains

very close to 1. Additional results, described in Supplementary Section

S3.1.5, show that FastCMH efficiently controls the FWER and cor-

rects for covariates. Supplementary Section S3.1.5 also illustrates the

influence of the length of the associated genomic regions on the results

of window-based burden tests. Except for some extreme (unrealistic)

cases, FastCMH achieves better power.

Overall, we show that FastCMH outperforms the burden tests with

non-overlapping and sliding windows, in terms of statistical power,

when the ground truth—the true lengths and locations of the associated

genomic regions—is unknown to the method. FastCMH is therefore ef-

ficient in retrieving the associated genomic regions in exploratory ana-

lysis when the biological prior knowledge is weak or non-existent.

Additional simulations show that FastCMH also outperforms gene-

based burden tests, as explained in Supplementary Section S3.1.5.

4.1.3 Additional simulation experiments

The Supplementary Material contains a set of additional experi-

ments that offer further insights into the performance of FastCMH.

In Supplementary Section S3.1.4, we show that FastCMH outper-

forms single-marker testing under a simulation model in which there

is a single, unmeasured causal marker in linkage disequilibrium with

multiple other measured markers in the region. In Supplementary

Section S3.1.7, we investigate the performance of FastCMH when

the method is extended to control the false discovery rate (FDR) in-

stead of the FWER. As our results show, this extension leads to

increased statistical power, as FDR is a less conservative criterion

than FWER, but at the expense of also increasing the absolute num-

ber of false-positives.

4.2 Experiments on COPDGene and A. thaliana
In this section, we present the datasets that we use to evaluate

FastCMH: (i) a case/control study of association with COPD in

(a) (b)

Fig. 3. A comparison of the power between FastCMH and several burden tests with (a) non-overlapping windows and (b) sliding windows. The burden tests were

performed for various windows sizes (w) and used the encoding that counts all minor alleles in the window. Refer to Supplementary Section S1.5 for more

details
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humans and (ii) five plant datasets of the model organism A. thali-

ana involving different binary phenotypic traits.

4.2.1 Description of the datasets and preprocessing

Human data:

We analyzed samples from the COPDGene study (Regan et al.,

2011) whose goal is to identify genetic risk factors for COPD.

Participants of the study belong to two different ethnic groups:

African-Americans and non-Hispanic whites. The samples of the

two populations were combined and 615 906 SNPs found in the

intersection were kept. The combined dataset contains 7993 samples

of which 3633 are cases and 4360 are controls (see Supplementary

Section S2.2 and Supplementary Table S2 for more details). Finally,

each SNP was binarized according to a dominant encoding. That is,

homozygous major SNPs were encoded as 0, whereas heterozygous

and homozygous minor SNPs were encoded as 1. In this way, signifi-

cantly associated genomic regions can be interpreted as regions for

which the presence/absence of any number of minor alleles in the re-

gion is associated with disease risk for COPD.

Plant data:

We analyzed a widely used A. thaliana GWAS dataset by Atwell

et al. (2010) from the easyGWAS online resource (Grimm et al.,

2016). This dataset contains a large collection of 107 phenotypes,

21 of which are dichotomous. We kept five phenotypes: LY and LES

(lesioning or yellowing leaves traits) and avrB, avrPphB and

avrBpm1 (hypersensitive-response traits). Each of the five A. thali-

ana datasets contains between 84 and 95 inbred samples and ap-

proximately 214 050 homozygous SNPs (see Supplementary Section

S2.3 and Supplementary Table S3 for more details about the chosen

phenotypes). We encoded homozygous major SNPs as 0 and homo-

zygous minor SNPs as 1.

4.2.2 Definition of the covariates

In a GWAS, spurious associations between genotype and the trait of

interest are often found due to confounding factors such as gender,

age or population structure (Marchini et al., 2004). The ability of

FastCMH to handle categorical covariates can be used to correct for

such confounding variables. In the COPD study, defining the covari-

ate is straightforward: we define the categorical covariate c as the

(known) genetic ancestry of the individuals, namely African-

Americans or non-Hispanic whites. To illustrate both the ability of

FastCMH to cope with several covariates simultaneously and to han-

dle a large number of categories k for each covariate, we also con-

sider ‘height’ (Cho et al., 2014) as an additional covariate. For each

of the A. thaliana datasets, the categorical covariate c on which we

condition to correct for population structure was defined using

k-means clustering on the three principal components of the empir-

ical kinship matrix (Price et al., 2006), with k optimized to minimize

genomic inflation. Details about how the covariates were selected

and encoded can be found in Supplementary Section S2.4.

4.3 Results
Here, we discuss the results we obtained when analyzing the human

and plant data. We first present our findings with respect to the cor-

rection of confounding factors, followed by a presentation of the sig-

nificant genomic regions that our method discovered. Finally, we

provide a comparison with burden tests (Lee et al., 2014).

Population structure correction:

In Table 1, we show that the results of FAIS-v2 for all five

A. thaliana datasets exhibit a moderate-to-severe degree of genomic

inflation (Devlin and Roeder, 1999), i.e. k ranging between 1.53 and

2.51. FastCMH significantly reduces inflation due to population

structure, resulting in k ranging between 1.13 and 1.30.

The ability of FastCMH to account for population structure be-

comes even more evident with the results from COPDGene. First,

there are marked genetic differences between individuals of African-

American and non-Hispanic white ancestry (see Supplementary Figure

S6). This coupled together with the shift in the ratio of cases/controls

across populations (30.81% for African-Americans versus 52.81%

for non-Hispanic whites) causes an extreme level of inflation that

FAIS-v2 is unable to cope with. With a genomic inflation factor of

k ¼ 16:70, any hit reported by FAIS-v2 is completely unreliable. In

contrast, FastCMH eliminates the inflation almost entirely by reducing

it to k ¼ 1:05. To further illustrate the effects of population structure

correction when using FastCMH versus FAIS-v2, in Figure 4, we

show QQ-plots of P-values for all testable genomic regions in three

selected datasets: two A. thaliana datasets (LES and LY) and the

COPDGene study. Based on Figure 4, it is evident that FastCMH

can successfully reduce severe levels of genomic inflation. The QQ-

plots for the remaining A. thaliana datasets can be found in

Supplementary Section S3.3.1. Additionally, we investigated the

possibility of further correcting for population structure in the

COPDGene study by defining the categorical covariate using k-

means on the top p principal components of the empirical kinship

matrix, as we did when analyzing the A. thaliana datasets. This

analysis, which considers all 81 possible combinations of p and k

in the range [2; 10], lead to a further decrease in genomic inflation

(k ¼ 1:01) without affecting the significant genomic regions dis-

covered by FastCMH, as shown in Supplementary Section S3.2.1.

Finally, we studied the impact of k, the number of categories of

the covariate, on the runtime of FastCMH (see Supplementary

Section S3.2.2). We analyzed the COPDGene data with different

levels of discretization of the covariate ‘height’. Our results are con-

sistent with the trend observed in Figure 2d: the runtime of

FastCMH scales smoothly with k, while approaches based on naive

evaluations of the pruning criterion scale exponentially with k. This

severely limits their applicability, being only feasible for k<16, a

limitation not present for FastCMH.

Significantly associated genomic regions:

In Table 1, we also show the number of non-overlapping gen-

omic regions deemed statistically significant (hits) by our method,

Table 1. Comparison of the results obtained using our proposed

method (FastCMH) and the previous state-of-the-art algorithm

(FAIS-v2), which cannot correct for covariates

Dataset and

phenotype

Samples

n

Cases

%

k FAIS-v2 FastCMH

k Hits k Hits

COPDGene

. COPD 7993 45.4 20 16.70 88 403 1.05 3

A. thaliana

. avrB 87 63.2 3 1.66 14 1.17 11

. avrRpm1 84 66.7 3 1.53 15 1.13 13

. avrPphB 90 51.1 4 1.70 6 1.22 5

. LES 95 22.1 3 2.05 20 1.21 3

. LY 95 30.5 5 2.51 26 1.30 1

For each method, the columns k and “Hits” refer to the genomic inflation

factor and the resulting number of non-overlapping genomic regions deemed

significant, respectively. The value of k is computed based on the P-values of

all testable regions.

1826 F.Llinares-L�opez et al.

Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: while 
Deleted Text: -
Deleted Text:  
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:  
Deleted Text:  
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: <italic>&hx03BB;</italic>
Deleted Text: <italic>&hx03BB;</italic>
Deleted Text: ly
Deleted Text:  
Deleted Text:  
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text:  
Deleted Text: <italic>p</italic>
Deleted Text: &hx201C;
Deleted Text: &hx201D;


FastCMH, and our comparison partner, FAIS-v2. Both algorithms

were run with a target FWER of a ¼ 0:05.

Across all five A. thaliana datasets, we observe that FastCMH

systematically retrieves less genomic regions (33 in total) than

FAIS-v2 (81 in total). Moreover, the decrease in the number of hits

is larger for those datasets with stronger genomic inflation. For in-

stance, in LY (k ¼ 2:51 for FAIS-v2), our method retrieves a single

genomic region, whereas FAIS-v2 retrieves 26. Similarly, in LES

(k ¼ 2:05 for FAIS-v2), our method has three hits whereas FAIS-

v2 reports 20. Based on the results presented in the previous section,

and the correlation in the decrease of the number of hits with gen-

omic inflation, it is plausible to conclude that the results of FAIS-v2

can be inflated by population structure, while FastCMH successfully

reduces such inflation. Finally, it is worth noting that out of the 33

significantly associated genomic regions retrieved by FastCMH in

the A. thaliana datasets, 17 of them did not contain any SNPs that

were deemed significant by a single-SNP association study, illustrat-

ing how mining genomic regions can lead to the discovery of novel

associations. The most significant genomic regions and their respect-

ive P-values are shown in Supplementary Table S6.

Our results for the COPDGene study also clearly demonstrate

the need to correct for population structure while mining significant

genomic regions. FAIS-v2 reports a very large number of hits

(88 403), mainly due to the extreme genomic inflation (k ¼ 16:70).

In contrast, FastCMH reports only three significantly associated gen-

omic regions. Each of the three regions overlaps with a different

gene in the gene cluster known as the (CHRNA5–CHRNA3–

CHRNB4) nicotinic acetylcholine receptor, located on chromosome

15q25.1. Independent studies have reported individual and joint as-

sociation of some of these genes to COPD (Cho et al., 2010, 2014).

Our results are remarkable in that the three regions detected by

FastCMH are formed by SNPs, each of which do not seem to have

an association to COPD, but their joint effect across genetically dif-

ferent populations is strongly associated to the disease.

Details about the SNPs involved, their locations, and individual

as well as region-based P-values are shown in Supplementary Table

S4. When analyzing both populations independently with FAIS-v2,
no significant region was found in the African-American cohort,

whereas only one region was reported for the non-Hispanic whites

(see Supplementary Section S3.2.4). With this, we conclude that the

main advantage of our method relies on attaining statistical power,

not only through an efficient mechanism that avoids testing untest-

able regions but also by allowing the analysis of larger datasets with

samples of mixed populations thanks to a reliable and computation-

ally efficient correction of confounding factors.

Comparison with burden tests:

To illustrate the usefulness of exploring all genomic regions, as

FastCMH does, instead of a small set of predefined regions, we ran

different kinds of burden tests for all five A. thaliana datasets and

for the COPDGene study. Here, we provide a brief description of

the results. For additional details on the experimental setup and re-

sults, we refer the reader to Supplementary Sections S1.5, S3.2.5 and

S.3.3.3.

First, we ran gene-based burden tests. For both plant and

human studies, we considered all genes as candidate genomic re-

gions, resulting in 24 426 regions for A. thaliana and 17 817 re-

gions for COPDGene. Each region includes markers at a distance

smaller than 10 kb from the gene boundary. As a result for A. thali-

ana, 45% of all the SNPs discovered by FastCMH are not inside

genes and, as a consequence, were not discovered by the burden

tests. FastCMH also leads to results that are complementary to

those of the burden tests at the gene level (see Supplementary

Tables S6 and S8): 21% of the genes reported by any of the burden

tests are also found by FastCMH, including the most significant

ones. This number is artificially decreased by the high variability of

the results across burden tests and by the high inflation factor of

some of them (see Supplementary Table S7). At last, 40% of all the

significant genes are only found by FastCMH. Concerning

the COPD dataset, none of the three genes (CHRNA5–CHRNA3–

CHRNB4) found by FastCMH was significant using any of the

burden tests. Taking the smallest P-value across all burden tests

performed, only CHRNB4 was close to significance (P-value

5:72 	 10�6), whereas CHRNA5 and CHRNA3 had P-values 0.24

and 0.41, respectively. While each of the three significantly associ-

ated genomic regions found by FastCMH overlaps with one gene in

the cluster (CHRNA5–CHRNA3–CHRNB4), the significant re-

gions do not span the entire gene.

Second, in both the A. thaliana datasets and the COPDGene

study, we performed burden tests by splitting the genome into non-

overlapping windows of sizes 500 kb and 1 Mb (see Supplementary

Section S1.5). The experiments in the COPDGene dataset and in the

A. thaliana datasets show that this approach does not retrieve the

SNPs found by FastCMH but only some of those of the gene-based

tests. While these results are complementary to those of FastCMH,

they are potentially harder to interpret because a larger number of

SNPs are combined together.

Fig. 4. Comparison of the QQ-plots for the P-values of all testable genomic regions obtained with FastCMH (red) and the previous state-of-the-art FAIS-v2 (blue)

for three datasets: (a) A. thaliana LES, (b) A. thaliana LY, (c) COPDGene. Horizontal lines show the adjusted significance thresholds

Genetic heterogeneity discovery with covariates 1827

Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: while 
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: 3
Deleted Text: while 
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: which 
Deleted Text: <italic>p</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text: -
Deleted Text: -
Deleted Text:  (nAChR)
Deleted Text: as well as 
Deleted Text: <italic>p</italic>
Deleted Text: <italic>&hx03C7;</italic>
Deleted Text:  
Deleted Text:  
Deleted Text: , 
Deleted Text: as well as 
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: which 
Deleted Text: -
Deleted Text: -
Deleted Text: <italic>p</italic>
Deleted Text: <italic>p</italic>
Deleted Text:  
Deleted Text: while 
Deleted Text: <italic>p</italic>
Deleted Text: -
Deleted Text: -
Deleted Text: ly
Deleted Text:  


In summary, FastCMH should not be considered as a substitute

for burden tests, but rather as a complementary approach that allows

testing a much broader range of hypotheses, allowing the discovery of

novel associations that would otherwise be missed by burden tests.

5 Conclusions and outlook

In this article, we have proposed FastCMH, an algorithm to discover

genomic regions exhibiting genetic heterogeneity. We present the first

method capable of testing all genomic regions for association with a

phenotype of interest while correcting for covariates, without sacrific-

ing statistical power or computational efficiency. Our experiments on

simulated, COPDGene and A. thaliana data show that FastCMH

combines improved detection performance with superior computa-

tional power when compared to approaches that use naive multiple

testing correction procedures or do not take covariates into account.

FastCMH combines variants in a genomic region—assuming

homogeneous effect signs—in the same way as its predecessor FAIS-

v2 and most non-adaptive burden tests. Therefore, this makes

FastCMH a valuable method for exhaustive analyses in rare-variant

association testing. When we focus on common variants, if the vari-

ants within a region of interest have different directions of effect,

FastCMH can potentially miss this region. Adaptive burden tests

tackle this problem by estimating the effect signs of the variants before

combining them, an approach that requires permutation testing to as-

sess significance. These methods can afford permutation testing be-

cause, as mentioned before, burden tests in general require an a priori

specification of the genomic regions to analyze. In our setting, and

due to the fact that all possible regions are considered, the computa-

tional considerations make it extremely challenging to naively apply

permutation testing. Nevertheless, combining FastCMH with the ap-

proach proposed in Llinares-L�opez et al. (2015b), which uses

Tarone’s method as a way to speed-up permutation testing, would be

an interesting topic for future work. Enhancing FastCMH with per-

mutation testing would also have additional benefits, such as taking

into account the dependence between test statistics to obtain less strin-

gent significance thresholds, thereby increasing statistical power.

Due to the use of Tarone’s method, FastCMH relies on all data

being discrete. Developing an alternative, computationally efficient

framework for large-scale association testing, which is able to handle

continuous variables, constitutes an important topic for future research.
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