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Simple Summary: Prognosis for patients with oesophageal cancer is poor, because of its aggressive
nature and the lack of targeted therapies. Advances in cancer biology and sequencing technology
have enabled the selection of targeted therapies for individual patients with various types of tumors,
such as breast or lung cancers as well as melanoma. However, precision oncology for patients
with oesophageal cancer is still virtually non-existent. This review outlines the recent advances in
oesophageal molecular profiling and the outcome of clinical trials based on targeted therapies in
this disease. The signaling pathways that should be further investigated and the impact of tumor
heterogeneity on resistance to therapy are also discussed.

Abstract: Oesophageal cancer is one of the leading causes of cancer-related death worldwide. Oe-
sophageal cancer occurs as squamous cell carcinoma (ESCC) or adenocarcinoma (EAC). Prognosis for
patients with either ESCC or EAC is poor, with less than 20% of patients surviving more than 5 years
after diagnosis. A major progress has been made in the development of biomarker-driven targeted
therapies against breast and lung cancers, as well as melanoma. However, precision oncology for
patients with oesophageal cancer is still virtually non-existent. In this review, we outline the recent
advances in oesophageal cancer profiling and clinical trials based on targeted therapies in this disease.
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1. Introduction

Oesophageal cancer is one of the leading causes of cancer-related death across the
world. With about 600,000 cases per year worldwide, it is the seventh most common
and sixth most lethal cancer, determining 1 out of 18 cancer-related deaths in 2020 [1].
Approximately 19,000 new cases and 15,500 deaths were expected in the United States of
America (US) in 2021 [2], unevenly divided between males and females. The incidence of
oesophageal cancer varies widely based on geographic regions [3]: oesophageal cancer
occurs more frequently in developing countries, with a disproportionate number of cases
arising in China, while adenocarcinoma is more evenly distributed across the world [4]. Dif-
ferences in incidence between men and women are pronounced in low-incidence countries
and not as evident in high-incidence countries, likely due to the differences in underlying
risk factors [5].

The geographic difference largely reflects the divide between the two most common oe-
sophageal cancer histologies, squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) [6].
ESCC prevalence is concentrated in three main regions, central-eastern Asia, the eastern coast
of Africa, and an area in south America centered around Uruguay, which carry an incidence
up to 10-fold higher than non-endemic areas [5]. Significant variations also occur inside high-
incidence areas. While China as a whole is home to approximately half of all oesophageal
cancers worldwide, the distribution varies widely, with some small areas having ESCC as one
of the leading causes of death overall [7]. Even outside of high-incidence areas, ESCC is the
most frequent histology in developing countries, and associated risk factors include cigarette
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smoking, alcohol consumption, and dietary characteristics [8]. Elevated consumption of red
meat, salted meat, and products inducing thermal injury, such as mate, hot teas, and soups,
has been shown to increase the risk of ESCC in high-incidence countries [8,9]. Additional
risk factors include the contamination of food with carcinogenic compounds, namely, a high
concentration of nitrosamine in the diet of populations in areas of China [4,10]. Interestingly,
smoking seems to play a small role as a risk factor in countries with a high incidence of
ESCC, probably due to the higher relative relevance of exposition to polycyclic aromatic
hydrocarbons from dietary and/or environmental sources [11,12]. Conversely, the reduction
in smoking rates in recent years seems to have significantly impacted the incidence of ESCC
in Western countries, particularly among males [13,14]. In addition to environmental risk
factors, some germline variants have been shown to increase the risk of development of
ESCC. Notably, variants in the Breast Cancer 2 (BRCA2) gene in the Iran Turkmen and in
the Chinese populations suggest a role for defective homologous recombination in ESCC
carcinogenesis [15,16]. This suspicion is reinforced by the association between pathogenic
variants in the Fanconi Anemia Complementation Group D2 (FANCD2) gene and the risk
of ESCC [17]. FANCD2 is a gene involved in cell cycle regulation and in Fanconi Anemia,
a genomic instability disorder [18]. Fanconi Anemia patients with pathogenic variants in
the FANCD2 are at high risk of developing ESCC, probably due to the role of this gene in
accelerating cell cycle progression [19].

Meanwhile, the incidence of EAC has been increasing during the last 30 years, par-
ticularly in Western countries, where it is now the most frequent oesophageal cancer
histology [20]. The incidence of EAC increases with age, and it shows a striking difference
between males and females, with a male to female ratio as high as 9:1 in the USA [21]. The
difference in distribution between EAC and ESCC is likely related to the divergent risk fac-
tors associated with each histology. Multiple risk factors associated with lifestyle have been
linked with EAC, including gastroesophageal reflux, Barrett′s oesophagus, alcohol con-
sumption, tobacco smoking, obesity, sedentary lifestyle, and lack of physical activity [20].
The interlink among some of these lifestyle-related risk factors might explain part of the fa-
milial clustering of Barrett′s oesophagus and EAC [22]: patients with a first-degree relative
with Barrett′s oesophagus or EAC are at increased risk of developing Barrett′s oesophagus,
likely due to a combination of environmental and genetic risk factors [23]. Several germline
variants have in fact been associated with the development of Barrett′s oesophagus and/or
EAC, and up to one third of EAC may have a hereditary component [24,25]. Nevertheless,
the increased risk potentially associated with each mutation is limited, and no mutation
has demonstrated to increase the risk by more than 20%.

2. Prognosis and Current Treatment Advancements

Prognosis for patients with either ESCC or EAC is poor, with less than 20% of patients
surviving more than 5 years after diagnosis [26]. The prognosis of oesophageal cancer
patients can be stratified based on the presence (stage IV) or absence (stages I-III, localized or
locally advanced disease) of distant metastases. Considering the two histologies combined,
5-year survival rates range from 46.4% for localized tumors to 5.2% for stage IV in the
US [27]. Survival for stage IV patients does not differ significantly between ESCC and EAC,
with 5-year overall survival (OS) ranging from 5.0 to 7.5% and 4.3 to 5.8%, respectively. In
the past 15 years, the survival for stage IV patients with oesophageal cancer has slightly
improved, despite no significant advancements in the standard of care [3].

The similar lack of advancements in terms of survival between the two histologies
reflects to the uniformity in the treatment of these patients. The Erb-B2 Receptor Tyrosine
Kinase 2 (ERBB2) gene encodes for the human epidermal growth factor 2 (HER2) protein
involved in cell growth [28], and it is frequently overexpressed/amplified in several tumor
types [29]. Inhibitors of HER2 have shown efficacy in breast, gastric, and colorectal cancer,
becoming part of the standard of care in patients affected by these tumors [30–32]. Aside
from EAC patients with overexpression/amplification of HER2, who are frequently treated
according to treatment protocols first established for gastric cancers [33], no significant dif-
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ferences currently exist regarding the systemic treatment of EAC or ESCC, and clinical trials
specifically dedicated to either EAC or ESCC are infrequent. After several years with no
significant improvement in the standard of care, the first-line treatment of unresectable and
metastatic oesophageal cancer has recently been changed by the addition of immunotherapy,
alone or in combination with a chemotherapy backbone (Table 1) [34]. The phase III random-
ized KEYNOTE-590 tested the addition of pembrolizumab to cisplatin and 5-fluorouracil
in the first-line treatment of EAC, ESCC, and gastro-oesophageal junction (GEJ) patients
irrespective of programmed death-ligand 1 (PD-L1) status [35]. PD-L1 is a transmembrane
protein involved in immune suppression, and the interaction between PD-L1 and pro-
grammed death protein 1 (PD1) is the target of most of the currently available immune
checkpoint inhibitors [36]. The expression of PD-L1 is frequently assessed in several tumor
types because of its association with benefit from immunotherapy, and it can be evaluated
according to several different scores [37]. One of the most frequently used is the combined
positive score (CPS), which takes into account the expression of PD-L1 on tumor cells,
lymphocytes, and macrophages combined [38]. Among the 749 patients enrolled in the
KEYNOTE-590 study, the combination of pembrolizumab plus chemotherapy proved supe-
rior to placebo plus chemotherapy in terms of OS and progression-free survival (PFS) in all
randomized patients (OS: hazard ratio (HR) 0.73 [95%CI 0.62–0.86], p < 0.0001; PFS: HR 0.65
[95%CI 0.55–0.760]; p < 0.0001), and in patients with EAC, ESCC, or GEJ and CPS equal or
superior to 10 (OS: HR 0.62 [95%CI 0.49–0.78]; p < 0.0001; PFS: HR 0.51 [95%CI 0.41–0.65];
p < 0.0001). The results of this study led to the approval by European regulatory authorities
“for the first-line treatment of patients with locally advanced unresectable or metastatic carcinoma
of the oesophagus or HER-2 negative gastroesophageal junction adenocarcinoma in adults whose
tumours express PD-L1 with a CPS ≥ 10” [39]. Checkmate-649 tested a similar strategy,
comparing a chemotherapy plus nivolumab arm, a nivolumab plus ipilimumab arm, and
a chemotherapy-only arm in patients with advanced oesophageal, GEJ, and gastric can-
cer [40]. The study aimed at demonstrating the superiority in terms of OS and PFS of
chemotherapy plus nivolumab versus chemotherapy alone in the population with CPS
equal or superior to 5. In the 955 enrolled patients with a CPS equal or superior to 5, the
chemotherapy plus immunotherapy arm proved to be superior to chemotherapy only, with
a median OS of 14.1 versus 11.1 months (HR 0.71 [98.4%CI 0.59–0.86]; p < 0.0001) and a
median PFS of 7.7 versus 6.0 months (HR 0.68 [98%CI 0.56–0.81]; p < 0.0001). Of note,
oesophageal cancer patients constituted only 12% of the enrolled population. Among the
few studies enrolling only a specific subtype of oesophageal cancer, CheckMate-648 was a
3-arm phase III study, randomizing patients to cisplatin plus 5-fluorouracil plus nivolumab,
cisplatin plus 5-fluorouracil, or nivolumab plus ipilimumab [41]. The study enrolled pa-
tients with ESCC irrespective of PD-L1 status, but the co-primary endpoints were assessed
in patients with tumor cell PD-L1 equal or superior to 1%. Of the 970 total patients, 49%
had PD-L1 equal or more than 1%. The chemotherapy plus immunotherapy arm showed a
significant superiority in terms of OS (HR 0.54, [99.5%CI 0.37–0.80]; p < 0.0001) and PFS (HR
0.65 [98.5%CI 0.46–0.92]; p = 0.0023) versus chemotherapy alone, while the immunotherapy-
only arm only proved to be superior in terms of OS (HR 0.64 [98.6%CI 0.46–0.90]; p = 0.001),
with the advantage in PFS not reaching the statistical significance boundary.



Cancers 2022, 14, 1522 4 of 26

Table 1. Immune checkpoint inhibitor trials in metastatic oesophageal cancer.

Study N Tumor
Type(s) Phase Treatment

Line Control Arm Experimental Arm Molecular
Selection

Primary
Endpoint mPFS mOS

KEYNOTE-590 749
(OC 658) OC, GEJ III First line CF + Placebo CF +

Pembrolizumab No OS
6.3 vs. 5.8
HR 0.65
p < 0.0001

12.4 vs. 9.8
HR 0.73
p < 0.0001

CheckMate-649 955 § OC, GEJ, GC III First line CAPOX or
FOLFOX

CAPOX or FOLFOX
+ NIVOLUMAB CPS ≥ 5 OS/PFS

7.7 vs. 6.0
HR 0.68
p < 0.0001

14.4 vs. 11.1
HR 0.71
p < 0.0001

CheckMate-648 315 ◦ ESCC III First line CF CF + Nivolumab PD-L1 ≥ 1%◦ OS/PFS
6.9 vs. 4.4
HR 0.65
p = 0.0023

15.4 vs. 9.1
HR 0.54
p < 0.0001

KEYNOTE-181 628 * OC III Second line
Paclitaxel,
docetaxel, or
irinotecan

Pembrolizumab No * OS
2.1 vs. 3.4
HR 1.11
p not reported

7.1 vs. 7.1
HR 0.89
p = 0.056

Attraction-3 419 ESCC III Second line Paclitaxel or
docetaxel Nivolumab No OS

1.7 vs. 3.4
HR 1.08
p not reported

10.9 vs. 8.4
HR 0.77
p = 0.019

Abbreviations—CF: cisplatin + 5-fluorouracil; CPS: combined positive score; ESCC: oesophageal squamous cell carcinoma; GEJ: gastro-oesophageal junction; GC: gastric cancer;
HR: hazard ratio; (m)OS: (median) overall survival; (m)PFS: (median) progression-free survival; OC: oesophageal cancer; PD-L1: programmed death ligand 1. § Primary endpoints were
OS and PFS in the CPS ≥ 5 population. OS and PFS results for all randomized patients (N = 1581) and for the immunotherapy-only arm are not reported here. ◦ Primary endpoints were
OS and PFS in the PD-L1 ≥ 1% population. OS and PFS results for all randomized patients (N = 970) and for the immunotherapy-only arm are not reported here. * Primary endpoints
were OS in the CPS ≥ 10 population, in the ESCC population, and in all patients. Reported here are the results in all randomized patients.
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Immune checkpoint inhibitors have also entered later lines of treatment in oesophageal
cancer, mainly restricted to the squamous cell histology. The KEYNOTE-181 study demon-
strated the superiority of pembrolizumab versus the investigator′s choice of standard
chemotherapy treatments (paclitaxel, docetaxel, or irinotecan) in the second line treatment
of patients with ESCC, EAC, or GEJ cancer with CPS ≥ 10 [42]. Out of the 628 total patients
enrolled in the clinical trial, 35% had CPS ≥ 10. In this population, median OS was signifi-
cantly longer in patients receiving pembrolizumab as opposed to standard chemotherapy
(HR 0.69 [95%CI 0.52–0.93]; p = 0.0074). In a subgroup analysis of the CPS ≥ 10 population,
the advantage remained significant only for ESCC patients, leading to the Food and Drug
Administration (FDA) approval of pembrolizumab for ESCC patients with CPS ≥ 10 pro-
gressing after one or more prior lines of systemic treatment [39]. Nivolumab too proved
effective after the first line of treatment in ESCC, showing superiority over paclitaxel or
docetaxel in terms of overall survival (HR 0.77 [95%CI 0.62–0.96]; p = 0.019) in previ-
ously treated patients enrolled in the ATTRACTION-3 study [43]. Thanks to the results of
this trial, nivolumab is currently FDA approved for ESCC patients who have previously
received a platinum and fluoropyrimidine-based treatment [44].

It is also worth mentioning, although the treatment of non-metastatic patients goes
beyond the scope of this review, the relevant impact that the introduction of immune
checkpoint inhibitors has had on the adjuvant setting in oesophageal cancer. The Check-
Mate 577 trial showed that in oesophageal or GEJ cancer patients with residual disease
after neoadjuvant chemoradiotherapy and surgery, post-operative nivolumab doubles
median disease-free survival compared to placebo (22.4 versus 11.0 months, HR 0.69
[96.4%CI 0.56–0.86]; p < 0.001) [45]. Although the overall survival data have not been
presented yet, the results of this trial have already changed clinical practice in patients
treated with neoadjuvant chemoradiotherapy followed by surgery [34].

Following decades marked by limited improvement in terms of overall survival,
the beneficial effect of immune checkpoint inhibitors in localized, locally advanced, and
metastatic oesophageal cancer patients is likely to become apparent in the next few years.

3. Molecular Characterization of Oesophageal Cancers

There is growing interest in the development of combinations of immunotherapy and
targeted therapies [46,47] Indeed, studies in animal models and clinical studies showed
drug-dependent and dose-dependent interactions between chemotherapy and the immune
system that could be used to induce synergy between cytotoxic drugs and immunotherapy
in several cancer types [48] In spite of the beneficial effect of immune checkpoint inhibitors
in oesophageal cancer, there is thus still a need to develop novel targeted therapies. This
requires a profound characterization of esophageal cancers at the molecular level and a
better understanding of their heterogeneity.

3.1. Heterogenity of Oesophageal Squamous Cell Carcinoma

Despite similarities in terms of treatment and prognosis, ESCC and EAC bear clearly
distinct molecular profiles. Gene expression analysis shows upregulation of Wnt, syndecan
and p63 pathways in ESCC, while EAC is characterized by higher E-cadherin signaling,
together with higher expression of pathways regulating E-cadherin, such as ARF6 and
FOXA pathways [44]. The two histologies also differ in terms of somatic genomic muta-
tions and somatic copy-number alterations. Although most of the genomic alterations in
oesophageal cancers do not currently have a clinical utility, understanding the molecular
profiles of oesophageal cancers can help foster the development of future targeted thera-
pies. In series exploring the clinical utility of genomic sequencing in gastro-oesophageal
cancers as a whole, 35–43% of tumors have been shown to harbor at least one alteration
considered “actionable” (i.e., potentially responsive to a targeted therapy), suggesting that
the deepening of our knowledge of the molecular landscape of oesophageal cancer might
open new therapeutic possibilities for these patients [49–51].
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Frequently mutated genes in ESCC include TP53, NOTCH1, NFE2L2, CDKN2A, PIK3CA,
RB1, FAM135, ADAM29, MLL2, FBXW7, AJUBA, CREEBP, PTCH1, ZNF750, PTEN, FAT1,
EP300, FAT2, KDM6A, CREBBP, BAP1, NOTCH3, TGFBR2, CUL3, DCDC1, NAV3, TENM3,
TET2, RIPK4, PBRM1 and USP8 [44,52–58] (Figure 1, including full gene names).

In addition, several mutational signatures associated have been found in ESCC, some
associated with known risk factors [59,60]. Tobacco smoking has been shown to be associ-
ated to the COSMIC database signature single base substitutions 4 (SBS4) (C > A), alcohol
consumption with signatures SBS16 (T > C) and ID11, opium exposure to SBS288J_Iran
(T > C), and deamination of 5-methylcytosine to SBS1 (C > T). Six mutational signatures
(SBS1, SBS2, SBS5, SBS13, SBS18 and SBS40) account for more than 80% of the mutational
burden of ESCC, with apolipoprotein B mRNA editing enzyme, and catalytic polypeptide-
like (APOBEC)-associated signatures being present in approximately 90% of cases, sup-
porting the contention that APOBEC alterations are fundamental in the development of
ESCC [60].

At least three subtype classifications based on molecular characteristics have been de-
veloped for ESCC [44,61,62]. The TCGA (The Cancer Genome Atlas Program) classification
divided ESCC tumors into three molecular subtypes: ESCC1, ESCC2 and ESCC3 (Figure 1).
ESCC1 shows a high frequency of alterations in the Nuclear Respiratory Factor 2 (NRF2)
pathway, which plays a role in response to oxidative stress. Mutations in NFE2L2,
Cullin 3 (CUL3), and Kelch-Like ECH-Associated Protein 1 (KEAP1) are common in this
subtype, as well as the amplification of SOX2 and/or TP63. ESCC1 samples closely resem-
ble squamous cell carcinoma of lung and head and neck origin [44]. ESCC2 is characterized
by the high frequency of mutations in the epithelial-to-mesenchymal transition (EMT)-
associated gene NOTCH1 and epidermal cell differentiator ZNF750 [63,64], and by greater
leukocyte infiltration as compared to the other two subtypes. In ESCC3, all samples had
alterations activating the PIK3 pathway, while most of them had no cell cycle dysregula-
tion. Among squamous cell cancers, ESCC3 molecular characteristics seem to be exclusive
to ESCC. Given the incidence of ESCC in China, Liu and coauthors proposed a further
molecular classification specific to Chinese patients [62]. Subtype 1 is characterized by
the upregulation of pathways involved in the regulation of cell metabolism, Subtype 2 by
inflammation, immune cell, and cytokine signaling, and Subtype 3 by the upregulation
of genes associated with cell cycle and cell proliferation. A third molecular subtyping
classification of ESCC samples based on proteomics profile proposed two subtypes with
potential clinical implications [61]. Tumors in the S2 subtype show an extreme expression
pattern, with dysregulated proteins either severely downregulated or upregulated. The
expression pattern of this subtype, enriched in DNA replication, DNA repair, and G2/M
checkpoint pathways, suggests a progressive evolution from non-tumor to S1 tumor to
S2 tumor samples. Tumors in the S2 subtype also show a significantly worse prognosis
compared to S1.

While harmonization efforts among different molecular subtypes have been under-
taken in other tumor types, such as the consensus molecular subtypes in colorectal can-
cer [65], to the best of our knowledge no such study exists in ESCC. Studies aiming at the
standardization of existing molecular classifications would build towards the use of these
tools for the molecular selection of patients for clinical trials.

In addition to intertumor variations, intratumor heterogeneity (i.e., the presence of
different molecular clones inside a single tumor; ITH) must also be taken into account
when dealing with the molecular characterization of ESCC. In an ESCC cohort subjected to
whole exome sequencing, 35.8% of somatic mutations and 90% of recurrent copy number
alterations were found to be spatially heterogeneous [66]. Given the huge impact of ITH
on drug resistance, this degree of heterogeneity might partly explain the dismal prognosis
associated with ESCC [67].



Cancers 2022, 14, 1522 7 of 26
Cancers 2022, 14, x  6 of 26 
 

 

 

Figure 1. Barplot summarizing frequent genomic alterations found in ESCC and EAC (only altera-

tions >10% of samples in at least one histology are represented). These data highlight differences in 

the pattern of genomic alterations between ESCC and EAC. Three ESCC molecular subtypes are 

defined based on the genomic alteration profile. Data from the TCGA, Firehose Legacy (n = 186). 

Abbreviations: EAC: oesophageal adenocarcinoma; ESCC: oesophageal squamous cell carcinoma; 

TP53: Tumor Protein P53; CDKN2A: Cyclin Dependent Kinase Inhibitor 2A; PIK3CA: Phosphati-

dylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha; TP63: Tumor Protein P63; SOX: Sry-

type HMG box; KMT2D: Lysine Methyltransferase 2D; NFE2L2: Nuclear factor erythroid 2-related 

factor 2; KDM6A: Lysine Demethylase 6A; NOTCH1: Notch homolog 1, translocation-associated; 

ZNF750: Zinc Finger Protein 750; RB1: Retinoblastoma; SMARCA4: SWI/SNF-Related, Matrix-As-

sociated, Actin-Dependent Regulator Of Chromatin, Subfamily A, Member 4; FAT1: FAT Atypical 

Cadherin 1; NOTCH3: Notch Receptor 3; TGFBR2: Transforming Growth Factor Beta Receptor 2; 

SMAD4: SMAD family member 4; FAT2: FAT Atypical Cadherin 2; FBXW7: F-Box And WD Repeat 

Domain Containing 7; NAV3: Neuron Navigator 3; GATA4: GATA Binding Protein 4; GATA6: 

GATA Binding Protein 6; KRAS: Kirsten rat sarcoma virus; DCDC1: Doublecortin Domain Contain-

ing 1; PBMR1: Polybromo 1; TENMR3: Teneurin Transmembrane Protein 3; ARID1A: AT-Rich In-

teraction Domain 1A; ERBB2: Erb-B2 Receptor Tyrosine Kinase 2; CTNNB1: Catenin Beta 1. 

At least three subtype classifications based on molecular characteristics have been 

developed for ESCC [44,61,62]. The TCGA (The Cancer Genome Atlas Program) classifi-

cation divided ESCC tumors into three molecular subtypes: ESCC1, ESCC2, and ESCC3 

(Figure 1). ESCC1 shows a high frequency of alterations in the Nuclear Respiratory Factor 

2 (NRF2) pathway, which plays a role in response to oxidative stress. Mutations in 

NFE2L2, Cullin 3 (CUL3), and Kelch-Like ECH-Associated Protein 1 (KEAP1) are common 

in this subtype, as well as the amplification of SOX2 and/or TP63. ESCC1 samples closely 

resemble squamous cell carcinoma of lung and head and neck origin [44]. ESCC2 is char-

acterized by the high frequency of mutations in the epithelial-to-mesenchymal transition 

(EMT)-associated gene NOTCH1 and epidermal cell differentiator ZNF750 [63,64], and by 

greater leukocyte infiltration as compared to the other two subtypes. In ESCC3, all sam-

ples had alterations activating the PIK3 pathway, while most of them had no cell cycle 

dysregulation. Among squamous cell cancers, ESCC3 molecular characteristics seem to be 

exclusive to ESCC. Given the incidence of ESCC in China, Liu and coauthors proposed a 

further molecular classification specific to Chinese patients [62]. Subtype 1 is characterized 

by the upregulation of pathways involved in the regulation of cell metabolism, Subtype 2 

by inflammation, immune cell, and cytokine signaling, and Subtype 3 by the upregulation 

of genes associated with cell cycle and cell proliferation. A third molecular subtyping clas-

sification of ESCC samples based on proteomics profile proposed two subtypes with po-

tential clinical implications [61]. Tumors in the S2 subtype show an extreme expression 

pattern, with dysregulated proteins either severely downregulated or upregulated. The 

expression pattern of this subtype, enriched in DNA replication, DNA repair, and G2/M 

checkpoint pathways, suggests a progressive evolution from non-tumor to S1 tumor to S2 

Figure 1. Barplot summarizing frequent genomic alterations found in ESCC and EAC (only al-
terations >10% of samples in at least one histology are represented). These data highlight dif-
ferences in the pattern of genomic alterations between ESCC and EAC. Three ESCC molecular
subtypes are defined based on the genomic alteration profile. Data from the TCGA, Firehose
Legacy (n = 186). Abbreviations: EAC: oesophageal adenocarcinoma; ESCC: oesophageal squa-
mous cell carcinoma; TP53: Tumor Protein P53; CDKN2A: Cyclin Dependent Kinase Inhibitor 2A;
PIK3CA: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha; TP63: Tumor Pro-
tein P63; SOX: Sry-type HMG box; KMT2D: Lysine Methyltransferase 2D; NFE2L2: Nuclear factor ery-
throid 2-related factor 2; KDM6A: Lysine Demethylase 6A; NOTCH1: Notch homolog 1, translocation-
associated; ZNF750: Zinc Finger Protein 750; RB1: Retinoblastoma; SMARCA4: SWI/SNF-Related,
Matrix-Associated, Actin-Dependent Regulator Of Chromatin, Subfamily A, Member 4; FAT1: FAT
Atypical Cadherin 1; NOTCH3: Notch Receptor 3; TGFBR2: Transforming Growth Factor Beta
Receptor 2; SMAD4: SMAD family member 4; FAT2: FAT Atypical Cadherin 2; FBXW7: F-Box And
WD Repeat Domain Containing 7; NAV3: Neuron Navigator 3; GATA4: GATA Binding Protein 4;
GATA6: GATA Binding Protein 6; KRAS: Kirsten rat sarcoma virus; DCDC1: Doublecortin Domain
Containing 1; PBMR1: Polybromo 1; TENMR3: Teneurin Transmembrane Protein 3; ARID1A: AT-Rich
Interaction Domain 1A; ERBB2: Erb-B2 Receptor Tyrosine Kinase 2; CTNNB1: Catenin Beta 1.

3.2. Heterogeneity of Oesophageal Adenocarcinoma

Driver mutations associated with the development of EAC include TP53, CDKN2A,
SMAD4, ARID1A, ERBB2, KRAS, PIK3CA, SMARCA4, CTNNB1, ARID2, PBRM1 and
FBXW7 [44,68,69].

The molecular characteristics of EAC closely resemble those of gastric cancers, particu-
larly of the CIN molecular subtype, with almost all the EAC tumors assessed in the TCGA
cohort being classified in the chromosomal instability (CIN) subtype of gastric cancer [44].
A molecular classification specific to EAC categorized tumors into three subtypes based
on their genomic landscape [69]. Whole genome sequencing of a large cohort of samples
showed that EAC is characterized by copy number changes and by large-scale genomic
events, with a high frequency of genomic catastrophes such as chromothripsis, kataegis,
and complex rearrangements. Three subtypes were described: C > A/T dominant, with
C > A/T mutational pattern and age as risk factor, DNA damage response (DDR) impaired,
identified by homologous recombination defects, and mutagenic, the subtype with the
highest mutational burden. Two further classifications based on DNA methylation profiles
have recently been proposed [70,71]. Methylation aberrations are present in both EAC and
Barrett′s oesophagues (BE), and they are suspected to be involved in the progression from
BE to EAC.

Somatic copy-number alterations (SCNA) analysis also demonstrates similarities and
differences between ESCC and EAC, with VEGFA, ERBB2, GATA6 and CCNE1 amplified in
EAC but not in ESCC, and SOX2, TERT, FGFR1, MDM2, and NKX2-1 amplified in ESCC
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but not in EAC [44]. Regarding deletions, SMAD4 and RB1 are frequently deleted in EAC
and ESCC, respectively [44].

The analysis of oesophageal carcinomas using integrated clustering of SCNA, DNA
methylation, mRNA and microRNA expression data by the TCGA call into question the
premise of envisioning oesophageal cancer as a single entity. Indeed, these data clearly show
that histological subtypes of EAC and ESCC are distinct in their molecular characteristics
and should therefore be treated as distinct malignancies.

Similar to ESCC, intratumor heterogeneity is a significant issue also in EAC. An analy-
sis performed on a limited number of EACs showed the presence of spatial heterogeneity
in each sample of the cohort, with a median of more than 50% of nonsilent mutations being
heterogeneous [72]. Moreover, tumors with high ITH were shown to be less sensitive to
neoadjuvant platinum-based chemotherapy [72]. This might have significant implications
for the use of targeted treatments in EAC patients.

4. Targeted Treatments in Oesophageal Cancer: Not There Yet

Despite abundant data on molecular alterations in oesophageal cancer, targeted treat-
ments are virtually non-existent in the therapeutic landscape of these tumors, if we exclude
the use of the anti-VEGF ramucirumab and of the anti-HER2 trastuzumab in GEJ can-
cers [32,73,74]. Patients with EAC showing overexpression or amplification of ERBB2 com-
monly receive a first-line treatment consisting of chemotherapy plus the anti-HER2/neu
monoclonal antibody trastuzumab, according to the therapy regimen tested in a phase
III trial enrolling GEJ and gastric cancer patients [33]. Metastatic oesophageal cancer,
particularly the adenocarcinoma histology, is frequently treated following the recommenda-
tions for gastric cancer, despite limited evidence of the associated benefit [75]. Beside this,
most of the targeted therapies tested for the past 10 years are aimed at Receptor Tyrosine
Kinases (RTKs) such as EGFRs and VEGFRs.

4.1. Targeting the EGFR Pathway in Oesophageal Cancers

Epidermal growth factor receptor (EGFR) amplification is a frequent alteration in both
ESCC and EAC, with a frequency ranging between 7 and 28% in different cohorts [76].
Of the phase III trials testing targeted treatments conducted in patients with oesophageal
cancer in recent years, most aimed at targeting EGFR (Table 2) [77–79]. The REAL3 trial
tested the addition of the anti-EGFR monoclonal antibody panitumumab to a chemother-
apy regimen of epirubicin, oxaliplatin, and capecitabine in patients with oesophageal,
GEJ, or gastric cancer [78]. Out of the 553 assessable subjects, 217 (39%) had oesophageal
cancer. Median OS resulted to be superior in patients treated in the standard arm in
the overall population (8.8 versus 11.3 months; HR 1.37 [95%CI 1.07–1.76]; p = 0.013) as
well as in the prespecified oesophageal cancer subpopulation (HR 1.32 [95%CI 0.90–1.94]).
No significant difference between treatment groups was observed in terms of PFS (1.22
[95%CI 0.98–1.52]; p = 0.068). A correlative analysis of this study aimed at assessing the
association between EGFR amplification and survival outcomes in patients with avail-
able samples in the intention-to treat (ITT) population [80]. EGFR amplification (copy
number variation score ≥ 2 or ≥5) associated with worse PFS and OS both in the study
population and in an extended in silico analysis performed in the cBioportal database.
Moreover, panitumumab had no added benefit in the EGFR-amplified population, and
data from patient-derived organoids showed a potential detrimental antagonistic effect
between anti-EGFR agents and epirubicin dependent on an accelerated M-to-G1 transition
in EGFR amplified tumors. The COG trial enrolled patients with EAC, ESCC, or GEJ
cancer who had received up to previous lines of treatment for unresectable or metastatic
disease [77]. Patients were randomized to receive the EGFR inhibitor gefitinib or placebo,
and the primary endpoint of the study was overall survival. Gefitinib failed to demon-
strate a survival benefit compared to placebo, with a median OS of 3.73 and 3.67 months,
respectively (HR 0.90 [95%CI 0.74–1.09]; p = 0.293). PFS resulted to be slightly longer in
the gefinitib than in the placebo arm (HR 0.80 [95%CI 0.66–0.96]; p = 0.020). In the 76% of
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enrolled patients who had tissue available for molecular analyses, EGFR fluorescence in
situ hybridization (FISH)-positive tumors derived a survival benefit in terms of OS and
PFS from gefitinib, while KRAS, PIK3CA, and BRAF mutations did not influence survival
outcomes [81]. Finally, the AIO/EORTC POWER trial randomized a total of 146 ESCC pa-
tients to receive either cisplatin plus 5-fluorouracil or the same chemotherapy regimen plus
panitumumab [79]. Once again, the addition of panitumumab did not result in a survival
benefit, and the study was stopped early for a higher mortality rate in the experimental
arm (HR 1.77 [95%CI 1.06–2.98]; p = 0.028). The expression of EGFR, MET, and CXCR4
in tumor tissue samples had no association with the survival outcomes. A further phase
III trial enrolling a small population with oesophageal adenocarcinoma (20 patients out
of a total efficacy population of 487) was the TRIO-013/LOGIC trial, which randomized
subjects into two arms: CAPOX plus placebo versus CAPOX plus the anti-HER2 agent lap-
atinib [82]. In the primary efficacy population, composed of patients with tumors showing
HER2 amplification, lapatinib led to no improvement in terms of overall survival (HR 0.91
[95%CI 0.73–1.12]; p = 0.349).

Combinations of agents targeting the mitogen-activated protein kinase (MAPK) path-
way and chemotherapy or immunotherapy have also been explored in several phase II
trials. Erlotinib, cetuximab, and panitumumab have all been studied in combination with
chemotherapy regimens in oesophageal cancer. Panitumumab plus irinotecan, panitu-
mumab plus DCF (docetaxel plus cisplatin plus fluorouracil), and erlotinib plus FOLFOX
all failed to demonstrate significant activity in this disease [83–85]. Based on their po-
tential synergistic effect, a single-arm phase II study administered a combination of the
anti-HER2 agent trastuzumab, platinum-based doublet chemotherapy, and the immune
checkpoint inhibitor pembrolizumab to 37 patients with HER2 overexpressed or amplified
oesophageal, GEJ, or gastric cancer [86]. The combination led to promising results in terms
of PFS (median PFS 13.0 months) and overall survival (median OS 27.3 months), prompting
the design of a currently enrolling phase III trial in patients with GEJ or gastric cancer [87].

Several phase II studies have tested single agents targeting the EGFR pathway. The
pan-ErbB kinase inhibitor afatinib was recently tested in a single-arm phase II study en-
rolling patients refractory to platinum-based chemotherapy [88]. Afatinib showed modest
clinical activity, with an overall response rate of 14.3%. Other anti-EGFR agents that have
been explored as monotherapies for advanced or metastatic oesophageal cancer in phase
II studies include icotinib, dacomitinib, erlotinib, and cetuximab [89–92]. In populations
composed of ESCC pre-treated patients selected for EGFR overexpression or amplifica-
tion, the oral tyrosine kinase inhibitor (TKI) icotinib led to an ORR of 16.7% [92] while,
in a similar population unselected for EGFR status, the pan-HER in-hibitor dacomitinib
showed an ORR of 12.5% [89–92]. Erlotinib and cetuximab both showed limited activity in
oesophageal cancer [89–91].

In patients with inoperable oesophageal cancer, a common research strategy has
been the combination of radiation therapy and anti-EGFR agents. The oral tyrosine kinase
inhibitor icotinib was recently investigated together with radiation therapy in a randomized
phase II study enrolling patients aged 70 years or older [93]. The combination of icotinib
and radiotherapy determined a significative improvement in terms of the primary endpoint
overall survival compared to radiation therapy alone (median OS 24.0 versus 16.3, HR
0.53 [95%CI 0.33–0.87]; p = 0.008). Several trials have tested similar strategies employing a
combination of agents targeting members of EGFR family (mainly HER2 and EGFR) and
radiation therapy, with mixed results [94–107].

The disappointing results of anti-EGFR treatments in oesophageal cancer somehow
reflect what has been observed in gastric cancer, in which no clinical trial has been able to
demonstrate a survival advantage so far [108,109]. On the contrary, the anti-EGFR antibody
cetuximab is a standard treatment in metastatic head and neck squamous cell carcino-
mas [110–112], another disease type commonly associated with oesophageal cancer. Hence,
understanding why oesophageal cancers resist anti-EGFR therapies in spite of frequent EGFR
amplifications will be important to design novel therapies targeting this pathway.
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Table 2. Targeted therapies trials in metastatic oesophageal cancer.

Study
(Publication
Year)

N Tumor
Type(s) Phase Treatment

Line Control Arm Experimental Arm Molecular
Target

Primary
Endpoint

mPFS
(Months)

mOS
(Months)

EGFR-targeting agents

REAL3
(2013)

553
(OC 217) OC, GEJ, GC III First line EOC mEOC +

Panitumumab EGFR OS
6.0 vs. 7.4 HR
1.22
p = 0.07

11.3 vs. 8.8 HR
1.37
p = 0.01

COG
(2014)

449
(OC 352) OC, GEJ III Second, third,

later lines Placebo Gefitinib EGFR OS
1.6 vs. 1.2
HR 0.80
p = 0.02

3.7 vs. 3.7
HR 0.90
p = 0.29

POWER
(2020)

146
(OC 146) ESCC III First line CF CF + Panitumumab EGFR OS

5.3 vs. 5.8
HR 1.21
p = 0.29

9.4 vs. 10.2
HR 1.17
p = 0.43

TRIO-013/LOGIC
(2016)

487
(OC 20) EAC, GEJ, GC III First line CAPOX +

Placebo CAPOX + Lapatinib HER2 OS
6.0 vs. 5.4
HR 0.82
p = 0.038

12.2 vs. 10.5
HR 0.91
p = 0.35

AGITG ATTAX3
(2016)

77
(OC 28) OC, GEJ, GC II First line DCF DCF +

Panitumumab EGFR ORR
6.0 vs. 6.9
HR NR
p NR

10.0 vs. 11.7
HR NR
p NR

Janjigian Y et al.
(2020)

37
(OC 14) EAC, GEJ, GC II First line /

Trastuzumab +
Pembrolizumab +
Capecitabine + Ox-
aliplatin/Cisplatin

HER2 PFS 13.0 27.3

Yoon H et al.
(2018) 18 EAC II Second line / Irinotecan +

Panitumumab EGFR ORR 2.9 7.2

Wainberg ZA et al.
(2011)

38
(OC 12) EAC, GEJ II First line / FOLFOX + Erlotinib EGFR ORR 5.5 11.0

Hong MH et al.
(2020) 49 ESCC II Second, third,

later lines / Afatinib EGFR, HER2,
HER4 ORR 3.4 6.3

Huang J et al.
(2016) 54 ESCC II Second, third,

later lines / Icotinib EGFR ORR 1.7 5.0
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Table 2. Cont.

Study
(Publication
Year)

N Tumor
Type(s) Phase Treatment

Line Control Arm Experimental Arm Molecular
Target

Primary
Endpoint

mPFS
(Months)

mOS
(Months)

Kim HS et al.
(2015) 49 ESCC II Second, third

line / Dacomitinib HER1, HER2,
HER4 ORR 3.3 4.6

Ilson DH et al.
(2011) 30 OC, GEJ II First, second

line / Erlotinib EGFR ORR NR 10.3

Chan JA et al.
(2011)

35
(OC 12) EAC, GEJ, GC II Second, third

line / Cetuximab EGFR ORR 1.6 3.1

SWOG 0415
(2010) 55 EAC, GEJ II Second line / Cetuximab EGFR OS 1.8 4.0

Angiogenesis-targeting agents

ZAMEGA
(2019)

64
(EAC 21) EAC, GEJ, GC II First line FOLFOX +

Placebo
FOLFOX +
Aflibercept

VEGF-A,
VEGF-B,
PGF

PFS
9.7 vs. 7.4
HR 1.11
p = 0.72

14.5 vs. 18.8
HR 1.24
p = 0.45

Yoon HH et al.
(2016)

168
(OC 80) OC, GEJ, GC II First line FOLFOX +

Placebo
FOLFOX +
Ramucirumab VEGFR2 PFS

6.4 vs. 6.7
HR 0.98
p = 0.89

11.7 vs. 11.5
HR 1.08
p = 0.71

Yanwei L et al.
(2020)

26
(OC 26) OC II Second, third,

later lines / Apatinib VEGFR2 RR 4.6 6.6

ESO-Shanghai 11
(2021)

40
(OC 40) ESCC II Second, third,

later lines / Apatinib VEGFR2 PFS 3.8 5.8

Zhang B et al.
(2020) 30 ESCC II First line /

Camrelizumab +
Liposomal
irinotecan +
Nedaplatin +
Apatinib

VEGFR2 ORR 6.9 19.4

Wu C et al.
(2015)

25
(OC 15)

OC, GEJ II First, second,
third line / Sunitinib VEGFR 1-3,

PDGFR PFS 1.6 3.9

Schmitt JM et al.
(2012)

28
(OC 22)

OC, GEJ II First, second
line / Paclitaxel +

Sunitinib
VEGFR 1-3,
PDGFR ORR 3.7 7.5
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Table 2. Cont.

Study
(Publication
Year)

N Tumor
Type(s) Phase Treatment

Line Control Arm Experimental Arm Molecular
Target

Primary
Endpoint

mPFS
(Months)

mOS
(Months)

Huang J et al.
(2021) 165 ESCC II Second, third,

later lines Placebo Anlotinib

VEGFR 1-3,
FGFR 1-4,
PDGFR α,β,
Ret,
c-Kit

PFS
3.0 vs. 1.4
HR 0.46
p < 0.001

6.1 vs. 7.2
HR 1.18
p = 0.426

Janjigian Y et al.
(2015)

34
(OC 23)

ESCC, GEJ II Second, third
line / Sorafenib

VEGFR2,
PDGFR,
RET,
RAF1

PFS 3.6 9.7

Other molecular targets in oesophageal cancers

MONO
(2019)

54
(OC 1) EAC, GEJ, GC II Second, third,

later lines / Zolbetuximab CLDN 18.2 ORR NR NR

Karasic et al.
(2020)

21
(OC 13) OC, GEJ, GC II Second, third,

later lines / Palbociclib CDK4/6 ORR 1.8 3.0

PRODIGE-17
(2019)

57
(OC 8) EAC, GEJ, GC II First line / FOLFOX +

Rilotumumab HGF PFS 7.6 11.5

Pant S et al.
(2017)

34
(OC 14) EAC, GEJ, GC II First line / FOLFOX +

Tivantinib C-MET ORR 6.1 9.6

Goyal L et al.
(2020)

26
(OC 7) OC, GEJ, GC II Second, third

line / Ganetespib HSP 90 ORR 2.0 3.1

Wainberg ZA et al.
(2015)

45
(OC 11) EAC, GEJ, GC II Second, third

line / Everolimus mTOR DCR 1.8 3.4

Eatock MM et al.
(2013)

171
(OC 30) EAC, GEJ, GC II First line

Cisplatin +
Capecitabine +
Placebo

Cisplatin +
Capecitabine +
Trebananib

Angiopietins
1/2 PFS

4.2 vs. 5.2
HR 0.99
p = 0.96

9.1 vs. 12.8
NR
NR

Abbreviations—CDK: cyclin-dependent kinase; CF: cisplatin + 5-fluorouracil; CLDN 18.2: claudin 18.2; DCF: docetaxel + cisplatin + fluorouracil; EAC: oesophageal adenocarcinoma;
EGFR: epidermal growth factor receptor; EOC: epirubicin + oxaliplatin + capecitabine; ESCC: oesophageal squamous cell carcinoma; GEJ: gastro-oesophageal junction; GC: gastric cancer;
HER1-4: human epidermal growth factor receptor 1–4; HGF: hepatocyte growth factor; HR: hazard ratio; HSP: heat shock protein; (m)OS: (median) overall survival; (m)PFS: (median)
progression-free survival; mTOR: mammalian target of rapamycin; NR: not reported; PDGFR: platelet-derived growth factor; PGF: placental growth factor; RT: radiation therapy;
VEGF: vascular endothelial growth factor; VEGFR1-3: vascular endothelial growth factor receptor 1–3.
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4.2. Targeting the VEGF Pathway in Oesophagel Cancers

Alterations in the vascular endothelial growth factor (VEGF) pathway are also common
in oesophageal cancers, with 9–14% of these tumors showing VEGFA amplification, 5–6%
having alterations in the Fms-Related Receptor Tyrosine Kinase 1 (FLT1) gene encoding for
the VEGF receptor 1, and 3–4% alterations in the VEGFR receptor 2–encoding gene Kinase
Insert Domain Receptor (KDR) [113]. VEGF has been targeted using sunitinib, a VEGFR 1-3
and platelet-derived growth factor receptor (PDGFR) targeting multikinase inhibitor, with
or without concomitant chemotherapy. Neither sunitinib monotherapy nor the sunitinib-
paclitaxel combination were superior to historical controls, with sunitinib plus chemotherapy
also leading to increased toxicity [114,115]. Other multikinase inhibitors whose targets include
VEGFR that have been tested in oesophageal cancer are sorafenib and anlotinib. Sorafenib
mostly led to disease stabilization and it did not show promising results in terms of PFS [116].
Anlotinib was tested versus placebo in a randomized phase II study enrolling ESCC pa-
tients across 13 centers in China [116]. The study demonstrated a significant increase in the
primary endpoint PFS (HR 0.46 (95%CI 0.32–0.66); p < 0.001), but no difference in terms
of OS (HR 1.18 [95% CI 0.79–1.75]; p = 0.426). Aflibercept is a VEGF-A, VEGF-B, and PGF
targeting fusion protein commonly used in metastatic colorectal cancer in combination with
chemotherapy [117]. In a randomized phase II trial, patients with oesophageal, GEJ, or gastric
adenocarcinoma were randomized to receive aflibercept or placebo in combination with
FOLFOX [118]. Aflibercept was not effective in prolonging PFS (HR 1.11 [95%CI 0.64–1.91];
p = 0.72) or OS (HR 1.24 [95%CI 0.71–2.15]; p = 0.45) in this study population. Another
randomized phase II clinical trial tested the addition of anti-VEGFR2 monoclonal antibody
ramucirumab to FOLFOX chemotherapy in a cohort of previously untreated oesophageal, GEJ,
and metastatic gastric cancer patients [119]. Of the 168 randomized patients, 48% were affected
by oesophageal cancer. No benefit in terms of PFS (HR 0.98 [95%CI 0.69–1.37]; p = 0.886) or
OS (HR 1.08 [95%CI 0.73–1.58]; p = 0.712) was apparent in the experimental arm of the ITT
population. The oesophageal cancer subpopulation did not benefit either, neither in PFS (HR
1.30 (95%CI 0.81–2.09)) nor in OS (HR 1.10 [95%CI 0.61–1.97]). A further molecule targeting
VEGFR2, apatinib, has been tested in a single-arm phase II study enrolling chemorefractory
EAC, ESCC, and GEJ cancer patients in a single center in China [120]. In the 26 patients
included in the efficacy analysis, the overall response rate (ORR) was 7.7% and the disease
control rate was 61.5%, with a tolerable safety profile. Apatinib monotherapy was also recently
tested in 40 chemorefractory ESCC patients enrolled in a phase II study in China [121]. In this
cohort, treatment with apatinib led to an ORR of 7.5% and a DCR of 65.0%, but it was burdened
by significant toxicity. Two of the treated patients had massive bronchopulmonary bleeding,
and two further patients with unresected primary tumor experienced an oesophageal fistula.
The current development of this small molecule is moving towards the combination with
anti-PD1 treatment camrelizumab. In a recent single-arm phase II study conducted in Chinese
patients that progressed after a first-line treatment, the combination led to impressive results,
with a 40% ORR, including two complete responses [122]. Similarly impressive were the
results from a phase II study enrolling first-line patients to receive apatinib, camrelizumab,
liposomal paclitaxel and nedaplatin, followed by maintenance treatment with apatinib and
camrelizumab [123]. A phase III trial randomizing ESCC patients to camrelizumab plus
apatinib versus camrelizumab as second line treatment is yet to start recruiting [124]. While
the results of this phase III trial will be eagerly awaited, the current landscape of treatments
targeting the VEGF pathway in oesophageal cancer remains dismal, and much still needs to
be done to implement targeted treatments in EAC and ESCC.

4.3. Targeting Other Pathways in Oesophageal Cancers

More pathways have been tested as therapeutic targets in oesophageal cancers, other
than EGFR and VEGF. Claudins are transmembrane proteins involved in the structure of
tight junctions, the main components of the epithelial–endothelial cell interaction [125].
Alterations in claudins expression have an association with carcinogenesis, which is con-
sistent with the dysregulation of tight junctions that is thought to happen during tumor
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development [126]. Inside the claudin family, claudin 18 (CLDN 18) is highly expressed in
healthy and tumor gastric tissue, particularly the 18.2 isoform (CLDN 18.2) [127]. A novel
antibody targeting CLDN 18.2, zolbetuximab, has been tested in a phase II trial enrolling
patients with oesophageal, GEJ, and gastric adenocarcinoma expressing CLDN 18.2 [128].
Zolbetixumab showed some antitumor activity, with 9% ORR across different dosing co-
horts. Although just one patient with EAC was enrolled in the study, clinical trials testing
combinations including zolbetixumab are ongoing in oesophageal cancers [129]. Cyclin-
dependent kinases (CDK) 4 and 6 participate in the regulation of the cell cycle, and CDK4/6
inhibitors are currently used in combination with hormonotherapy in hormone receptor-
positive breast cancer [130,131]. In ESCC patient-derived models, the loss of CDKN2A or
CDKN2B predicts sensitivity to CDK4/6 inhibitors [132]. In oesophageal cancer patients,
the CDK4/6 inhibitor palbociclib failed to demonstrate any significant clinical activity,
leading to no objective responses in a small phase II clinical trial [133]. The hepatocyte
growth factor (HGF)/mesenchymal–epithelial transition (MET) pathway has also been
thoroughly studied in oesophageal and gastric cancer, due to the high frequency of MET
overexpression in gastric cancer and to the association of MET dysregulation with tumor
growth and metastatic spread [134,135]. The c-Met inhibitor tivantinib coupled with FOL-
FOX chemotherapy showed no benefit over historical controls in a phase II trial enrolling
patients with previously untreated oesophageal, GEJ, or gastric adenocarcinoma [136]. Sim-
ilarly, rilotumumab, an agent targeting the MET receptor HGF, did not lead to promising
clinical benefit when added to FOLFOX [137].

Other frequent mutations, such as loss of the SWI/SNF ATPase subunit ARID1A,
which is associated to a poor prognosis in patients with EAC, may benefit from targeted
treatment [138]. Indeed, the loss of ARID1A modifies DNA damage response and thus may
lead to a higher sensitivity to PARP inhibitors, as suggested by experiments on breast cancer
epithelial cells in vitro [139]. In the same cell line, loss of ARID1A is associated to a higher
sensitivity to PI3K and AKT inhibitors [140]. However, further studies will be required to
determine whether EAC with alteration of ARID1A may benefit from targeted therapies.

Further molecular alterations that might be effectively targeted in oesophageal cancers
include the fibroblast growth factor 2 (FGF-2). The fibroblast growth factor/fibroblast
growth factor receptor (FGF/FGFR) signaling pathway plays a relevant role in the control
of several cellular processes, including development, metabolism, and cell survival, and
in the regulation of cancer stem cells [141,142]. By binding to FGFR1-4, FGF-2 mediates
downstream signaling through, among others, the MAPK/ERK and the PI3K-AKT-mTOR
pathways [142]. FGF-2 overexpression is associated with an increased risk of recurrence and
worse overall survival in oesophageal cancer [143]. Although the pharmacological inhibi-
tion of the FGF/FGFR pathway with the FGFR1-3 inhibitor AZD4547 has shown promising
activity in preclinical models [142], to our knowledge no clinical data are available so far.
In addition, among 6667 tissue specimens from patients with advanced gastro-esophageal
adenocarcinoma, only 269 (4.0%) FGFR2-altered cases were found [144]. This path may be,
therefore, effectively targeted only in a limited proportion of patients.

Other molecular targets that have been evaluated in phase II clinical trials enrolling oe-
sophageal cancer patients since 2010 include angiopoietins, heat shock protein 90 (HSP 90),
and mTOR [145–147].

4.4. Basket and Tumor Agnostic Trials Relevant to Oesophageal Cancers

One targeted treatment that is currently being tested in several tumor types is saci-
tuzumab govitecan (IMMU-132). IMMU-132 belongs to the antibody-drug conjugate class,
treatments combining a monoclonal antibody targeting cancer-associated antigens with
a cytotoxic drug through a chemical linker [148]. In IMMU-132, the antibody is directed
against trophoblast cell surface antigen-2 (Trop-2), a calcium signal transducer implicated
in embryonic development and in several oncogenic pathways that is upregulated in many
epithelial tumor types [149]. The IMMU-132-01 phase I/II basket trial tested IMMU-132 in
495 subjects across several tumor types who had received at least one prior treatment [150].
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In the 19 (3.8%) enrolled patients with oesophageal cancer (EAC or ESCC), IMMU-132
led to an ORR of 5.3%, with one partial response and no complete responses. The limited
efficacy of IMMU-132 in gastrointestinal cancer types has been explained with previous
exposure to topoisomerase I inhibitors such as irinotecan, a hypothesis that we could not
verify in the IMMU-132-01 trial since data on prior treatments were not published.

While the drug development process in oncology has traditionally been tumor type
specific, in recent years some tumor-agnostic (i.e., independent of histological tumor
type) treatments have started appearing. The most frequent tumor-agnostic biomarker is
microsatellite instability/mismatch repair deficiency (MSI/dMMR), which is effectively
used to select patients for their sensitivity to anti-PD1/PD-L1 immune checkpoint in-
hibitors [151]. The prevalence of this alteration is dramatically different between EAC and
ESCC and, as reported above, MSI/dMMR status is not the only biomarker predicting
the efficacy of immune checkpoint inhibitors in oesophageal cancers [152]. Regarding
targeted therapies, impressive results have been obtained with tumor-agnostic treatments
targeting neurotropic tropomyosin receptor kinase (NTRK) fusions. The tropomyosin
receptor kinase (TRK) signaling pathway, initially studied for its involvement in neuronal
development, is increasingly being recognized as playing a significant role in carcinogene-
sis, and the most common way of TRK pathway oncogenic activation is fusions involving
the NTRK1, NTRK2, or NTRK3 genes [153]. Although the prevalence of NTRK fusions is
low among common solid tumors (<1%), the small population bearing these alterations
derive great benefit from the two FDA-approved inhibitors larotrectinib and entrectinib
(ORR across tumor types 79% and 59%, respectively) [154,155]. In oesophageal cancers,
the prevalence of NTRK fusions has been reported to be 0.24%, making NTRK fusion an
unviable treatment option for the vast majority of patients [156].

At this stage, the EGF and VEGF pathways have been the most frequent therapeutic
targets tested in oesophageal cancers, with limited impact on survival except for treatments
targeting HER2 (Figure 2). Clinical experience has shown that only a percentage of patients
respond to therapies targeting Receptor Tyrosine Kinases (RTK), such as EGFRs and VEG-
FRs, even if their tumor expresses the altered target. This primary resistance to treatment is
often due to constitutive activation of downstream signal transducers [157,158]. In addition,
cancer cells may lose their ability to respond to the targeting RTK by activating alternative
pathways (acquired resistance). It is therefore critical to investigate the role of downstream
signal transducers such as the PI3K/AKT pathway.
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5. Future Directions: Focus on the PI3K-AKT Pathway in Oesophageal Cancer

In spite of the frequency of the molecular alterations of PI3K in oesophageal cancer,
the PI3K-AKT-mTOR pathway has received less attention than EGFR or VEGF in ESCC
and EAC. Alterations of the PI3K pathway are frequent in oesophageal cancer: 10% of
tumors present with PIK3CA mutations, 23% with PIK3CA amplifications, 10% with PIK3CB
amplifications, and 3% with AKT mutations [159]. It is also noteworthy that the phosphory-
lation of the Akt protein, one of the mechanisms leading to the activation of the pathway,
shows decidedly higher expression in ESCC than in corresponding normal tissue (90.4%
versus 27.7%) [160], supporting the relevance of this path in tumor development. The PI3K-
AKT-mTOR pathway controls processes involved in cell growth, metabolism, proliferation,
and survival, and it is among the most frequently dysregulated signaling pathways in
human cancers [159,161,162]. The pathway is normally activated by a multistep process
starting from extracellular signals mediated by receptor tyrosine kinases (RTKs) and G-
protein-coupled receptors (GPCRs) [163]. The catalytic subunit p110α of PI3Kα transduces
these signals through the phosphorylation of the inositol ring of phosphatidylinositol-
4,5-bisphosphate (PI-4,5-P2 or PIP2) to produce phosphatidylinositol-3,4,5-trisphosphate
(PI-3,4,5-P3 or PIP3) [164]. The accumulation of PIP3 recruits Akt to the plasma membrane,
and this translocation allows for the phosphorylation of the serine residue Ser473 of Akt by
TORC2 [165]. The subsequent conformational change in Akt allows for the phosphorylation
of its regulatory site Thr308 by the phosphoinositide-dependent kinase 1 (PDK1) [166].
Thus activated, Akt phosphorylates several proteins involved in cell survival, proliferation,
and migration [167].

The PI3K-AKT pathway is antagonized by phosphatase and tensin homolog (PTEN),
a lipid phosphatase converting PIP3 to PIP2 to inhibit the oncogenic AKT downstream
signaling [168]. The tumor-suppressing role of PTEN is well known, and mutations in this
gene frequently occur in solid tumors. For instance, approximately 10% of oesophageal
carcinoma show mutations, amplifications, deletions, or multiple alterations of PTEN [113].
Perhaps less characterized is the role of inositol polyphosphate 5-phosphatases in regulating
the PI3K-AKT-mTOR pathway. Inositol polyphosphate 5-phosphatases (IP5P) are a family
of ten signal-modulating enzymes regulating a number of cellular functions through
the regulation of phosphoinositides such as PIP2 and PIP3 [169,170]. Alterations in the
IP5P family members have been shown to have a context-dependent oncogenic or tumor
suppressor role in several solid tumors [171–174], and the pharmacological targeting of the
IP5Ps SHIP1 and SHIP2 has shown promise in preclinical models of breast cancer [175].

Even though the pharmacological inhibition of mTOR in EAC patients has led to
limited clinical benefit so far [146], evidence exists regarding the potential anti-tumor effect
of targeting the PI3K-AKT-mTOR pathway in ESCC preclinical models, through direct
inhibition or via the suppression of upstream targets. AKT itself is a potential target in ESCC,
as shown by the effect of AKT pharmacological inhibition in cell lines and in vivo [176,177].
Specific inhibition of PI3Kα can be achieved with the use of pharmacological inhibitors
such as alpelisib, which is currently marketed for use in metastatic breast cancer [178,179].
PI3Kα inhibitors inhibit proliferation in ESCC cell lines, but resistance inevitably ensues
through multiple mechanisms, including the hyperactivation of mTORC1, the mitogen-
activated protein kinase (MAPK) pathway, and c-Myc [180]. The concomitant treatment
with PI3Kα and MEK/mTORC1/BET inhibitors seems effective in restoring sensitivity
and suppressing tumor cell growth in resistant models. Alpelisib is currently being tested
in a phase Ib/II trial in combination with the anti-HER3 inhibitor LJM716 in patients
with previously treated ESCC [181]. It will be important to assess the impact of inhibitors
of the PI3K-AKT-mTOR pathway in the near future to determine to what extent this
pathway could be more efficient than the EGFR pathway for oesophageal cancer growth
and progression. Hopefully, targeting transducers that are common to several pathways
may be more efficient than targeting receptors, whose activity can be somehow easily
compensated in cancer cells. Drug combinations and association with immunotherapy may
be the most promising strategies to circumvent potential resistance mechanisms.
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6. Conclusions

The discovery of effective treatments for oesophageal cancer is an unmet need in
oncology, as reflected by the dismal prognosis of patients with unresectable and metastatic
disease [1]. After years with limited to no changes in terms of novel therapies for metastatic
oesophageal cancer, the recent introduction of immune checkpoint inhibitors has revo-
lutionized the therapeutic landscape and will significantly impact the life expectancy of
these patients [34], while the development of targeted treatments is still lagging behind.
Although the design of therapies aiming at specific alterations is expected to benefit from
the ongoing effort to perfect the molecular characterization of oesophageal cancer, the
emerging complexity of this disease is posing novel challenges to overcome. First of all,
oesophageal cancer cannot be considered a single entity, but rather a collection of diseases
differing from the histological (ESCC versus EAC) and molecular point of view [44,182,183].
While most clinical trials currently enroll all oesophageal cancer patients, intertumoral
heterogeneity in oesophageal cancer will need to be taken into account to achieve effective
drug development. Second, oesophageal cancer heterogeneity is evident not only at the
inter- but also at the intratumoral level [66]. Intratumoral heterogeneity limits the effective-
ness of treatments targeting a single molecular alteration, due to the presence of tumoral
clones that depend on alternative pathways of development [184]. Combining treatments
represents a potential method to circumvent this issue while reducing toxicity [185]. Deeper
characterization of esophageal cancer by using single-cell omics and spatial transcriptomics
will certainly provide important data about the intra-tumoral heterogeneity, the biology of
the sub-clones, their interactions, as well as the role of the microenvironment in tumor biol-
ogy [183,186]. For instance, single-cell RNA sequencing recently showed high expression
of Lymphocyte Activating 3 (LAG3) in NKT/CD8+ T-cells in ESCC samples, supporting
a potential role for anti-LAG3 treatments (a novel class of immune checkpoint inhibitors)
in this tumor type [186]. This level of detail will be crucial to design efficient targeted
therapies in the future.

The deepening of our understanding of the molecular mechanisms underpinning the
development of EAC and ESCC is offering novel insights into new targets for molecularly
selected treatments. Renewed efforts aiming at exploiting the molecular mechanisms of
cancer growth will bring about significant changes in the therapeutic landscape of patients
with oesophageal cancers, with the hope of dramatically increasing the life expectancy of
this population.
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