
Hypothyroidism Enhances Tumor Invasiveness and
Metastasis Development
Olaia Martı́nez-Iglesias1, Susana Garcı́a-Silva1, Javier Regadera2, Ana Aranda1*

1 Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientı́ficas y Universidad Autónoma de Madrid, Madrid, Spain, 2 Departamento de

Anatomı́a, Histologı́a y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain

Abstract

Background: Whereas there is increasing evidence that loss of expression and/or function of the thyroid hormone receptors
(TRs) could result in a selective advantage for tumor development, the relationship between thyroid hormone levels and
human cancer is a controversial issue. It has been reported that hypothyroidism might be a possible risk factor for liver and
breast cancer in humans, but a lower incidence of breast carcinoma has been also reported in hypothyroid patients

Methodology/Principal Findings: In this work we have analyzed the influence of hypothyroidism on tumor progression and
metastasis development using xenografts of parental and TRb1–expressing human hepatocarcinoma (SK-hep1) and breast
cancer cells (MDA-MB-468). In agreement with our previous observations tumor invasiveness and metastasis formation was
strongly repressed when TRb–expressing cells were injected into euthyroid nude mice. Whereas tumor growth was retarded
when cells were inoculated into hypothyroid hosts, tumors had a more mesenchymal phenotype, were more invasive and
metastatic growth was enhanced. Increased aggressiveness and tumor growth retardation was also observed with parental
cells that do not express TRs.

Conclusions/Significance: These results show that changes in the stromal cells secondary to host hypothyroidism can
modulate tumor progression and metastatic growth independently of the presence of TRs on the tumor cells. On the other
hand, the finding that hypothyroidism can affect differentially tumor growth and invasiveness can contribute to the
explanation of the confounding reports on the influence of thyroidal status in human cancer.
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Introduction

The thyroid hormone receptors, encoded by the TRa and TRb
genes, are ligand-dependent transcription factors that belong to

the nuclear receptors superfamily [1,2]. In addition to the well-

known role of these receptors in growth, development and

metabolism, there is increasing evidence that they have profound

effects on cell proliferation and malignant transformation.

Reduced expression of TRs as well as alterations in TR genes

are common events in many types of human cancer [3–14]. In

particular, aberrant TRs that act as dominant-negative inhibitors

of wild-type TR activity have been found in more than 70% of

human hepatocellular carcinomas [15–18], and biallelic inactiva-

tion of TRb by promoter methylation as well as mutations in this

gene are also frequent in breast cancers [19,20]. The tendency for

TRb expression to disappear as malignancies progress suggests

that TRb can act as a tumor suppressor in human cancers and

that therefore loss of expression and/or function of this receptor

could result in a selective advantage for cell transformation and

tumor development [21]. We have re-expressed TRb1 in

hepatocarcinoma and breast cancer cell lines that have lost

receptor expression and have analyzed the effect of the receptor in

tumor progression and metastatic growth. The results obtained

demonstrated that TRb1 expression retards tumor growth, causes

partial mesenchymal to epithelial cell transition and has a strong

suppressor effect on invasiveness, extravasation and metastasis

formation in nude mice [22]. In addition, studies with mice

expressing a dominant negative TRb mutant spontaneously

develop metastastic thyroid carcinoma [23] and pituitary tumors

[24], and increased aggressiveness of skin tumors is found in

genetically modified mice lacking TRs [22], further demonstrating

the role of these receptors as inhibitors of tumor progression.

In contrast with the role of TRs as tumor suppressors, no

consistent association between thyroidal status and cancer has

been demonstrated. For instance, the connection between thyroid

disorders and human breast cancer is a controversial issue.

Beatson proposed the use of thyroid extracts for breast cancer

treatment more than a century ago [25], and hypothyroidism has

been described to be frequently found in cancer patients and to be

associated with poor response to therapy [26–28]. However, a

lower incidence of primary breast carcinoma and reduced risk of

developing invasive disease have been also reported in hypothy-

roid patients [29]. Hypothyroidism appears to be clinically

favorable in patients with glioblastoma multiforme, since treat-

ment with the anti-thyroidal drug propylthiouracil in combination

with tamoxifen appears to increase survival [30]. On the other
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hand, it has been reported that hypothyroidism might be a

possible risk factor for liver cancer in humans [31], and thyroid

hormone administration also influences hepatocarcinoma progres-

sion in experimental animals. Thus, T3 treatment in rats, despite

causing liver hyperplasia, induces a rapid regression of carcinogen-

induced hepatic nodules and reduces the incidence of hepatocar-

cinoma and lung metastasis [32–34].

In this work we have examined the effect of hypothyroidism on

tumor growth, invasion and formation of metastasis by hepatocar-

cinoma and breast cancer cells in nude mice. In order to analyze if

the changes caused by hypothyroidism are dependent on a direct

effect of the hormone in the tumor cell through binding to TRs, we

have used both parental SK-hep1 and MDA-MB-468 cells that do

not express the receptors and cells in which TRb1 has been re-

expressed [22]. The results obtained demonstrated that hypothy-

roidism has a dual effect on tumorigenesis. Tumor growth is slower

in hypothyroid mice, but the tumors are more aggressive and

invasive, and metastasis formation is strongly enhanced. Since these

changes are observed in animals inoculated both with parental and

TR-expressing cells, they appear to be secondary to changes in the

stromal cells as a consequence of host hypothyroidism.

Results

Hypothyroidism retards tumor growth
Nude mice were made hypothyroid by treatment with anti-

thyroidal drugs 4 weeks before inoculation of tumor cells (Figure 1).

This treatment significantly retarded the growth of the animals

that at the end of the experiments showed a decreased weight in

comparison with the untreated controls, strongly reduced the

levels of circulating thyroxine, and also markedly decreased

transcript levels for deiodinase 1 in liver, a sensitive marker for

tissue hypothyroidism [35]. SK and SK-TRb cells were inoculated

subcutaneously into the flanks of control and hypothyroid nude

mice and tumor growth was followed (Figure 2). In agreement with

our previous observations [22], in euthyroid animals expression of

TRb retarded the detection of palpable tumors (Figure 2A) and

significantly reduced tumor volume during the first weeks

(Figure 2B). Furthermore, hypothyroidism retarded tumor growth

in mice inoculated with both SK and SK-TRb cells, although the

reduction was more marked in the case of the TRb-expressing

cells. When MDA cells were inoculated orthotopically in the

mammary gland, tumor appearance was slightly retarded in

hypothyroid animals in both parental and TRb-expressing cells

(Figure 2C) and tumor volume was also smaller (Figure 2D),

although differences were less marked than those observed with

hepatocarcinoma cells and were only statistically significant at 9

weeks post-inoculation of MDA-TRb cells.

The reduced tumor volume in hypothyroid hosts correlated

with a lower proliferation in tumor biopsies obtained at the end of

the experimental period (Figure 3A). Ki67 labeling showed that

tumors originated in control mice from parental SK and MDA

cells were highly proliferative and that hypothyroidism reduced

the number of cells expressing this proliferation marker. In

addition, TRb-expressing cells gave rise to tumors with a lower

proliferation index and this reduction was stronger in MDA-TRb
tumors in the hypothyroid mice. Decreased proliferation was

accompanied by enlargement of the necrotic area of the tumors

grown in hypothyroid mice and, as shown in Figure 3B, this

increase occurred both in parental and TRb-expressing cells.

Expression of Cyclin E, other proliferation marker, was reduced

in biopsies of both hepatocarcinoma (Figure 4A) and breast cancer

tumors (Figure 4B) developed in hypothyroid hosts, and also in this

case the effect was observed independently of the presence of

TRb. In addition, reduced proliferation, assessed by BrdU

incorporation, was observed in explants obtained from SK and

SK-TRb tumors when xenografts were grown in hypothyroid

hosts (Figure 4C).

Figure 1. Induction of hypothyroidism. (A)-Weight of control mice and mice treated orally with anti-thyroidal drugs. Mice were treated for 1
month before inoculation of tumor cells. (B)-Circulating levels of T4 measured at the end of the treatment. (C)-mRNA levels of deiodinase 1 (Dio1) in
livers from control and hypothyroid mice.
doi:10.1371/journal.pone.0006428.g001
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TRb expression is reduced during tumor growth
TRb expression was analyzed by immunohistochemistry in SK

and SK-TRb tumors excised at 30 days post-inoculation. As

expected, TRb was not detected in the parental hepatocarcinoma

cells, although it could be detected in infiltrating inflammatory

cells from the host. On the other hand, the receptor was present

in most cells of the tumors formed by SK-TRb cells in euthyroid

mice and receptor expression appeared to be stronger when

tumors were developed in hypothyroid mice (Figure 5A). A

similar increase was obtained when TRb mRNA levels were

quantified (Figure 5B). Furthermore, in explants obtained 13 and

25 days after cell implantation a reduction of TRb expression

with respect to the levels present in the inoculated cells was

detected by Western blot and by immunofluorescence

(Figure 5C). In the explants an increase in TRb mRNA levels

was also observed when the cells were derived from tumors

developed in hypothyroid hosts (Figure 5C). Reduction of

receptor expression during tumor growth was observed later

with MDA-TRb cells. In sections of MDA-TRb cell xenografts,

immunohistochemistry of TRb demonstrated expression of the

receptor at 30 days post-inoculation and this expression was again

stronger in tumors grown in hypothyroid mice (Figure 5D). TRb
expression was confirmed by western blot in tumor explants

obtained at this time point (Figure 5E). In contrast, in MDA-TRb
tumors examined at 45 days post-inoculation few positive tumor

cells were found (Figure 5D). These results suggest that loss of

TRb expression appear to confer a selective advantage to the

hepatocarcinoma and breast cancer cells for tumor growth and

that receptor loss is retarded when tumors are developed in

hypothyroid hosts.

Hypothyroidism enhances the mesenchymal phenotype
of the tumors

We have previously observed that TRb1 causes a partial

mesenchymal to epithelial transition in the hepatocarcinoma and

breast cancer tumors, decreasing the levels of the mesenchymal

marker vimentin and increasing the epithelial marker cytokeratin

8/18. Other epithelial marker, b-catenin, was absent in xenografts

from MDA cells, but it was expressed in xenografts from TRb1-

expressing SK cells [22]. As shown in Figure 6A, when cells were

inoculated in hypothyroid mice, tumors from both parental and

TRb1-expressing SK and MDA cells had a more mesenchymal

phenotype with a strong reduction of keratin 8/18 and b-catenin

and a concomitant increase in vimentin. Quantification of the

percentage of cells positive for these markers confirmed a strong

reduction in the expression of the epithelial marker and a

significant increase in the expression of the mesenchymal marker

in tumors grown in hypothyroid hosts (Figure 6B). In addition, a

strong reduction in cytokeratin 8/18 levels was observed by

immunofluorescence in explants derived from hepatocarcinoma

SK and SK-TRb tumors originated in the hypothyroid mice

(Figure 6C). These results show that hypothyroidism confers a less

differentiated phenotype to the tumors independently of the

presence of the receptor in the cancer cells.

Hypothyroidism increases tumor invasiveness
Tumors originated from SK cells in normal nude mice are

highly infiltrative, presenting an elevated number of invasion

fronts. In contrast, tumors from SK-TRb cells were less infiltrative,

presenting a clearly detectable pseudocapsule of collagen and

inflammatory cells, and a reduced number of invasion fronts

Figure 2. Hypothyroidism retards tumor growth. (A)-Tumor incidence in euthyroid and hypothyroid nude mice injected heterotopically into
both flanks with parental (SK) and TRb1-expressing (SK-TRb) hepatocarcinoma cells. (B)-Tumor volume was measured at different time points after
inoculation in the same experimental groups. (C)-MDA and MDA-TRb cells were inoculated orthotopically into the mammary fat pad of both groups
of mice and tumor appearance was followed. (D)-Tumor volume in xenografts of parental and TRb-expressing MDA cells. Data are mean6S.E.
doi:10.1371/journal.pone.0006428.g002
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(Figure 7A). This growth pattern was altered when SK-TRb cells

were inoculated into hypothyroid mice, since tumors acquired a

more invasive phenotype with a significant increase in the number

of invasion fronts. In addition, all hypothyroid animals injected

with SK cells had tumors that infiltrated adjacent muscle, lymph

and blood vessels or skin (Figure 7B), whereas some of the tumors

from euthyroid animals did not invade these tissues. Furthermore,

no tumors developed in normal mice caused the appearance of

lung or liver metastasis, but such long distance metastasis in these

tissues were present in 25% of the hypothyroid animals. In

accordance with the less infiltrative pattern of SK-TRb1 tumors,

distant metastasis were not detected in either control or

hypothyroid mice and invasion of surrounding tissues was strongly

reduced, although it increased in hypothyroid mice (Figure 7B).

Hypothyroidism of the host mice also increased invasiveness of

MDA cells. Tumors formed by parental MDA cells in euthyroid

mice present a diffuse highly invasive growth pattern, whereas

MDA-TRb cells give rise to tumors with a more compact

structure. As in the case of SK-TRb tumors, they are surrounded

by a pseudocapsule and present a reduced number of invasion

fronts (Figure 7C). This pattern is lost in MDA-TRb tumors

developed in hypothyroid hosts, where the tumors were more

aggressive and the number of invasion fronts increased strongly

(Figure 7C). In addition, 30% of the tumors from MDA-TRb cells

are delimited by a macroscopic gelatinous capsule (that is not

found in tumors from cells lacking the receptor) and this

percentage was reduced to 10% in the hypothyroid mice

(Figure 7D). Muscle and vessels infiltration of MDA and MDA-

TRb tumors also increased in the hypothyroid mice, and long

distant metastasis in bone were detected in MDA tumors

developed in hypothyroid but not in euthyroid animals (Figure 7D).

As an additional approach to evaluate changes in tumor

infiltration, we also examined connective tissue organization by

the Picrosirius red (PSR) staining technique. Under polarized light,

the color of PSR staining varies depending on collagen fiber

thickness and packing density [36]. Characteristically, red color

indicates tightly packed collagen fibers whereas sites of tumor

invasion exhibit green birefringence typical of increased extracel-

lular matrix degradation. As shown in Figure 8, red staining

characteristic of a well developed collagen pseudocapsule was only

clearly detected in tumors formed by TRb-expressing cells in

control mice, whereas green color was predominant in tumors

originating from parental cells. Quantification of the area stained

in red, demonstrated that the increase observed in the TRb-

expressing tumors was notably reversed when they were developed

in hypothyroid hosts, in agreement with the increased invasion

found under these conditions.

Formation of experimental metastasis is enhanced in
hypothyroid mice

The influence of hypothyroidism on formation of experimental

metastasis was examined by comparing the appearance of lung

metastasis upon inoculation of parental and TRb-expressing cells

into the tail vein of normal nude mice and mice treated previously

with anti-thyroidal drugs. In agreement with our previous

observations [22], most normal animals injected with parental

SK cells developed nodular metastasis in the lungs, whereas less

than 20% of the animals injected with SK-TRb cells developed

metastasis (Figure 9A and B). Hypothyroidism significantly

increased the incidence of lung metastasis and under these

conditions up to 70% of mice inoculated with TRb-expressing

cells had metastatic lesions. The number of metastasis per lung was

also strongly enhanced in hypothyroid mice injected with either

parental or SK-TRb cells and the same occurred with the area of

the tissue affected (Figure 9B).

Strong enhancement by hypothyroidism of metastasis formation

by MDA and MDA-TRb cells was also observed. When

inoculated into euthyroid animals MDA-TRb cells had a markedly

reduced metastatic capacity with respect to the cells that lack the

receptor (Figure 9C), and this capacity increased significantly

when the cells were inoculated in hypothyroid mice. As in the case

of hepatocarcinoma cells, not only incidence of metastasis, but also

the number of metastatic lesions and the area of the lung

parenchyma affected, was significantly enhanced when either

parental or MDA-TRb cells were injected into the mice treated

with the anti-thyroidal drugs (Figure 9D).

Discussion

There is increasing evidence that reciprocal interactions

between the tumor cells and the stromal cells of the tumor

microenvironment of the host are critical for tumor progression

Figure 3. Hypothyroidism reduces tumor proliferation and
increases necrosis. (A)-The percentage of cells expressing the
proliferation marker Ki67 was determined by immunohistochemistry
in biopsies of the tumors formed by parental and TRb-expressing SK
and MDA cells in control and hypothyroid nude mice. (B)-Hypothyroid-
ism increased the necrotic area of the tumors determined from H&
staining. Data are mean6S.E.
doi:10.1371/journal.pone.0006428.g003
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Figure 4. Hypothyroidism reduces Cyclin E expression and BrdU incorporation. (A)-Immunohistochemical staining for Cyclin E in biopsies
from SK, SK-TRb, MDA and MDA-TRb tumors developed in control and hypothyroid nude mice. (B)-Quantification of the percentage of cells
expressing Cyclin E in tumors of the different groups. (C)-BrdU incorporation was measured in explants from SK and SK-TRb tumors resected after 25
days of inoculation in control and hypothyroid mice.
doi:10.1371/journal.pone.0006428.g004
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[37,38]. In agreement with this idea, this work shows that

experimental hypothyroidism in mice has a profound effect on

invasiveness and formation of metastasis by hepatocarcinoma and

breast cancer cells independently of the cellular expression of TRs.

Epithelial-mesenchymal transition plays a key role in tumor

invasion by disrupting intercellular contacts and enhancing

motility and migration of tumor cells to the surrounding tissues

[39,40]. We have observed that tumors developed from cells

inoculated into hypothyroid nude mice had a more undifferenti-

ated phenotype than those injected into euthyroid mice, as

evidenced by enhanced expression of epithelial markers such as

keratin 8/18 or b-catenin and by reduced expression of

mesenchymal markers such as vimentin. This mesenchymal

phenotype can facilitate spreading from the primary tumor to

the neighboring host tissues, a critical step that allows tumor cells

to invade the extracellular matrix, enter the circulation and

disseminate to distant organs.

We have also found that tumors formed in hypothyroid hosts

showed changes in the extracellular matrix as demonstrated by a

change in the polarization colors of PSR staining from red to

green. It is assumed that unpacking of the collagen fibers may

facilitate invasion of the surrounding tissues by the tumors, and

predominance of green color indicates that the collagen molecules

are loosely packed and could be composed of procollagens,

Figure 5. Hypothyroidism prevents TRb loss during tumor growth. (A)-Immunohistochemical staining for TRb expression after 30 days of
inoculation of SK and SK-TRb cells in the flanks of control and hypothyroid mice. In the tumors some host inflammatory cells, labeled with arrows,
appear to be positive for TRb. (B)- TRb mRNA levels analyzed by real time PCR in these tumors. (C)-Detection of TRb by western blot in explants from
individual tumors of SK and SK-TRb cells obtained 13 and 25 days post-inoculation. Lanes 1 and 2 show TRb levels of the injected SK and SK-TRb cells.
The lower panels show the immunofluorescence staining for TRb in the explants. Nuclei were stained with DAPI. (D)-TRb mRNA levels in explants
from SK and SK-TRb tumors excised 25 days after inoculation of cells in control and hypothyroid mice. (E)-TRb expression detected by
immunohistochemistry in tumors excised after 30 and 45 days of orthotopical inoculation of MDA and MDA-TRb cells into control and hypothyroid
hosts. Inflammatory cells are marked with arrows (F)-Levels of TRb detected by western blot in the injected cells (day 0) and in explants obtained from
MDA and MDA-TRb tumors at 30 days post-inoculation.
doi:10.1371/journal.pone.0006428.g005
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Figure 6. Hypothyroidism enhances the mesenchymal phenotype of tumors. (A)-Immunohistochemical staining for vimentin, cytokeratin 8/
18 and b-catenin showed that tumors from inoculated parental SK and MDA cells, as well as from cells expressing TRb1, showed an increase of the
mesenchymal marker and a reduction of epithelial markers. (B)-Quantification of the percentage of cells from the different tumors expressing
cytokeratin 8/18 and vimentin. (C)- Cytokeratin 8/18 expression analyzed by immunofluorescence in explants obtained from tumors excised after 25
days of inoculation of SK and SK-TRb cells into control and hypothyroid mice.
doi:10.1371/journal.pone.0006428.g006
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intermediates, or pathological collagen rather than tightly packed

normal fibers [41,42]. In accordance with the alteration in the

extracellular matrix, as well as with the changes in the tumor cell

phenotype, hypothyroidim increased the number of invasion

fronts of the tumors and strongly augmented infiltration of

adjacent tissues such as muscle, blood and lymph vessels or skin.

Thyroidal status also influenced the formation of long distance

metastasis by hepatocarcinoma and breast cancer cells. Thus,

spontaneous metastasis in tissues such as lung, liver or bone

appeared when cells were injected into hypothyroid but not

euthyroid hosts, reinforcing the concept that metastatic growth is

dependent on both the intrinsic properties of the tumor cells and

the responses of the stromal cells. Furthermore, formation of

experimental metastasis in lung by direct inoculation of the cancer

cells into the tail vein of the hypothyroid nude mice was also

markedly enhanced with respect to the metastatic growth observed

in normal hosts. The process of metastasis requires a chain of

events (invasion, intravasation, survival in circulation, scattering to

distant tissues, extravasation into parenchyma, and colonization of

vital organs) that are rate limiting since a failure at any of them can

Figure 7. Hypothyroidism enhances tumor invasiveness. (A and C)-Representative H&E staining of tumors formed by parental and TRb-
expressing SK and MDA cells inoculated in control and hypothyroid nude mice (left panels). Tumors originated in hypothyroid hosts were more
invasive as illustrated by asterisks that denote sites of tumor invasion. The number of invasion fronts of the tumors was scored and is represented as
mean6S.E in the right panels. (B and D)-Quantification of the percentage of animals with tumors infiltrating surrounding tissues such as muscle,
blood and lymph vessels and skin or having long distance metastasis in lung, liver or bone. In the case of MDA cells, the number of tumor enveloped
by a conspicuous gelatinous capsule was also scored.
doi:10.1371/journal.pone.0006428.g007

Figure 8. Hypothyroidism causes unpacking of collagen fibers. (A)-Representative images of Picrosirius Red staining (PSR) of collagen in
tumors formed by parental and TRb-expressing SK and MDA cells. Tumors grown in control and hypothyroid mice were examined under polarized
light. Red staining characteristic of a well-developed tumor pseudocapsule with ordered collagen was only observed in tumors originating from TRb-
expressing cells inoculated in control hosts. (B)-Quantification of the red-stained areas in the different tumors. Data were calculated as cm2 of red
staining/cm of tumor surface.
doi:10.1371/journal.pone.0006428.g008
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stop the entire process [43,44]. Therefore, hypothyroidism

appears to sustain these different steps and to favor a permissive

tissue microenvironment for cancer metastasis.

The observed effects of hypothyroidism on invasion and

metastasis could be secondary to the actions of the thyroid

hormone on the tumor cell, the host stroma or both. The lower

hormone availability in animals treated with anti-thyroidal drugs

would decrease hormone binding to the receptors in the tumor cell

and host tissues and reduce its biological effects. We have shown

that in cultured hepatocarcinoma and breast cancer cells TRb
abolishes anchorage independent growth and migration, and that

when inoculated in mice causes partial mesenchymal to epithelial

transition and inhibits invasion and metastatic growth [22].

Therefore, a higher aggressiveness of the tumors developed from

TRb-expressing cells in hypothyroid hosts would be compatible

with a direct effect on the cancer cells as a consequence of reduced

TR activity. Other possibility was that TRb could be lost

selectively when the tumor cells proliferate in hypothyroid mice.

That this was not the case was demonstrated by the finding that,

although receptor levels were reduced during tumor formation,

this loss was even less marked under these conditions. Importantly,

we also observed increased malignancy of tumors formed by the

parental hepatocarcinoma and breast cancer cells that do not

respond to thyroid hormones because they do not express TRs

[22]. Therefore, the changes in the stromal cells associated with

low thyroid hormone levels rather than a direct effect on the

cancer cells appear to be responsible for the increased invasiveness

and metastatic activity observed in hypothyroid mice.

A bigger size of the tumors in hypothyroid mice would be

compatible with increased cancer cell dissemination and metastatic

colonization [45]. However, increased aggressiveness of tumors

developed in hypothyroid mice did not correlate with an increase in

tumor growth, rather tumors developed faster in euthyroid than in

hypothyroid hosts. These results agree with previous results from

our laboratory. We have demonstrated that TRs inhibit tumor

formation by the ras-oncogene in nude mice and that tumor

development by ras-transformed fibroblasts is retarded in hypothy-

roid animals [46]. Retardation of tumor growth in hypothyroid

mice occurred when both TRb–expressing cells and cells that do not

express the receptor were inoculated, suggesting again that changes

in the host stroma associated with hypothyroidism rather than a

direct receptor-mediated action on the tumor cells are responsible

for inhibition of tumor growth. However, the possibility that ‘‘non

genomic’’ actions of thyroid hormones mediated by putative

receptors different from TRs [47,48] could participate in the effect

of hypothyroidism on tumor growth, invasiveness and metastasis

development cannot be dismissed at present.

In summary, our data point to an important role of the

thyroidal status in tumor progression. Normal thyroid hormone

levels appear to favor growth of primary xenografts, but they also

block tumor cell dissemination and metastasis formation. These

divergent effects could help to explain the confounding reports on

the influence of hypothyroidism in human tumors. Furthermore,

since our results show that similar effects are observed indepen-

dently of the presence or absence of TR in the cancer cells, it

would be expected that thyroidal status could impact tumor

progression even in tumors in which TRs are deleted or mutated, a

common event in human cancer.

Materials and Methods

Ethics Statement
All animal work was done in compliance with the European

Community Law (86/609/EEC) and the Spanish law (R.D. 1201/

2005(), with approval of the Ethics Committee of the Consejo

Superior de Investigaciones Cientı́ficas.

Cell lines
Parental SK-hep1 (SK) and MDA-MB-468 (MDA) cells, and

cells expressing TRb1 (SK-TRb and MDA-TRb, respectively),

were obtained and grown as previously described [22].

Xenografts
Groups of athymic nude mice (athymic nude-Nu) 8-10 weeks

old were used for xenografting studies. SK and SK-TRb cells

(16106 cells in 100 ml PBS) were injected subcutaneously into each

Figure 9. Hypothyroidism enhances formation of experimental lung metastasis. Control and hypothyroid mice were injected with parental
and TRb1-expressing cells into the tail vein and 30 days later lungs were excised mounted and stained. (A and C)-Representative images of lungs from
mice injected with MDA, MDA-TRb, SK and SK-TRb cells. Metastasis are delineated with a discontinuous blue line. (B and D)-The percentage of animals
bearing metastatic lesions, the number of lesions/lung, and the area of lung parenchyma affected (mean6S.E) were determined in the different groups.
doi:10.1371/journal.pone.0006428.g009
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flank of the mice (5 mice/group) and the same number of MDA

and MDA-TRb cells were inoculated into the fat mammary pad

(10 animals/group) as previously described [22]. Similar injections

were performed in parallel in normal mice and in mice made

hypothyroid by treatment with 0.02% methymazole and 0.1%

sodium perchlorate in the drinking water [46]. Treatment started

4 weeks before inoculation and was continued for the duration of

the experiments. Tumor volume was measured every week and

only tumors with diameter .0,3 cm were considered. The weight

of the animals was recorded once a week and at sacrifice tumors

were excised, blood was taken for serum measurement of

thyroxine (T4) by means of specific radioimmunoassay [49] and

samples from different tissues were taken.

Histology and Immunohistochemistry
Tumors and tissues were processed for histopathologic proce-

dures by fixing in 4% buffered formalin and embedded in paraffin

wax. Sections were stained with H&E processed for immunohisto-

chemistry that was performed using standard protocols on

deparaffinized sections as previously described [22]. The antibodies

used were: TRb (sc-737; Santa Cruz Biotechnology), cytokeratin 8/

18 (NCL-5D3; Novocastra laboratories), vimentin (61013; Progen),

b-catenin (610154; Biodiagnostic), Cyclin E (7959 ABCAM), Ki67

(M7240; DakoCytomation). Ki67 was used to determine prolifer-

ation index (Ki67-positive cells/total cells) from 5 photographs

taken from 4–6 sections of each group (x400). The percentage of

cells expressing cyclin E, vimentin or cytokeratin 8/18 was also

scored in a similar way. Picrosiruis red (PSR) staining of collagen

was performed as described by Junqueira et al. [36]. Stained slides

were observed under polarized light using a Leica DMBL light

microscope microscope equipped with a polarizer/analyzer set.

Quantification of the red staining was performed using analysis@-

Soft Imaging System. To determine necrotic areas (necrotic cells/

total cells), tumors were scanned (Kodak Professional RES 3370)

and used for histometric counting. Necrotic cells were expressed

relative to total cells. Tumor perimeters were measured from

panoramic scannings of Trichromic stained tumors and the number

of invasion fronts per cm was scored visually.

Formation of experimental metastasis
For formation of experimental metastasis in lung, 16106 cells

were injected into the lateral tail vein of control nude mice and of

mice treated with the anti-thyroidal drugs for 30 days. Animals

were sacrified 30 days after inoculation, and lungs were excised

and stained with Masson Trichromic. The number of nodular

metastasis was visually scored from scans of the stained tissue, and

the total lung areas (x100) and lung areas affected by metastasis

(x1000) were calculated using anlySIS H Soft Imaging System.

Tumor explants
Tumor explants (2 mm) were prepared from tumors under

sterile conditions at different times. Explants were maintained in

DMEM:HAMS (1:1) with 10% FBS depleted of thyroid

hormones.

Western blot and antibodies
Proteins from cell lysates (20 mg) were separated in SDS-PAGE,

transferred to PDVF membranes (Immobilon, Millipore) and used

for Western analysis with the anti-TRb antibody (dilution 1:500).

Lamin, detected with antibody sc-6216 (Santa Cruz Biotechnol-

ogy, dilution 1:2000), was used as a loading control.

Immunofluorescence
Cells from tumor explants were grown on glass coverslips and fixed

in a solution containing 4% paraformaldehyde in PBS. Cells were then

permeabilized with 0,1% Triton X-100 and after saturation with PBS-

0,1 M Glycin were incubated for 2 h with the anti-TRb antibody

(1:200 dilution) or cytokeratin 8/18 antibody (1:100). Coverslips were

incubated with a fluorescein-tagged secondary antibody (Dakopatts) at

1:500 dilution and then mounted in Mowiol 4-88 (Hoechst AG).

Specimens were observed with an inverted photomicroscope (model

DMIRB HC; Leica). Fluorescence images were captured using a

cooled digital CCD Hamamatsu ORCA camera and digitally

recorded with the ImageProPlus 4.0 imaging software.

Bromo-deoxi-uridine (BrdU) incorporation
Cells derived from explants, grown on glass coverslips, were

incubated 1 h with BrdU. The assays were performed as

recommended by the manufacturer (Boheringer Mannheim

Biochemica) and cells were stained with DAPI.

Quantitative real-time PCR assays
Total RNA was extracted using Tri Reagent (Sigma) from the

livers of control and hypothyroid nude mice and deiodinase 1

mRNA levels were analyzed by quantitative RT-Q-PCR. RT was

performed with 2 mg of RNA following specifications of Super-

ScriptTM First-Strand Synthesis System (Invitrogen Life Technol-

ogies). The primers for deiodinase 1 used were: 59-CTTCGGT-

GACAGTTTTGATGAGC-39 (forward) and 59-GCAACAGAT-

TTGGTGCTGGATG-3. TRb transcripts were determined in

RNA extracted from tumors and explants using the primers: 59-

CCACCT TCTTCAGCATCC-39 (forward) and 59-AGTCATC-

TACGAGTCTCTTG-39(reverse). PCRs reactions were per-

formed using a MX3005P instrument (Stratagene) and detected

with Sybr Green. Data analysis was done using the comparative

CT method and data were corrected with the GAPDH mRNA

levels.

Statistical analysis
The Kaplan–Meier method was used to estimate the percentage

of tumor free animals, and the Breslow test was used to test for

differences between curves using SPSS 12,0. ANOVA analysis was

used to evaluate statistical significance in tumor volume curves,

number of invasion fronts and necrotic area. Results are expressed

as the mean6SE of the indicated number of experiments. The

95% confidence intervals were calculated based on SE of the

mean. Statistical significance was estimated with Student’s t-test

for unpaired observations. In all cases: * p,0.05, **,p0.01, ***

p,0.001.
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