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Non‑backtracking walks reveal 
compartments in sparse chromatin 
interaction networks
K. Polovnikov1,2*, A. Gorsky5,6, S. Nechaev3,4, S. V. Razin7,8 & S. V. Ulianov7,8

Chromatin communities stabilized by protein machinery play essential role in gene regulation and 
refine global polymeric folding of the chromatin fiber. However, treatment of these communities 
in the framework of the classical network theory (stochastic block model, SBM) does not take into 
account intrinsic linear connectivity of the chromatin loci. Here we propose the polymer block model, 
paving the way for community detection in polymer networks. On the basis of this new model 
we modify the non-backtracking flow operator and suggest the first protocol for annotation of 
compartmental domains in sparse single cell Hi-C matrices. In particular, we prove that our approach 
corresponds to the maximum entropy principle. The benchmark analyses demonstrates that the 
spectrum of the polymer non-backtracking operator resolves the true compartmental structure up 
to the theoretical detectability threshold, while all commonly used operators fail above it. We test 
various operators on real data and conclude that the sizes of the non-backtracking single cell domains 
are most close to the sizes of compartments from the population data. Moreover, the found domains 
clearly segregate in the gene density and correlate with the population compartmental mask, 
corroborating biological significance of our annotation of the chromatin compartmental domains in 
single cells Hi-C matrices.

Many real-world stochastic networks split into self-organized communities. Social networks feature circles of 
friends1–3, colleagues2, members of a karate club1, communities of dolphins4 etc. Cellular networks demonstrate 
modular organization, which optimizes crucial biological processes and relationships, such as synchronization of 
neurons in the connectome5, 6, efficiency of metabolic pathways7, 8], genes specialization9 or interaction between 
enhancers and promoters10.

Interest to polymer modular networks has appeared recently in the context of genome spatial folding. Prox-
imity of chromatin loci in space is believed to be deeply connected with gene regulation and function. Hi-C 
experiments11–13 provide the genome-wide colocalization data of chromatin loci. As the main outcome of the 
experiment, large genome-wide matrices of contacts from each individual cell or from the population are pro-
duced. Analyses of these matrices has revealed that the eukaryotic genome is organized in various and biologically 
relevant communities, whose main function is to insulate some regions of DNA and to provide easy access to the 
others. In particular, the data collected from a population of cells suggest that transcribed (“active”) chromatin 
segregates from the, “inactive” one, forming two compartments in the bulk of the nucleus12, 14. Within compart-
ments chromatin is organized further as a set of topologically-associated domains (TADs)15–17 that regulate 
chromatin folding at finer scales. However, interpretation and validation of communities in individual cells 
remains vaguely defined due to sparsity of respective data.

The broad field of applications of stochastic modular networks has initiated the boost development of com-
munity detection methods. Spectral algorithms exploit the spectrum of various operators (adjacency, Laplacian, 
modularity) defined on a network to identify the number of communities and to infer the optimal network 
partition18–22. Typically, leading eigenvectors of these operators positively correlate with the true community 
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structure or with the underlying core-periphery organization of the network23. These algorithms, along with the 
majority of theoretical results in the field, are derived for the stochastic block model (SBM)18, 22 as an extension 
of Erdös-Rényi graphs24 to graphs with explicitly defined communities. One of the strongest limitations of the 
SBM is that edges between vertices belonging to the same cluster inevitably attain equal weights. At the same 
time, biological networks typically have several levels of organization within their communities25. In particular, 
identification of several hierarchical levels in the network becomes tremendously important in the case of poly-
mer networks, where different pairs of loci have marginally different probabilities to form a contact in space26, 
caused by the frozen linear connectivity along the chain.

Even for simplest polymer systems the contact probability demonstrates a power-law behavior with the 
dimensional-dependent scaling exponent characterizing universal long-ranged behavior of polymer folding27. 
In this work we propose the “polymer stochastic block model” which reflects a specific global polymer network 
organization with explicit structuring into communities. The main new ingredient of the model under considera-
tion is the average contact probability P(s = |i − j|) between the pairs of loci (i, j) which is constant for standard 
non-polymeric networks, however cannot be neglected for polymers.

Chromatin single cell networks are not only polymeric, but also sparse13, 28. It is known that upon reduction 
of the total number of edges in the network, there is a fundamental resolution limit for all community detection 
methods22, 29. Furthermore, traditional operators (adjacency, Laplacian, modularity) fail far above this resolu-
tion limit, i.e. their leading eigenvectors become uncorrelated with the true community structure above the 
threshold30. That is explained by emergence of tree-like subgraphs (hubs) overlapping with true clusters in the 
isolated part of the spectrum for these operators. The edge of the spectral density of sparse networks is universal 
and demonstrates the so-called “Lifshitz tail”31–34. Localization on hubs, but not on true communities is a draw-
back of all conventional spectral methods in the sparse regime.

To prevent the effect of localization on hubs and to make spectral methods useful in sparse regime, Krzakala 
et al. proposed to deal with non-backtracking random walks on a directed graph that cannot revisit the same 
node on the subsequent step30. The crucial property of non-backtracking walks35 is that they do not concentrate 
on hubs. It has been shown that the non-backtracking operator is able to resolve the community structure in 
sparse stochastic block model up to the theoretical resolution limit. Typically, the majority of eigenvalues of the 
non-backtracking operator (which is a non-symmetric matrix with complex eigenvalues) are located inside a 
disc in a complex plane, and a number of isolated eigenvalues lie on the real axis.

For the sake of community detection in sparse polymer networks we construct the polymer-type non-back-
tracking walks, appropriate for community detection in graphs with hidden linear memory (“polymeric back-
ground”). We establish the connection between this operator and the generalized polymer modularity, thus, 
bridging a gap with the maximum entropy principle. We test the performance of different spectral methods (with 
and without polymer background) on sparse artificial benchmarks of polymer networks that mimic compart-
mentalization in single cell Hi-C graphs. We show that polymer non-backtracking walks resolve the structure 
of communities up to the detectability threshold, while all other operators fail above it. In order to demonstrate 
efficiency of the method on real data, we partition a set of single cell Hi-C contact maps of mouse oocytes into 
active (A) and inactive (B) compartments by different operators. Found domains are shown to have similar sizes 
to the compartmental domains and correlate with the compartmental mask from the population-averaged data. 
Analyses of the GC content within the domains demonstrates enrichment and depression of the genes density 
in the two clusters, thus, corroborating their biological significance.

The structure of the paper is as follows. In Section “Stochastic block model with polymer contact probability” 
we propose the polymer stochastic block model, derive the entropy and the corresponding generalized modu-
larity functional. In Section “Polymer non-backtracking flow operator” we discuss polymer non-backtracking 
walks, prove their robustness on the benchmarks emulating compartments, and, finally, test them on the real 
single cell data. In Section “Conclusion” we draw the conclusions.

Stochastic block model with polymer contact probability
Definition of the model.  Characterize a N-bead polymer chain by coordinates {x1, x2, . . . , xN } of mono-
mers i = 1, 2, . . . ,N and construct a corresponding topological graph G = (V ,E) with the adjacency matrix 
Aij (accounting for the bead’s proximity in space). Such graphs are typically constructed upon processing of 
chromatin single cell Hi-C data and in computer simulations of DNA folding11, 12. A graph G does not contain 
pairwise spatial distances of the polymer configuration, however, provides information on spatial proximity of 
monomers (or groups of monomers), which is usually of major biological relevance. For the 1-bin resolution of 
G the polymer beads (bins) are the nodes V. The edge between a pair of nodes (i, j) is defined by the condition 
(i, j) ∈ E iff |xi − xj| < ε , where the threshold ε is some cutoff radius with which the contacts between the two 
loci are registered in Hi-C. Due to finite excluded volume of chromatin, the theoretical number of contacts per 
monomer that can be registered in single cell experiments is of order of few units, while the total size of the poly-
mer chain, measured in number of beads, is huge ( N ∼ 105 in the 1-kb resolution for human chromosomes). 
Thus, the single cell contact matrices are essentially sparse13, 28. Summation over realizations of adjacency matri-
ces Aij obtained from different cells results in a “population-averaged” matrix Aij . By construction, entries of 
the weight matrix Aij are proportional to the probability that the spatial distance between monomers (i, j) is less 
than ε.

Already for the simplest configurations, such as a conformation of ideal polymer chain isomorphic to the 
random walk, the matrix Aij is not expected to be uniform. This is due to a polymeric power-law behaviour of 
a contact probability,

(1)P(s) ∼ s−α , for s = |i − j|
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By definition, P(s) is probability to find two beads of a linear chain, separated by a chemical distance s, close to 
each other in space. The critical exponent, α , is an important parameter, which characterizes the “memory” about 
the embedding of a polymer loop of length s in a D-dimensional space27. Such a memory can arise due to some 
equilibrium topological state of chromatin, or could be a result of partial relaxation of mitotic chromosomes36. 
Notable examples of α , typically appearing in the chromatin context for chain embedding in a three-dimensional 
space, are α = 3/2 for ideal chain and α ≈ 1 for the crumpled globule12, 37–39.

Communities of folded chromatin refine the background (polymeric) contact probability at small scales and 
are biologically significant. We treat communities as canonical stochastic blocks18, 22 superimposed over the back-
ground. Stochastic block model is a network model in which N nodes of a network are split into q different groups 
Gi , i = 1, 2, . . . , q and the edges between each pair of nodes are distributed independently with a probability, 
depending on the group labels (“colors”) of respective nodes. In a matrix of pairwise group probabilities � = {ωrt} 
with (r, t) = 1, 2, . . . , q , any randomly chosen pair of nodes (i, j) (where i ∈ Gr , j ∈ Gt ) is linked by an edge with 
probability ωrt . The corresponding entry in the adjacency matrix Aij is 1 with probability ωrt and 0 otherwise. 
The sum of many such “single-cell” Bernoulli matrices generates an analogue of the “population-averaged” Hi-C 
matrix Aij with Poisson distributed number of contacts with the mean �Aij� = ωrt where i ∈ Gr , j ∈ Gt . To the 
first approximation, the communities can be considered identical (known as a “planted” version of the model)

Having (1) and (2), the simplest assumption one can come up with is that formation of compartments in chro-
matin is independent of the global memory of folding. Indeed, phenomenon of compartments is likely related 
to preferential interactions of nodes of the same epigenetic type (e.g., “active” or “inactive”) and is modelled as 
a phase separation of block-copolymers40. This allows to suggest the factorization of (1) and (2), so that the final 
probability for the edge (i, j) reads

To emulate A and B compartments in a single cell Hi-C network, we consider a simple adjacency benchmark 
of a polymer with two communities. Namely, we represent the chain as a sequence of alternating segments of A 
and B type (painted in red and blue), whose lengths are Poisson-distributed with the mean length � . An example 
of the resulting adjacency matrix is depicted in Fig. 1a. Note that due to decay of the contact probability, the 
“checkerboard” compartmentalization pattern is hardly seen in single cells Hi-C data28. Since segments of the 
same type are surrounded in space by segments of the other type, they form local “blob-like” clusters along the 
main diagonal of the adjacency matrix reminiscent to topologically-associated domains15. However, they are likely 
formed by a different mechanism and have an order of magnitude larger size than TADs40. Such a multi-domain 
blob structure in Fig. 1a is a manifestation of the polymeric nature of the network and it cannot be reproduced 
with communities of general memory-less networks, i.e. in the framework of the canonical stochastic block 
model with two clusters—see Fig. 1b for comparison.

(2)�rt =
{

win, r = t
wout , r �= t

(3)Probij = P(|i − j|)
{

ωin, r = t
ωout , r �= t

, i ∈ Gr , j ∈ Gt

Figure 1.   Adjacency matrices of N = 1000 with two clusters generated according to the (a) polymer 
stochastic block model ( win = 1,wout = 0.1,P(s) = s

−1, � = 100 ) and (b) canonical stochastic block model 
( win = 0.1,wout = 0.01, � = 500 ). Vertices in the graph are enumerated by the polymer coordinate (a) and first 
all red, then all blue ones (b).
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Statistical inference of polymer SBM and generalized modularity functional.  Suppose that a 
population-averaged matrix A is observed. By definition, each entry Aij of this matrix counts the amount of 
reads between the bins i and j coming from a population of single cells. Thus, after proper normalization, Aij is 
a Poisson variable with the mean dictated by (3), �Aij� = Pij ωgigj , and ωgigj = �ij are the pairwise group prob-
abilities (at the moment we do not require all the groups to be identical). Neglecting correlations between the 
matrix entries, the statistical weight of A conditioned on the cluster probability matrix � , background contact 
probability P and group labels of the nodes {gi} , can be factorized into the product of the Poisson probabilities 
for the entries Aij

where the product runs over all pairs of nodes in the network. Since there are no self-edges in the network, all the 
diagonal elements of the matrix Aij are zeros and we do not include them into the product (4). The corresponding 
partitioning entropy of the polymer SBM is

where we have omitted the constant terms − logAij! and Aij log Pij , independent of the partitioning. For identi-
cal communities (see (2)), we get

Taking (6) into the account and omitting again all irrelevant constant terms, we arrive at the final expression 
for the entropy (5)

where T =
(

logwin − logwout

)−1 is the effective temperature and

is a parameter describing the cluster probabilities inherited from the initial definition of stochastic blocks.
The entropic functional (7), up to normalization coefficients and constant terms, is the generalized modular-

ity functional. For Pij = didj/
∑

i di , where d is the vector of degrees, (7) reduces to the modularity proposed 
by Newman3, 41 for the sake of spectral community detection in scale-free networks. Recently it has been shown 
that the same functional can be used to partition a network with the core-periphery organization23. The operator 
of the generalized modularity reads

The second term in (9) can be understood as an expectation number of contacts between nodes (i, j) in the pop-
ulation-averaged data, or as a probability of the link in the single cell graph. Indeed, in absence of the stochastic 
blocks, this value equals Pij by definition. The factor γ responds for the clustering structure superimposed over 
the background. In the limit of “weak” communities, when win = wout → 1 , the partitioning yields γ → 1 , which 
corresponds to the pure background. To determine the optimal value of γ , one can run a recursive procedure, 
which consists of iterative maximization of the generalized modularity and renormalization of γ according to 
(8). We realize this approach in our numerical analyses below.

Polymer non‑backtracking flow operator
Non‑backtracking walks on a directed polymer network.  Search for the global maximum to the 
modularity functional is a very hard computational problem. One of most promising approaches which avoids a 
brute force, is to suggest that if the community structure is significantly strong, there is an operator whose eigen-
vectors encode the network partitioning in these communities3, 22. However, as it was first noted by Krzakala 
et al.30, for sparse networks leading eigenvectors become uncorrelated with true community structure well above 
the theoretical threshold. As a result, all conventional operators such as adjacency, Laplacian and modularity fail 
to find communities in rather sparse networks.

To overcome this difficulty, it was proposed to exploit the spectrum of the Hashimoto matrix B , which 
is a transfer matrix of non-backtracking walks on a graph35. It is defined on the edges of the directed graph, 
i → j, k → l , as follows

It is seen from (10) that the non-backtracking operator prohibits returns to the point which a walker has vis-
ited at the previous step. Since matrix B is non-symmetric, its spectrum is complex. For Poissonian graphs the 
spectral density of B is constrained within a circle of radius 

√
�d� in the complex plain and exhibits no “Lifshits 

(4)Z(A| �, P, {gi}) =
∏

i<j

(

Pij ωgigj

)Aij

Aij!
exp

(

−Pij ωgigj

)

(5)logZ(A| �, P, {gi}) =
∑

i<j

(

Aij logωgigj − Pij ωgigj

)

(6)
{

ωgigj = wout + δgigj (win − wout)

logωgigj = logwout + δgigj
(

logwin − logwout

)

(7)T logZ(A| �, P, {gi}) =
∑

i<j

(

Aij − γPij
)

δgigj

(8)γ =
win − wout

logwin − logwout

(9)Q = A− γP

(10)Bi→j,k→l = δil(1− δjk)
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tail” singularities near the spectral edge, in contrast to other conventional operators30, 31. Real eigenvalues of B 
lying out of the circle become relevant to the community structure even in sparse networks. Associating the 
corresponding eigenvectors with the network partitioning permits to detect communities all the way down to 
the theoretical limit. In19 M. Newman suggested a normalized operator, that conserves the probability flow at 
each step of the walker.

For the sake of community detection in sparse polymer graphs, we propose a conceptually similar operator 
that describes the evolution of the non-backtracking probability flow on a graph with intrinsic linear memory

In “Appendix” we establish the connection between the non-backtracking operator and the generalized modu-
larity, derived in the previous Section from the statistical inference of the polymer SBM. Thus, partitioning of a 
polymer network into two communities according to the leading eigenvector of the polymer non-backtracking 
flow operator (11) responds to the maximum entropy principle.

An example of the non-backtracking walk on a polymer graph is illustrated in the Fig. 2a. Note that despite 
immediate revisiting of nodes is forbidden, the walker is allowed to make loops. The second term in (11) plays a 
role of neutralization towards the contact probability, arising from the linear organization of the network. This 
compensation provides a measure for the non-backtracking operator to tell apart the true communities from the 
fluctuations, evoked by the polymeric scaling. Trivially, the proposed non-backtracking operator is converged to 
the Newman’s flow operator, when the background is non-polymeric, but rather corresponds to the configuration 
model with fixed degrees Pij = didj/2m

19. For a pure polymeric graph without contamination by communities, 
the spectrum of (11) lies inside a circle of radius r =

√

�d(d − 1)−1� . As sufficiently resolved communities are 
formed in the network, isolated eigenvalues pop up at the real axis.

In Fig. 2b we depict the non-backtracking spectrum of a polymer SBM, corresponding to the fractal globule 
polymer network with P(s) = s−1 of the size N = 1000 with two compartments, organized as contiguous alternat-
ing segments with the mean length � = 100 . For the parameters win , wout used, the two compartments are well 
resolved that is provided by the isolated eigenvalue separated from the circle. Since the leading eigenvector u(1) 
of the polymer non-backtracking flow, in contrast to the adjacency or modularity, is defined on directed edges 
of the network, one needs to evaluate the Potts spin variables gi = ±1 in order to classify the nodes. From the 
correspondence between the modularity and polymer flow operator one sees that contribution to the i-th node 
gi comes from the flow along all the directed edges pointing to i. Thus, in order to switch from edges to nodes, 
one needs to evaluate the sign of the sum vi =

∑

j Aiju
(1)
j→i and to assign the node i accordingly, gi = sign(vi).

Spectral clustering of the polymer stochastic block model.  In this section we investigate spec-
tral properties of the polymer non-backtracking flow and compare performance of various linear operators in 
partition the polymer SBM. The two compartments with � = 100 are superimposed over the fractal globule, 
P(s) = s−1 , with total size of the network, N = 1000 . We fix the weight of internal edges at win = 1 and change 
the resolution of compartments by tuning the weight of external edges, wout = 0.1− 0.8 . Efficiency of splitting 
is assessed by the fraction of correctly classified nodes.

In Fig. 3a we compare the performance of adjacency, normalized Laplacian, M. Newman’s non-backtracking 
flow operator, polymer modularity and polymer non-backtracking flow matrices. For the latter two, the optimal 

(11)Ri→j,k→l =
δil
(

1− δjk
)

di − 1
− γ

(

djdl
)−1

Pjl

Figure 2.   (a) Depiction of the polymer SBM network: the backbone (bold), contacts between genomically 
distant monomers (dashed) and two chemical sorts of the monomers (red and blue), arranged into contiguous 
alternating segments. An example of the non-backtracking walk on such graph is shown by arrows. Immediate 
returns are forbidden, preventing localization on hubs; (b) Spectrum of the polymer non-backtracking flow (11) 
for the fractal globular ( P(s) = s

−1 ) large-scale organization of the chain with two overlaid compartments with 
the mean length � = 100.
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value (8) of the parameter γ was chosen. It is evident that the polymer flow operator surpasses all conventional 
operators without the background, as well as the polymer modularity everywhere below wout ≈ 0.5 . Qualitatively 
similar behaviour was demonstrated by the traditional non-backtracking operator without the background, when 
it was compared to other operators in30. Therefore, our analyses (i) underscores the importance of taking into 
account the contact probability (polymer background) when dealing with polymer graphs, and (ii) recapitulates 
efficiency of non-backtracking walks in resolving communities in sparse networks.

It is worth noting that the abrupt fall in performance of the polymer flow operator coincides with the leveling 
of its amount of isolated eigenvalues at zero, see Fig. 3d. Values around wout ≈ 0.5 define the detectability transi-
tion, above which the leading eigenvector becomes uncorrelated with the true nodes assignment. To understand 
whether it corresponds to the theoretical detectability limit, we translate wout into the average amount of inner, 
cin = Nwin/2 , and outer, cout = Nwout/2 , edges and plot them as functions of wout . As it is shown in Fig. 3c, the 
polymer flow operator drops close to the theoretical detectability transition for regular stochastic block models42 
(i.e. each node has exactly cin random links with other nodes in its community and exactly cout randomly pointed 
links to nodes from the other community)

For the stochastic block model the number of isolated eigenvalues of B exceeds the number of communities 
by one30. However, in case of the polymer operator R the number of isolated eigenvalues can be much larger 
and “apparent” clusters might be formed “locally” at the main diagonal due to the frozen linear connectivity, see 
Fig. 1a. This is evident from the Fig. 3d, which shows that the number of isolated eigenvalues for the polymer 
flow operator can be of order of the amount of the segments ( N/� ), if wout is sufficiently low. Indeed, for the 
fractal globule probability of the edge between two distant segments of the same type is s times smaller than 
probability of the link for two close monomers ( s = |k −m| is the genomic distance between segments k and 
m). Due to the overall small number of contacts in the network, the polymer non-backtracking flow ends up 
rationalizing them as separate clusters.

The value of γ cannot be chosen arbitrary since it characterizes optimal parameters of stochastic blocks. Thus, 
one may propose the following iterative approach: 

(12)cin − cout > 2
√
cin + cout

Figure 3.   (a) Comparison of performance of different classical operators without background, polymer 
modularity and polymer non-backtracking flow operators ( N = 1000,P(s) = s

−1,win = 1, � = 100 ); (b) The 
iterative approach that can be used to determine the optimal value of γ for five values of wout ; the true optimal 
values of γ calculated from (8) are shown by dash; (c) The mean numbers of inner cin and outer cout edges are 
calculated for each value of wout in order to estimate the detectability threshold for the corresponding regular 
network. (d) Amount of isolated eigenvalues of the polymer flow operator plotted against wout . Full spectra of 
the polymer flow operator for the two values of wout are shown in the insets.
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1.	 begin with the initial value γ0 = 1 , for which we obtain the network partition;
2.	 use the amount of inner and outer edges for estimating win , wout;
3.	 recalculate γ1 according to (8);
4.	 repeat the procedure iteratively until γ converges to γopt.

Results of this procedure are demonstrated in the Fig. 3b for five different values of wout . It is seen that just several 
steps of iteration is sufficient to obtain a reasonable convergence towards the theoretical values provided by (8). 
A drawback of this iterative procedure is that at each step one needs to evaluate the spectrum of the operator 
2m× 2m , which could become a hard computational task for large and dense networks. As a reasonable approxi-
mation to the optimal value of γ for the polymer flow operator, one can evaluate γopt similarly for the polymer 
modularity, which is smaller in size and symmetric.

Polymer non‑backtracking flow resolves compartments in a single cell Hi‑C network.  To check 
robustness of the polymer non-backtracking flow operator on real Hi-C data we run it on a set of individual 
oocyte cells of mouse28. From the public repository we have taken the single cells Hi-C data on cis-contacts of 20 
chromosomes from 13 single cells (260 adjacency matrices, in total). While single cells matrices with sufficiently 
large number of contacts are not sparse and can be split into compartments using conventional methods largely 
used for the bulk data (e.g., the leading eigenvectors of observed/expected transformation of a population-aver-
aged Hi-C map,12), here we take the cells with low to moderate amount of contacts for the sake of comparative 
analyses of clustering performance of different spectral methods on sparse polymer graphs.

Before proceeding with the analyses of compartments in single cells, the raw data must be preliminary 
processed. In order to extract compartmentalization signal from the maps, we have coarse-grained them to the 
resolution 200 kb. At this resolution all finer genome folding structuring (like topologically-associated domains) 
is encoded within the coarse-grained blobs and does not communicate with two large-scale A and B compart-
ments. We note, that, in principle, the method is applicable at higher resolution as well. However, there are two 
important considerations. The non-backtracking operator is defined on the edges, therefore, the leading eigenvec-
tors need to be computed for much larger matrix than in case of traditional operators, which are defined on the 
nodes (e.g., modularity). This means that the computation time of the method is very sensitive to the resolution. 
Furthermore, one needs to be very careful with the overall network density: it decreases by several times upon 
decreasing of the bin size, so that one can occasionally cross the detectability limit (12). In each particular case 
the resolution for the annotation should be chosen with respect to the sparsity of the experimental single cell 
contact maps. According to this logic, we have decided to use the resolution 200 kb for the data of Flyamer et al.

Most of the contacts in the cells have degeneracy 1 at the chosen resolution, however, several pairs of bins 
have more than 1 contact. To preserve this feature of enhanced connectivity, we consider the counts of contacts 
between the pairs as weights of the corresponding edges. Furthermore, the single-cell maps are noisy and some 
of really existing contacts get lost due to technical shortcomings of the experimental protocol. As long as the 
neighboring blobs in the chromatin chain are connected with probability 1, all lost contacts Ai,i+1 need be added 
to the adjacency matrix manually; we assign the weight 1 to such edges. We also cleans the coarse-grained data 
from the self-edges, assigning Aii = 0.

To determine the background model for our analyses we calculate the contact probability 
P(s) = 1

N−s

∑N−s
i=1 Ai,i+s for each individual single cell and for the merged cell (summing single cells matrices), 

see Fig. 4a. Resulting dependence turns out to be fairly close to the fractal globule contact probability, P(s) ∼ s−α 
with α ≈ 1 at scales from ≈ 1-2Mb to the end of the chromosome. A shoulder at lower scales around 1 Mb reflects 
enhancement of the contact probability due to the compartmentalization. Importantly, the fractal globule scaling 
at the megabase scale is universal across different species and cell types; it is evident in the population-averaged 
contact matrices in mouse oocytes28, human lymphoblastoid cells12 and Drosophila cells43. As it was shown in 
previous Section, in order to extract compartmentalization profile overlaying a specific long-ranged folding, it 
is crucial to incorporate the respective background contact probability into the polymer model of the stochastic 
blocks.

Having the background model determined, we construct the polymer non-backtracking flow operator with 
the variable parameter γ and run the iterative clustering procedure to derive the optimal value γ0 . Similarly to the 
analyses on the benchmarks, see Fig. 3b, a swift convergence to the optimal value is observed here. The spectrum 
of the polymer flow operator for the cell 29749, chromosome 3 at γ0 ≈ 0.9 is shown in the inset of the Fig. 4b. 
Nineteen isolated eigenvalues on the real axis are separated from the bulk spectrum. As we have shown in the 
previous Section, this is a quite typical scenario for sparse polymer stochastic block models. In the sparse limit of 
the polymer SBM, the number of isolated eigenvalues could be much larger than the number of compartments.

The partition of the single cells in two compartments has been performed in the leading eigenvector approxi-
mation of the different operators. The boundaries of active and inactive domains are determined according to the 
sign of the respective compartmental signal (see Fig. 4b and Supplementary Fig. S1 online). It is known that the 
gene density is higher in the actively transcribed A compartment, thus, the fraction of GC letters in bins of active 
compartmental domains needs to be larger than in inactive domains. To validate that the clusters found in single 
cells respond to the transcriptional domains and are biologically significant, we calculate the GC content profiles 
around the centers of all A and B domains separately and then take the average of these profiles in each group. 
The types of the domains were phased in accordance with the leading eigenvector of the bulk data (population 
Hi-C on embryonic stem cells was used44; the eigenvector was computed on the observed-over-expected map). 
We also plot analogous profiles for the leading eigenvector of the bulk data. In absence of direct annotation 
methods for single cells due to their sparsity, these two measures have been of use to approximate positions of 
the compartmental domains in single cell Hi-C data28.
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As expected, the GC content for the population-averaged map and the bulk E1 vector both have pronounced 
peaks at the center of A domains and symmetrical dips at the center of B domains with the z-score amplitude 
equal to 0.4 (GC) and 0.7 (E1), correspondingly. Single cells profiles demonstrate notably lower amplitudes (see 
Fig. 4c,d and Supplementary Figs. S2, S3 online). However, only the polymer non-backtracking flow yields the 
annotation with the similar shape and span. Both profiles (for A and for B) of the polymer non-backtracking 
flow fall symmetrically to zero at the same genomic distance, around 4− 5 bins from the centers of domains, 
which also strikingly coincides with the span of the bulk profiles. This is also compliment to the similarity of 
the characteristic sizes of compartmental domains determined by the non-backtracking flow operator ( �l� ≈ 
2.2 Mb) and domains from the bulk data ( �l� ≈ 1.7 Mb). To test the effect of different α , we additionally run the 
polymer non-backtracking for α = 3/2 , which is the scaling exponent of the contact probability for the ideal 
chain packing. Comparison of the two values of the parameter is demonstrated in Supplementary Fig. S4 online: 
the profiles with α = 3/2 show significantly worse correlation with both GC content and the E1 bulk vector. 
This is consistent with the slope α ≈ 1 of P(s) for the set of single cells, Fig. 4a, underscoring the importance of 
neutralization on the appropriate average polymeric scaling before the clustering.

Note that the partitions of the polymeric operators (non-backtracking, modularity) are visibly much more 
adequate to apparent clustering of contacts in a particular cell (Supplementary Fig. S1 online). Despite the 
similarity in compartmental signals from the polymer modularity and from the polymer non-backtracking 
flow, the sizes of modularity domains are almost twice larger ( �l� ≈ 4.1 Mb) and show negative z-scores of GC 
content both for the active and inactive compartments. The profile of the E1 vector plotted for the polymer 
modularity has a similar bell shape, however, it levels at ≈ −0.07 and stays negative throughout the whole range 
of the compartmental interval. This is a consequence of sparsity, which results in a limited performance of all 
traditional spectral methods.

Conclusion
In this paper we have developed theoretical grounds for spectral community detection in sparse polymer net-
works. On the basis of suggested polymeric extension of the stochastic block model, we have proposed the 
polymer non-backtracking flow operator and have proven that its leading eigenvector performs partitioning of 
a polymeric network into two clusters according the maximum entropy principle. The established connection 
with the modularity functional provides a computationally efficient tool for the network partitioning and search 
for the optimal resolution parameter of the partition in polymer networks, which, however, is inferior to the 
non-backtracking in efficiency for sparse networks.

The proposed theoretical framework is verified by extensive numerical simulations of polymer benchmarks, 
constructed in order to emulate compartmentalization in sparse chromatin networks. Comparative analyses of 
different operators on the benchmark has suggested that the polymer flow detects the communities up to the 
theoretical detectability limit, while all other operators fail above it. At the same time, the amount of isolated 
eigenvalues of the polymer flow operator can be larger than amount of true communities present in the network, 
due to frozen linear connectivity that forces the chain to form “blobs” along the chain contour. This result dis-
tinguishes the polymer system with thespect the canonical stochastic block model, where the number of isolated 
eigenvalues of the non-backtracking exactly matches the number of communities.

Analyses of the single cell Hi-C data of mouse oocytes suggests that the non-backtracking walks efficiently 
split experimental sparse networks into biologically significant communities, characterized by enrichment and 

Figure 4.   (a The average contact probability P(s) of single cells (gray) and of the merged cell (solid, black) 
computed for logarithmically spaced bins with the logfactor 1.4; the fractal globule scaling P(s) ∼ s

−1 is also 
shown by dashed line for comparison. (b) Annotation of active (red) and inactive (blue) compartmental 
domains for one of the contact maps (cell 29749, chromosome 3, length N = 492 , 200kb resolution) by the 
polymer non-backtracking flow operator. Below the map the compartmental signal from the corresponding 
leading eigenvector of the polymer non-backtracking flow matrix is shown. Inset: the full spectrum of the 
polymer flow for the same contact map. (c,d) Averaged profiles of the GC content (z-scores) plotted around the 
centers of the compartmental domains (active—red, inactive—blue) for the population of cells and for a pool of 
single cells.
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depression of the genes density. The sizes of the compartmental domains are fairly close to the sizes of the 
population-averaged domains. Comparison with characteristics of the domains, inferred by other operators, 
underscores superiority of the non-backtracking walks in partitioning sparse polymer networks.

In this study we have exploited for the polymer network analysis only the simplest spectral characteristics. 
More involved ones, e.g. spectral correlators and the level spacing distribution, carry additional information 
about the propagation of excitations in network. The spectral statistics and non-ergodicity have been discussed 
in clustered networks in45, 46. In the context of the gene interactions the spectral statistics has been discussed 
in47 for the matrices with the real spectrum. The non-backtracking matrices enjoy complex spectrum hence the 
special means are required to analyze the level spacing in this case. The corresponding tool has been invented 
recently48, 49, therefore, the spectral statistics of the polymer non-backtracking flow operator certainly deserves 
a separate study.

Appendix
Methods.  Quadratic form of the polymer non‑backtracking operator.  Let us consider a quadratic form in-
volving the operator over the Potts spin variables gi , i = 1, 2, . . . ,N and introduce the 2m-dimensional (2m is 
the number of edges in the network) vector u, such as ui→j = gj . Then,

It can be shown that (13) coincides with the quadratic form of the generalized modularity. Let us consider the 
terms separately. The quadratic form of the first, non-backtracking term, yields

where the sum over k enumerates the edges of the node i except of the edge (i, j) and, thus, equals di − 1 . Expand-
ing the quadratic form of the second term similarly, we get

Collecting (14) and (15) together one arrives at

which is the quadratic form of the generalized modularity functional, proportional to the entropy of the polymer 
SBM.
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