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Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder which affects 6.1 million people worldwide. 
The neuropathological hallmarks include the loss of dopaminergic neurons in the substantia nigra, the presence of Lewy 
bodies and Lewy neurites caused by α-synuclein aggregation, and neuroinflammation in the brain. The prodromal phase 
happens years before the onset of PD during which time many patients show gastro-intestinal symptoms. These symptoms 
are in support of Braak’s theory and model where pathological α‐synuclein propagates from the gut to the brain. Impor-
tantly, immune responses play a determinant role in the pathogenesis of Parkinson’s disease. The innate immune responses 
triggered by microglia can cause neuronal death and disease progression. In addition, T cells infiltrate into the brains of PD 
patients and become involved in the adaptive immune responses. Interestingly, α‐synuclein is associated with both innate 
and adaptive immune responses by directly interacting with microglia and T cells. Here, we give a detailed review of the 
immunobiology of Parkinson’s disease, focusing on the role α-synuclein in the gut-brain axis hypothesis, the innate and 
adaptive immune responses involved in the disease, and current treatments.

General introduction and symptoms

Parkinson’s disease (PD) is the second most prevalent neu-
rodegenerative disease throughout the world [1], affecting 
approximately 1.04 million people in the US [2], and 6.1 
million worldwide [3]. The symptoms can be divided into 
motor features, including bradykinesia, gait disturbance, 
tremor, rigidity, and speech deficits [4]; and non-motor 
symptoms, such as depression, hyposmia, cognitive impair-
ment, sleep disorders, and constipation [5]. However, there 
exists a prodromal phase prior to the onset of PD where 
people may be asymptomatic or exhibit other symptoms that 

do not fall into the standard set of PD diagnostic markers [6]. 
Currently, several prodromal symptoms have been linked 
to a higher risk of developing PD in an otherwise healthy 
populations [7]. One of the highest PD risk symptoms is idi-
opathic rapid eye movement (REM) sleep behavior disorder 
(RBD), and it has been shown that 80% of the individuals 
with idiopathic RBD progress to develop PD [6].

PD cases can be classified into two major forms, mono-
genic and idiopathic. Five to 10% of all cases are mono-
genic, while the remaining majority are idiopathic [8]. For 
the monogenic form, 13 loci and 9 genes have been shown 
to be involved in PD such as Synuclein Alpha (SNCA)/Par-
kinson Disease 1/4 (PARK1/4) that is associated with spo-
radic PD and early-onset cases, Leucine-Rich-Repeat Kinase 
2 (LRRK2)/PARK8 that has been found in both autosomal 
dominant PD cases and sporadic cases, Parkin RBR E3 Ubiq-
uitin Protein Ligase (PRKN)/PARK2 which causes early-
onset with slow progression, and PTEN-induced kinase 1 
(PINK1)/PARK6 which is linked to the autosomal recessive 
form of PD [9]. In idiopathic PD, there are combination of 
known environmental factors and genetic elements that con-
sist of many common variants of small effect size across the 
genome [8]. The pathological hallmarks of idiopathic PD 
include the death of dopaminergic neurons in the substan-
tia nigra of the midbrain which mainly contribute to motor 
deficits, and the accumulation of α-synuclein in Lewy bodies 
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and Lewy neurites [10]. Current therapies include dopamine-
based treatments (l-DOPA treatment) for motor symptoms 
and nondopaminergic approaches, like deep brain stimula-
tion, for non-motor symptoms [11]. However, all treatments 
are only managing symptoms and none of them is curative.

Epidemiology

The strongest risk factor for PD is aging, with incidence 
increasing nearly exponentially between ages 55 and 79 [12]. 
The overall annual incidence rate is around 0.012% for all age 
groups, while for patients over 50 years of age, the frequency 
is 0.044% [13]. In addition, the global prevalence is estimated 
at 0.3% for the overall population but increases dramatically 
to > 3% for the population of > 80 years of age [14]. However, 
young onset PD, which refers to disease onset of less than 
40 or 50 years of age, is of concern [15]. Around 25% of PD 
patients experience onset at an age younger than 65 years old, 
with 5–10% younger than 50 years of age [7].

A large meta-analysis study found that twice as many 
men than women suffer from PD [16]. Apart from the dif-
ferences in disease prevalence between the two sexes, men 
and women show discrepancy in other aspects as well. For 
instance, other studies showed that women’s age of onset is 
about 2 years older [16] while men have a steeper increase 
of incidence as they get older, especially for the age groups 
of 60–69 and 70–79 [17]. On the other hand, women are 
more likely to suffer from tremor, dyskinesia, depression, 
urinary complaints, and constipation [16]. Some factors that 
may contribute to these differences in disease susceptibil-
ity include sex hormone–driven structural differences in the 
brain, different life-style and environmental risk factors [18], 
and sex-bias from sex-associated gene mutations [17].

Pathophysiology

The most well-known and cited hypothesis for PD pro-
gression is proposed by Braak’s group [19]. According 
to this model, PD begins in stages 1 and 2. During stage 
1, α-synuclein pathology is found in the olfactory bulb, 
together with enteric system disfunction and hyposmia. In 
stage 2, the pathology is present in the medulla, and patients 
typically show depression. Pathology progresses to the sub-
stantia nigra during stage 3, also called a pre-symptomatic 
phase. REM sleep behavior is considered the main symptom 
during this phase and afterward, patients begin to manifest 
motor symptoms. In stage 4, most patients are diagnosed 
when cortical involvement expands to the temporal meso-
cortex. Stages 5 and 6 mark advanced PD, which involves 
the entire cerebral cortex and can lead to impaired cognition 
and hallucinations in patients.

The pathophysiology of PD results from the complicated 
interplay of dopaminergic neuron death in the substantia 

nigra, aberrant intracellular α-synuclein protein aggrega-
tions, and neuroinflammation [7]. The loss of dopaminergic 
neurons causes an imbalance between the indirect pathway 
over the direct one in the basal ganglia, resulting in patho-
logical synchronous oscillatory activity in the beta band of 
brainwaves [20]. Recent studies have shown that exaggerated 
beta oscillation is related to the dopaminergic “off’ state, 
and may result in the motor symptoms of PD, such as rigid-
ity and bradykinesia [21]. In addition, one hypothesis sug-
gests that a compensatory mechanism involving the lateral 
premotor loop is caused by the pathological dopaminergic 
abnormality to account for the brain impairment [22].

Chronic neuroinflammation is one of the salient features 
of PD pathophysiology, and increased pro-inflammatory 
factor levels, microglia activation, and T cell infiltration 
are usually observed in PD autopsy brain sections [23]. 
Although it may not be the trigger of PD pathology, emerg-
ing evidence from human post-mortem PD brains and exper-
imental animal models indicate that α-synuclein aggrega-
tions can cause both innate and adaptive immune responses 
in PD [24]. Consequently, this neuroinflammation can in 
turn promote α-synuclein misfolding and aggregation [25]. 
Furthermore, studies suggest that PD neuropathology is also 
promoted by inflammation in the olfactory system and gut 
during the prodromal PD phase caused by viral or chemical 
exposure that can lead to the initial α-synuclein misfold-
ing, aggregation, and propagation to the brain [25]. Besides 
aggravating the disease, activated microglia can also play 
an important role in preventing the PD progression. Cur-
rent immunotherapies targeting α-synuclein rely on clear-
ance and degradation of misfolded α-synuclein deposits by 
immune cells like microglia [14].

α‑Synuclein and gut‑brain axis in PD

Many PD patients show non-motor symptoms related to 
the gastro-intestinal system, especially during the pro-
dromal phase. To this end, several groups have proposed 
that the non-motor symptoms may indicate the start of the 
α-synuclein pathology in the gut, and the α-synuclein will 
further propagate to the brain via the vagus nerve, causing 
dopaminergic neuron degeneration and PD.

Introduction to α‑synuclein and the gastrointestinal 
tract

α-Synuclein is a 140-amino-acid, neuronal protein that con-
centrates at presynaptic terminals, neuronal nuclei [26], as 
well as mitochondria, including the inner and outer mito-
chondrial membranes and the mitochondrial matrix [27]. It 
can be divided into three distinct domains. First, the N-ter-
minal amphipathic region is dominated by four 11-residue 
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repeats including the highly conserved KTKEGV sequence. 
The central region contains a predominantly hydrophobic 
motif, called non-amyloid component region, which is indis-
pensable for α-synuclein aggregation [28]. The C-terminal 
region, which is negatively charged and enriched in acid 
residues [29], is important for chaperone activity and regula-
tion of interaction with other proteins [30]. The function of 
the α-synuclein protein in normal neurons is controversial 
and not fully understood. For one, some studies show that 
α-synuclein expression in neuron terminals has a role in 
regulation of synaptic plasticity [31]. In tandem, other mod-
els suggest that α-synuclein also accumulates in axons after 
injury and might be associated with regenerative sprouting 
[32], indicating its function in neuronal remodeling. Yet oth-
ers observe that α-synuclein acts as a potential chaperone 
that binds to other proteins to prevent their abnormal aggre-
gation [33]. In addition, it also has a role in mitochondrial 
function regulation including mitochondrial fusion [34]. 
Pathologically, α-synuclein is a component of Lewy bodies 
and Lewy neurites, which can be linked to PD neuropathol-
ogy both genetically and neuropathologically [31, 35], and 
it is thought that α-synuclein aggregates into mature Lewy 
bodies after it forms oligomers and fibrils [35]. Although 
the exact role of α-synuclein plays in PD remains uncertain, 
it is likely that the mutation or multiplications of the gene 
that encodes α-synuclein, namely SNCA, can cause neuronal 
toxicities that involve disruption and neuronal death, golgi 
homeostasis, autophagy, or oxidative and nitration stress [35, 
36]. Furthermore, a prion-like mechanism hypothesis posits 
that once misfolded α-synuclein aggregates form in a cell, 
they can be transferred into other neighboring neurons or 
brain regions, causing the formation of new aggregations 
[37], thus contributing to the overall spread of misfolded 
α-synuclein and disease propagation.

The digestive system mainly comprises the gastroin-
testinal tract along with other accessory digestive organs 
[38]. Primarily, the gut wall contains four layers, including 
the mucosa, submucosa, muscularis externa, and serosa or 
adventitia [39]. As part of the digestive system, the gas-
trointestinal tract is involved in food digestion, absorption, 
and waste excretion [38], as well as immune surveillance 
through gut-associated lymphoid tissue [40]. Gastro-intes-
tinal function is regulated by hormones such as motilin and 
ghrelin [41], as well as the autonomic nervous system [39], 
including the sympathetic and parasympathetic nervous sys-
tems. After food uptake, hormones are secreted to facilitate 
digestion via chemical signaling, and the autonomic nerv-
ous system coordinates gastro-intestinal motility, secre-
tions, and intestinal mucosal regeneration [42]. Recently, 
physiological expression of α-synuclein and phosphoryl-
ated α-synuclein have been observed in the gastrointestinal 
tract, but their properties and functions remain elusive. It 
has been reported that α-synuclein is mainly expressed in 

terminals and varicosities of the gut in mouse models where 
it modulates enteric neurotransmission and development of 
cholinergic neurons. In contrast, α-synuclein knockout (KO) 
mice show impaired gastrointestinal functions and elevated 
enteric neuron density [43]. Other researchers using scan-
ning electron microscopy have shown that α-synuclein can 
co-localize with synaptophysin in enteric neuron somata and 
can functionally be linked to the regulation of synaptic vesi-
cle apparatus as well as to synaptic plasticity in enteric neu-
rons [44]. Nevertheless, microbial dysbiosis, or the change 
in gut microbial composition, has been suggested to be the 
major source of misfolded α-synuclein in the gut and thus 
has been connected to the inflammatory processes in PD 
[45]. Recent research suggests that the bacterial endotoxin, 
lipopolysaccharide (LPS), may play a critical role in the 
mediation of the inflammatory process in neurodegenerative 
diseases such as PD. It has been proposed that genes associ-
ated with LPS biosynthesis and type III bacterial secretion 
systems show significantly more increased expression in PD 
patients than in healthy controls [46]. Indeed, recent studies 
demonstrate that compared to mice exposed to LPS-negative 
α-synuclein fibrils, mice that received intracerebral injection 
of LPS-positive α-synuclein fibrils produced a specific form 
of fibrillar α-synuclein, suggesting that synucleinopathies 
can result from exposure to different pathogens [47].

Gastrointestinal symptoms are common non-motor 
manifestations in PD patients affecting all regions of the 
gastro-intestine, including symptoms such as hypersaliva-
tion, dyspepsia, constipation, abdominal pain and defecatory 
dysfunction, with at least one of the symptoms occurring in 
60 to 80% of PD patients [48]. These symptoms indicate that 
PD affects not only the central nervous system (CNS), but 
also many parts of the peripheral nervous system, such as 
the enteric nervous system (ENS) and parasympathetic nerv-
ous system [49]. Importantly, gastrointestinal symptoms, 
in particular constipation, is considered one of the earliest 
and most important symptoms during the prodromal phase, 
which supports the hypothesis that PD might ate in the gut 
and then spread to the brain.

Gut microbial composition in the context of PD

The organisms of the human microbiome have been found in 
various external and internal parts of the human body, includ-
ing the gastrointestinal tract, skin, saliva, and other mucosal 
environments [50]. The majority of these reside in the gas-
trointestinal tract, with about 1014 microorganisms from over 
2,000 species [51]. Numerous studies have revealed that the 
gastrointestinal tract microbiome contributes to immune sys-
tem development through interactions with the innate and 
adaptive immune systems [50]. For example, the gastrointes-
tinal tract microbiome has been shown to modulate T helper 
17 (Th17) cell differentiation and production. Also, some 
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NOD-like receptors (NLRs) such as NOD-, LRR (leucine‐
rich repeat)-, and NOD-like receptor pyrin domain-contain-
ing protein 6 (NLRP6) can assemble into inflammasomes in 
the colonic epithelium to regulate microbiome ecology and 
intestinal homeostasis [52].

Recently, several studies have shown that compared to 
healthy controls, PD patients experience metabolic distur-
bances in the gut, such as alternations in short-chain fatty 
acids (SCFAs), steroid hormones, and bile acid, which are 
potentially due to inflammation [53]. For instance, SCFAs 
modulate gut barrier function, immunomodulation, gut 
mobility, and obesity [54]. However, along with SCFA-
producing bacteria B. thetaiotaomicron, SCFAs are found 
to be reduced in stool from early PD patients, which indi-
cates their potential role in maintaining gut homeostasis 
[45]. In addition, another metabolite shown to influence 
dopaminergic neuron functionality is folate [55], which has 
been discovered to be deficient in late PD patients, causing 
hyperhomocysteinemia [56].

Model of gut‑brain route

Recently, there is considerable evidence that supports the 
hypothesis that PD originates in the gut with inflammation and 
oxidative stress, which then gradually progresses to the CNS 
[57], which further corroborates Braak’s theory [19]. Indeed, 
according to the Braak’s hypothesis, PD may be triggered in 
the gastrointestinal tract by an unknown factor, and then the 
α-synuclein pathology can propagate through the vagal inner-
vation to the dorsal motor nucleus of the vagus (DMV) and 

finally the substantia nigra. Here, we describe one possible 
model of the gut-brain axis in the PD pathogenesis (Fig. 1).

An initial inflammatory trigger causes low‑level chronic 
inflammation

Infections caused by toxic substances or other pathogens can 
trigger the initial inflammation in the intestine. In addition, 
chronic inflammatory disorders such as inflammatory bowel 
disease and irritable bowel syndrome have been shown to 
be linked to an increased risk of PD though the production 
of proinflammatory cytokines [58, 59]. If the inflammation 
induced by the triggering factors is not properly reduced, it 
can lead to dysbiosis of the gut microbiome and increased 
intestinal permeability, causing the leakage of inflammatory 
factors from the gut into systemic circulation, and the matu-
ration of antigen-presenting cells. All these shifts can elicit 
systemic immune responses and increased permeability of 
the blood brain barrier (BBB) [60].

α‑Synuclein can transfer from the periphery to the brain 
and exacerbate inflammation

Inflammation has been shown to have the ability to trig-
ger a progressive increase of α-synuclein expression 
in the gut [61], and peripheral inflammation enhances 
α-synuclein uptake from circulation into the brain through 
altered BBB permeability [62]. Additionally, a recent 
study demonstrated that α-synuclein can be transported 
through the vagus nerve to the dorsal motor nucleus after 

Fig. 1   Diagrammed represen-
tation of the gut-brain axis 
hypothesis for the development 
and progression of PD. An 
infection or exposure of the gut 
to toxins can cause preliminary 
intestinal inflammation and dys-
biosis of the gut microbiome. 
As a result, there is an upregula-
tion of α-synuclein expres-
sion and transport through the 
vagus nerve and into the brain. 
Increased permeability of the 
blood–brain barrier (BBB) 
facilitates the accumulation of 
α-synuclein within various brain 
regions, including the dorsal 
motor nucleus of the vagus 
nerve (DMV), leading to pro-
inflammatory glial responses 
and the pathogenesis of neuro-
inflammation during PD
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being injected into the rat intestine where the transloca-
tion is supported by the microtubule-based axonal trans-
port system [63–65]. In the brain, α-synuclein can trigger 
microglia activation, which is thought to be one of the 
most significant signatures of neuroinflammation. Thus, 
these results indicate that peripheral inflammation accel-
erates the α-synuclein-induced CNS inflammation.

Pathology in PD CNS initially affects DMV

The DMV contains preganglionic cholinergic neurons 
that innervate the motility of various organs within the 
gastrointestinal tract [66]. Numerous studies have shown 
α-synuclein inclusions in the DMV, indicating the spread 
of α-synuclein from the ENS [67]. According to Braak’s 
hypothesis, the DMV is involved in stages 1 and 2 of PD 
development [19]. Later, numerous reports also confirm 
that in 50–80% of the patients, DMV are involved in the 
PD pathology as a trigger site [68].

PD pathology spreads from one brain region to the next

The inflammation and α-synuclein gradually spread to other 
parts of the CNS, possibly via a prion-like mechanism, and 
eventually to the substantia nigra. The spread of synucle-
inopathy is followed by the loss of dopaminergic neurons 

in the substantia nigra, and thus the depletion of dopamine 
[25]. Afterwards, the PD clinical symptoms begin to mani-
fest, from non-motor symptoms to motor dysfunctions.

The contribution of microglia to PD

Neuroinflammation has been treated as a hallmark of PD 
and plays a critical role in PD pathogenesis through trigger-
ing neuronal dysfunction and death. Specifically, microglia 
can be activated and further migrate to the brain through a 
compromised BBB, and contribute to disease progression 
by mediating the immune pathways and interacting with 
α-synuclein (Fig. 2).

Microglia introduction and neuroinflammation

Microglia account for 0.5–16.6% of all the brain cell popu-
lations and are the most abundant cell type involved in the 
immune responses of the CNS [69, 70]. They are small cells 
that interact with neurons and surrounding cells by exhibiting 
different functions like synaptic pruning, cerebral angiogen-
esis, and phagocytosis [71]. Microglia arise from primitive 
macrophages in the embryonic yolk sac, and enter the CNS 
through the blood vasculature during embryogenesis [72], 
constituting an independent cell lineage different from other 
hematopoetic stem cells. After receiving specific signals from 

Fig. 2   Microglia-mediated neuroinflammation and neuroprotective 
mechanisms in PD pathogenesis. Microglia become an activated M1 
phenotype when exposed to PD pathological conditions like mis-
folded proteins and pro-inflammatory factors. M1 microglia secrete 
pro-inflammatory factors that further induces neuroinflammatory and 
neurotoxic mechanisms in the human brain through process such as 

enhanced phagocytotic activity and increased ROS production. On 
the other hand, the presence and stimulation by anti-inflammatory 
factors can lead to an activated M2 phenotype. Neuroprotective 
mechanisms in PD from M2 microglia include the release of anti-
inflammatory cytokines into the brain which inhibits continued neu-
roinflammation
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the CNS, the microglia precursor cells start differentiating, 
maturing, and expressing signature genes [69]. Recent stud-
ies have reported that microglia play a crucial role in shaping 
brain development, especially through their role in eliminating 
apoptotic cells or neuronal debris through phagocytosis. Since 
around half of the cells in the brain undergo programmed cell 
death in the developing CNS, microglia are able to recog-
nize these cells and phagocytose the dead cell corpses [73]. 
Another important role of microglia is developmental synapse 
pruning, which results from the competition between neigh-
boring neurons to eliminate excess synapses and maintain 
more active synaptic connections [74]. To this end, research-
ers have shown that impaired synaptic pruning can cause an 
increase in spine density and immature neural circuits [75]. 
Furthermore, numerous single-cell RNA sequencing studies 
have recently revealed the diversity of microglial cellular het-
erogeneity, such as differences in regional density and func-
tion [76]. Studies have demonstrated that microglial density 
varies across brain regions, with more microglia in gray mat-
ter compared to white matter. In addition, the hippocampus, 
olfactory bulb, basal ganglia, and substantia nigra have denser 
microglia as compared to the fiber tracts, cerebellum, and 
brainstem. Though the reason why microglia density varies 
across brain regions is still not clear, some hypothesize that 
it may relate to microenvironmental regulation or the glia-to-
neuron ratio [76, 77].

Similarly, microglial function varies across CNS regions as 
well. For example, several studies suggest that microglia show 
different functional profiles between gray matter and white mat-
ter, with higher expression of genes involved in type-I inter-
feron response in gray matter microglia and higher level of genes 
belonging to the nuclear factor kappa B (NF-κB) pathway in 
white matter microglia [78]. Taken together, the diverse func-
tional heterogeneity of microglia may contribute to the reaction 
towards location-dependent pathological stimuli in the brain 
[79]. Reactive microglia were first found in the substantia nigra 
of human post-mortem PD brains in 1988 [80]. Subsequently, 
other studies confirmed the presence of reactive microglia in the 
substantia nigra of PD patients. Positron emission tomography 
studies also found widespread, activated microglia in different 
brain regions, such as the brainstem, basal ganglia, and frontal 
areas [81]. Furthermore, microgliosis in substantia nigra and 
striatum [23] has been observed in several PD mouse models. 
Reactive microglia in different brain regions accompanied by 
higher levels of pro-inflammatory cytokines, such as tumor 
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 
(IL-6), and interferon-gamma (IFN-γ), suggest the involvement 
of microglia in neuroinflammation during the development of 
PD [71]. Upon activation or microgliosis, microglia exhibit two 
diametric phenotypes, either the M1 pro-inflammatory pheno-
type or the M2 anti-inflammatory phenotype. Pro-inflamma-
tory M1 microglia can be induced by misfolded proteins and 
environmental toxins, and are characterized by the functions of 

phagocytosis, apoptotic cell debris removal, as well as produc-
tion of pro-inflammatory cytokines such as IL-1β, TNF-α, inter-
leukin-12 (IL-12), and interleukin-23 (IL-23) [82]. In contrast, 
immunosuppressive M2 microglia produce anti‐inflammatory 
cytokines, for example, interleukin-10 (IL-10), interleukin-4 
(IL-4), interleukin-13 (IL-13), and transforming growth factor-β 
(TGF-β), the roles of which are to suppress inflammation, 
restore homeostasis, and promote repair [23]. In fact, neuroin-
flammation is thought to be a “double-edged sword.” Activation 
of microglia is protective and helps to remove foreign patho-
gens and toxins. Inversely, chronic microgliosis can contribute 
to cytotoxicity and neuronal loss in PD [83]. In fact, long-term, 
over-activation of microglia accelerates cellular stress, affects 
memory, and impairs neuronal plasticity. And with the progres-
sion of PD, apoptotic neuronal cells release matrix metallopro-
teinase-3 (MMP-3), ATP, and α-synuclein, which in turn further 
activates microglia, resulting in PD neuron degeneration [84]. 
For example, ATP released by injured neurons and surrounding 
astrocytes binds to the P2Y receptor in microglia, and regulates 
the chemotaxis of microglia towards injury [85].

Activation of microglia by α‑synuclein

Multiple studies have shown that extracellular α-synuclein 
positively regulates microglia activation as well as inflam-
matory responses, and microglia are able to phagocytose 
α-synuclein for degradation [86]. During PD pathology, 
over-produced or misfolded α-synuclein is secreted in many 
regions of the brain by neurons which activates microglia, 
leading to pro-inflammatory responses with elevated levels 
of cytokines including IL-1β, IL-6, and TNF-α, the produc-
tion of free radicals, and contributions to neuron toxicity [87], 
which subsequently drives the PD progression. Research has 
also shown that microglia activation and cytokine (TNF-α and 
IL-1β) production rely on the fibrillar form of α-synuclein, 
compared with oligomeric and monomeric forms [88].

Several reports have suggested that some immune path-
ways in microglia are related to α-synuclein activation. 
For example, phosphate oxidase (PHOX), a reactive oxy-
gen species (ROS)–generating enzyme, can be activated 
in microglia by α-synuclein, which induces strong ROS 
production and contributes to elevated neurotoxicity [87]. 
Another example is Galectin-3, a member of the galectin 
lectin family, which plays an important role in inflammation 
regulation. Galectin-3 contributes to α-synuclein-induced 
activation of microglia, with downregulation causing sig-
nificant inhibition of microglia activation [89]. Additionally, 
α-synuclein evokes the nucleotide-binding oligomerization 
domain (NOD)–like receptor pyrin domain-containing pro-
tein 3 (NLRP3) inflammasome in microglia through dual 
stimulation [90], and further enhances IL-1β secretion.

However, studies reveal that different forms of α-synuclein 
cause various degrees of microglial phagocytosis and 
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microgliosis intensity [71]. For instance, A30P or A53T mutant 
α-synucleins trigger a stronger microglia immune response than 
wild-type α-synuclein as demonstrated by increased microglial 
secretion of TNF-α, IL-6, but compromises phagocytosis [87]. 
In particular, A53T mutant rapidly induces microgliosis through 
the recruitment of mitogen-activated protein kinase (MAPKs), 
NF-κB, activator protein 1 (AP-1) and subsequently the acti-
vation of nuclear factor erythroid 2–related factor 2 (Nrf2). In 
contrast, physiological monomeric α-synuclein boosts phago-
cytosis [91] and promotes anti-inflammatory microglial func-
tions through decreasing extracellular signal–regulated kinase 
(ERK) activation and increasing peroxisome proliferator-acti-
vated receptor γ (PPARγ) pathway activity.

Microglia as a phagocytic cell clearing α‑synuclein

Microglia phagocytose neuronal debris, pathogens, and 
unfolded proteins in the brain, which is crucial for neural 
development and homeostasis [92]. Phagocytosis is a receptor-
mediated process, during which receptors first recognize phago-
cytic targets, the target is then engulfed, and finally the particle-
enclosed phagosome is digested through fusion with lysosomes 
[93]. Indeed, several receptors have been proven to mediate 
microglial phagocytosis. For example, the toll-like receptors 
(TLRs), such as TLR4, are important in controlling α-synuclein 
uptake, and ablation of TLR4 promotes α-synuclein overex-
pression [94]. On the other hand, anti-TLR2 antibody has been 
shown to increase microglia phagocytosis in an Alzheimer’s 
disease (AD) model [95]. In addition, triggering receptors 
expressed on myeloid cells 2 (TREM-2) signals the phagocy-
tosis of both apoptotic neurons and other cell debris [71].

Previous studies have suggested that microglia is the main 
cell type clearing α-synuclein to mitigate the spread of the 
aggregates to neighboring cells [96]. A list of proteins has 
been suggested to be responsible for the microglia phagocy-
tosis of α-synuclein. In fact, microglia internalize extracel-
lular monomeric α-synuclein via the monosialotetrahexo-
sylganglioside (GM-1) receptor and other receptors [97], 
whereas internalization of aggregated α-synuclein involves 
the coated vesicle formation protein clathrin. However, the 
degradation of fibrillar α-synuclein is shown to be slower 
than α-synuclein engulfment, leading to the accumulation of 
aggregates within cells [98], and protein deposition.

Cascades initiated by α‑synuclein in microglia

α‑Synuclein/TLRs/NF‑κB/NLRP3 axis

The signaling cascade of microglia activation initiated 
by α-synuclein is complicated, involving TLRs, NF-κB, 
NLRP3, and possibly other cascades [99]. TLRs are one class 
of pattern-recognition receptors (PRRs) which recognize 

pathogen-associated molecular patterns (PAMPs) in addition 
to damage-associated molecule patterns (DAMPs) [100] like 
that of α-synuclein. Moreover, NLRP3 inflammasomes are 
a group of protein complexes that can induce neuroinflam-
mation and cell death [101]. Upon α-synuclein recognition 
by TLR2 or TLR4 in microglia, a phosphorylation cascade 
is initiated which leads to the translocation of NF-κB [102], 
and the activation of the NLRP3 inflammasome, which itself 
causes microglia activation.

Nrf2

Recent study suggests that Nrf2-directed antioxi-
dant response system plays an important role in PD in 
response to α-synuclein. Nrf2 is an antioxidant tran-
scription factor that plays an important role in cellular 
antioxidant response by regulating detoxification and 
antioxidant enzymes [103]. Accordingly, monomeric 
A53T α-synuclein–induced microgliosis is regulated by 
phosphorylation mechanisms where MAPKs, NF-κB, 
AP-1, and Nrf2 are engaged [104]. Additionally, in the 
Nrf2 impaired mouse model, microglia showed increased 
pro-inflammatory markers but failed to activate the two 
antioxidant enzymes, heme oxygenase-1 (HO-1) and 
nicotinamide adenine dinucleotide phosphate quinone 
oxidoreductase-1 (NQO1) [105].

Major histocompatibility complex class II (MHC class II)

MHC class II binds antigenic peptides that are processed 
in endosomes and present them on the cell surface for CD4 
T cell recognition [106]. In the brain, activated microglia 
can act as the main antigen presenting cells [107]. In this 
regard, α-synuclein triggers significantly increased expres-
sion of MHC class II in microglia, followed by enhanced 
antigen processing, and finally CD4 T cell proliferation 
[108]. Conversely, MHC class II knock-outs show reduced 
microglia activation in response to α-synuclein and neuro-
degeneration [108].

T cell contribution to PD

T cells were found in the substantia nigra of PD patients 
more than a decade ago [109], and have been shown to 
shape the pathogenesis of PD through their involvement 
in the adaptive immune responses in the gut and brain. In 
particular, different mediators can induce T cell-driven 
inflammation, such as α-synuclein, gut microbiota, dopa-
mine, and SCFA, and the inflammation eventually pro-
gresses to the brain.
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T cell recognition of α‑synuclein

Two antigenic regions in α‑synuclein

Recent studies have shown that T cells recognize epitopes 
derived from α-synuclein, suggesting the adaptive immune 
response plays a role in PD pathogenesis [110]. Specifi-
cally, two antigenic regions were identified in α-synuclein. 
The first is near the N-terminus and is known as the Y39 
region, which includes two epitopes, and the second is the 
S129 region, near the C-terminal and is composed of three 
epitopes. The T cell response to α-synuclein antigenic pep-
tides is largely mediated by IL-5 or IFNγ-secreting CD4 
T cells, as well as IFNγ-secreting CD8 cytotoxic T cells.

Approximately 40% of the PD patients in the cohort 
exhibited immune responses to α-synuclein epitopes, 
which may reflect variations in disease progression or 
environmental factors. T cells can be activated by the 
α-synuclein epitopes from both the extracellular native 
α-synuclein presenting in the normal blood, and the fibri-
lized α-synuclein associated with PD.

HLA alleles that present α‑synuclein peptides

Using an in vitro binding assay, HLA alleles that present 
α-synuclein have been identified, including HLA class 
II variants DRB1*15:01 and DRB5*01:01, which are in 
linkage disequilibrium. In general, PD patients showed a 
higher expression of HLA molecules, particularly HLA 
class II, in agreement with the findings that the HLA class 
II may enhance the PD susceptibility by inducing a more 
inflammatory environment [111]. Genome-wide associ-
ation studies also show the association of PD with the 
immune haplotype of HLA class II variants DRB1*15:01 
and DRB5*01:01 [112], which can bind the α-synuclein 
Y39 region with high affinity and the S129 region with low 
affinity. On the other hand, the HLA class I allele A*11:01, 
in mild linkage disequilibrium with the two HLA class II 
variants, can be bound by a shorter α-synuclein peptide in 
the Y39 region with high affinity. Thus, immune responses 
of PD patients to α-synuclein have both MHC class I and 
II components.

T cell reactivity to α‑synuclein is linked to preclinical 
and early motor PD

From a longitudinal case study, it has been shown that ele-
vated α-synuclein-specific T cell responses were detected 
prior to the diagnosis of motor PD and then waned [113]. 
During this study, the peripheral blood mononuclear 
cell samples of a single individual collected multiple 
times before and after the diagnosis of motor PD were 

analyzed. Surprisingly, a strong CD4 T cell reaction against 
α-synuclein epitopes was detected more than 10 years before 
the PD diagnosis, whereas in the samples after diagnosis, 
the T cell reactivity was significantly lower. In a further 
study, two additional PD patient cohorts were examined, 
and it was found that T cell responses to α-synuclein were 
strongest shortly after PD diagnosis and produced high 
level of cytokines (IFN-γ, IL-5, and IL-10), and the reac-
tivity declined afterwards. Overall, these studies suggest 
that α-synuclein-specific T cells in PD are most abundant 
immediately after diagnosis of motor PD.

The T cell receptor (TCR) repertoire of α‑synuclein‑specific 
T cells

To further characterize α-synuclein-specific TCR clonotypes, 
the TCR repertoire from PD patients were mapped and com-
pared. There were no defined, shared clonotypes among patients 
which indicated α-synuclein-specific TCR repertoire may be 
diverse and patient-specific [114]. Immunomodulatory inter-
ventions can be used to modify specific T cell responses; thus, 
future studies to match PD specific HLA alleles with antigen-
specific TCRs may provide novel immunotherapies and diag-
nostic tools for treating PD and tracking the disease progression.

Factors regulate T cell‑mediated immunity in PD

Gut microbiota

It has been shown that some particular components of gut 
microbiota can bypass TLRs and directly induce Th17 dif-
ferentiation through adhesion to intestinal epithelial cells 
[115]. Moreover, they can facilitate the generation of Tregs 
and thus mediate the balance between pro- and anti-inflam-
matory activities [116]. In another study, the researchers 
found that germ-free mice develop neuroinflammation and 
physical impairments when treated with microbiota from 
PD patients [117]. Interestingly, mouse models show that 
the administration of the bacterium, Proteus mirabilis, from 
PD mice can cause dopaminergic neuron damage, neuro-
inflammation, and α-synuclein aggregation [118], and the 
excessive α-synuclein can further cause T cell activation as 
stated in the previous section.

Dopamine

Dopamine is a neurotransmitter and neuromodulator that con-
trols brain functions including reward, hormone secretion, and 
movement regulation [119]. It triggers cell function through 
dopaminergic receptors (DRs), and gut microbiota is one of 
the major dopamine sources in the gut [120]. CD4 T cells have 
been shown to possess all five types of DRs: DR1–DR5, with 
different DR stimulation causing different T cell activation 
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and cytokine synthesis [121]. PD animal models show that 
DR3-deficiency in CD4 T cells protect mice from 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuro-
degeneration [122], while high levels of dopamine triggers the 
secretion of anti-inflammatory cytokine IL-10 in CD4 T cells 
through stimulating DR2 [123].

SCFA

SCFAs, including acetate, propionate, and butyrate, can reg-
ulate T cell activation through G-protein-coupled receptors 
(GPCRs) or histone deacetylase (HDAC) inhibition [124], 
allowing them to exert an anti-inflammatory effect in the 
gut. For example, SCFA can impair Th2 responses through 
GPR41, and therefore alter immune responses [125]. 
Another study shows that colonic Tregs can be mediated 
by SCFA through GPR43 and protect against colitis in mice 
[126].Regarding HDAC inhibition, evidence suggests that 
butyrate and propionate can lead to Foxp3 acetylation and 
further increased Treg differentiation [116]. More recently, 
some have hypothesized that the dysbiosis and SCFA alter-
nation in PD patients are related to intestinal inflammation. 
Indeed, deficiencies in SCFAs are found in PD fecal samples 
compared with healthy controls [127] which may lead to 
impaired Treg activities and PD pathogenesis.

T cell infiltration into the brain

T cells can migrate to the CNS through the BBB and induce 
immune responses in many autoimmune diseases and CNS 

infections. Certain chemokines are crucial for T cell brain 
infiltration. For instance, C-X-C motif chemokine receptor 
3 (CXCR3) plays an important role in T cell recruitment to 
the CNS by binding with C-X-C Motif Chemokine Ligand 
10 (CXCL10), CXCL9, and CXCL11 in experimental 
autoimmune encephalomyelitis (EAE) [128]. Apart from 
chemokines, integrins also have a key role in mediating T 
cell adhesion during T cell migration through the BBB. Spe-
cifically, α4β1-integrin on Th1 and Th17 cells binds with 
endothelial vascular cell adhesion molecule 1 (VCAM-1) 
for transmigration across the BBB [129]. Other groups have 
shown that αvβ3 and αLβ2 integrins may also be responsible 
for the migration [130].

There are increasing reports of T cell infiltration in neuro-
degenerative diseases such as PD andassociate this infiltra-
tion with dopaminergic neuron degeneration [131]. In fact, 
several studies have verified the connection between CD4 T 
cell infiltration and dopaminergic cell loss in mouse models. 
For example, mutant mice that lack T and B cells are both 
resistant to neuronal loss [132]. Neuroinflammation, as well 
as neurodegeneration, can be attenuated by the transfer of 
Tregs from copolymer-1-immunized mice, which suppresses 
reactive microglial responses [133]. Moreover, a recent 
study concluded that infiltrating CD8 T cells are increased 
in PD brain, and some of these cells contact dopaminergic 
neurons and cause neuronal death [134] (Fig. 3).

Cerebrospinal fluid (CSF) is contained in the brain ventri-
cles and spinal cord, and considered to be a fluid envelope that 
protects the central nervous system [135, 136]. CSF is predom-
inantly composed of T cells, which provide critical immune 

Fig. 3   Inflammatory factors 
that regulate T cell–mediated 
immunity in PD progression. 
Primarily originating from the 
gut, various mechanisms such 
as α-synuclein, gut microbiota, 
dopamine, and short-chain 
fatty acids (SCFAs) can result 
in the activation of T cells 
that can then bypass a leaky 
blood–brain barrier (BBB) and 
travel into the brain. Infiltrated 
T cells induce neuroinflamma-
tion through the secretion of 
pro-inflammatory cytokines and 
activation of microglia, leading 
to the pathogenesis of neurode-
generative diseases like PD
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surveillance of the central nervous system, and also contains 
other immune cells, such as B cells and myeloid cells [137]. 
Although elevated levels of T cells has been found in PD mouse 
models [109] and patient postmortem brain samples [138], the 
T cell composition and the exact role of these T cells are still 
being investigated. It has been shown that activated T cells 
were increased in the CSF of PD patients compared to healthy 
controls, along with the enhanced levels of pro-inflammatory 
cytokines including interleukin-2 (IL-2), IL-6, and TNF-α, 
demonstrating the involvement of adaptive immune response 
in PD development [135]. Furthermore, another study focus-
ing on TCRs in the CSF discovered clonal expansion of T cells 
in PD compared to controls, especially for CD8 T cells [139], 
similar to what was reported in the CSF of AD patients [140]. 
Thus, these results provide evidence for the importance of T 
cell surveillance in the CSF of PD patients, and highlight the 
need to further understand the interactions between the adaptive 
immune system and the central nervous system.

PD treatments

Treatment targeting inflammatory pathways

Drugs have been developed to target the inflammatory path-
ways mediated by activated immune cells. Previous results 
show that the anti-inflammatory drug dexamethasone pre-
vents glial cell activation and exerts a protective effect against 
dopaminergic degenerative processes [141]. Similarly, nalox-
one inhibits microglia activation and pro-inflammatory 
cytokine production to protect dopaminergic neurons as 
well as other neurons [142]. In addition, non-steroidal anti-
inflammatory drugs (NSAIDS) also have protective effects 
against neuronal damage. For example, aspirin prevents 
dopaminergic depletion and neuronal damage by inhibiting 
ROS production. Celecoxib inhibits microglial activation 
through the inhibition of cyclooxygenase (COX-2) in order 
to protect dopaminergic neurons from degeneration [143].

α‑Synuclein‑related treatments

Two important treatments related to α-synuclein either 
increase α-synuclein clearance or offer neuroprotec-
tion by α-synuclein vaccination. Monophosphoryl lipid 
A (MPLA), a TLR4-selective agonist, has been shown to 
induce increased α-synuclein uptake by microglia through 
TLR4, and thus can reduce α-synuclein aggregation as well 
as rescue dopaminergic neurons [144], thereby increas-
ing α-synuclein clearance. As for α-synuclein vaccination, 
α-synuclein/glucose-related protein 94 (Grp94) combination 
vaccination has the ability to reshape the disease immune 
environment by suppressing microglial activation and neu-
roinflammation in a PD mouse model [145].

Conclusions

Parkinson’s disease is the second most common neurode-
generative disease characterized by the progressive loss of 
dopamine neurons in the substantia nigra along with the 
aggregation of intraneuronal Lewy bodies and neurites, lead-
ing to motor and non-motor symptoms. α-Synuclein plays an 
important role in initiation and progression of PD, and may 
also be involved in the gut-brain route model. Both innate 
and adaptive immune responses are triggered during the PD 
pathogenesis, with the hallmarks being microglia and T cell 
activation. Finally, new treatments of PD are continually 
being developed and the most well-known therapies can treat 
motor or non-motor symptoms, as well as target key inflam-
matory pathways and modulate α-synuclein.
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