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Abstract

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of

protective antibody responses. This is underscored by the emergence and spread of SARS-

CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be

less effectively targeted by current monoclonal antibodies and vaccines. Here we report a

high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike

receptor binding domain (RBD), which is the target of most neutralizing antibodies, using

computational structural analysis. With a dataset of nonredundant experimentally deter-

mined antibody-RBD structures, we classified antibodies by RBD residue binding determi-

nants using unsupervised clustering. We also identified the energetic and conservation

features of epitope residues and assessed the capacity of viral variant mutations to disrupt

antibody recognition, revealing sets of antibodies predicted to effectively target recently

described viral variants. This detailed structure-based reference of antibody RBD recogni-

tion signatures can inform therapeutic and vaccine design strategies.

Author summary

The ongoing COVID-19 pandemic, and the emergence of SARS-CoV-2 variants that

evade antibodies induced by vaccines and natural infection, highlights the need for assess-

ment of key molecular and structural features of immune responses against the SARS-

CoV-2 virus. Using a large nonredundant set of structures of monoclonal antibodies in

complex with the SARS-CoV-2 spike receptor binding domain, we performed analysis of

molecular determinants of antibody recognition of the spike glycoprotein, mapping key

residues through analysis of atomic contacts and computational modeling to identify

molecular hotspots. Clustering was used to identify four major groups of antibodies based
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on target residues, and we compared epitope conservation and impact of SARS-CoV-2

variant mutations, showing that certain sets of antibodies predicted to be affected by those

variants, while others are capable of targeting escape variants. This analysis can serve as a

useful reference for vaccine and immunotherapeutic studies, and we provide updated clas-

sifications of antibodies to the research community on our CoV3D site.

Introduction

Over the past year, the SARS-CoV-2 pandemic has resulted in a massive and growing global

death toll and disease burden. A number of vaccines [1], monoclonal antibodies [2], and small

molecule therapies [3] that target SARS-CoV-2 have been developed. However, viral variants

have raised the possibility of viral escape from, or reduced efficacy of, current vaccines and

therapeutics [4–9].

Several recent studies have used in vitro experimental approaches to test human sera [8,10]

and sets of monoclonal antibodies [5,8,11,12] to profile SARS-CoV-2 antibody resistance. The

rapidly expanding set of experimentally determined structures of antibodies targeting the

spike glycoprotein provides the opportunity to use computational biology tools to map key fea-

tures of antibody-spike recognition. At the same time, the impact of viral variability can be

predicted, which can provide insights into effective targeting and neutralization of SARS-

CoV-2 and enable selection and engineering of anti-spike therapeutics and vaccines.

Here we report detailed structural analysis of a large set of high resolution antibody-spike

complexes that have been collected in our database, CoV3D [13]. Structure-based mapping of

antibody footprints on the receptor binding domain (RBD) and unsupervised clustering led to

the identification of four major antibody groups based on their recognition signatures. These

antibody-spike complexes were assessed for key energetic features using computational ala-

nine mutagenesis of all RBD interface residues to identify shared and distinct binding hotspots

on the RBD. The structure-based antibody clusters were also assessed both for residue conser-

vation with SARS-CoV-1, and predicted effects of individual RBD substitutions from circulat-

ing SARS-CoV-2 variants, showing substantial differences between groups of RBD-targeting

antibodies. These structural features and clusters can serve as a reference for rational vaccine

design and therapeutic efforts, and updated antibody cluster information is available to the

community on the CoV3D site: https://cov3d.ibbr.umd.edu/antibody_classification.

Results

Clustering of antibody-RBD interaction modes

To identify common recognition modes and key features of antibody recognition of the spike

glycoprotein, we analyzed a set of high resolution structures of antibody-spike complexes from

the CoV3D database [13], which were originally obtained from the Protein Data Bank [14].

We focused on the SARS-CoV-2 RBD, which is the primary target of neutralizing antibodies

[15] and is the target of the vast majority of structurally characterized SARS-CoV-2 antibodies.

Structures were filtered by resolution (< 4.0 Å) and nonredundancy, resulting in 70 antibody-

RBD complex structures, representing different antibody formats (heavy-light antibody, nano-

body) and a range of IGHV genes (S1 Table). As noted in S1 Table, all structures were

obtained by X-ray diffraction or cryogenic electron microscopy (cryo-EM), and while the

cryo-EM structures had significantly lower resolutions (p< 0.001), as expected, antibody-

RBD interface size and number of inter-molecular atomic contacts were also somewhat lower
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for cryo-EM structures, albeit with less significance (S1 Fig). The complex structures in this set

include multiple therapeutic monoclonal antibodies that have been under clinical investiga-

tion: REGN10933 and REGN10987 (casirivimab/imdevimab; REGN-COV2) [16], LY-CoV555

(bamlanivimab) [17], and S309 which is the basis for VIR-7831 (GSK4182136; sotrovimab)

[18].

To assess prevalent or shared binding modes in antibody-RBD recognition, pairwise root-

mean-square-distances (RMSDs) between antibody heavy chain and nanobody chain orienta-

tions were calculated after superposition of RBD coordinates into a common reference frame,

and the RMSDs were input to hierarchical clustering analysis (Fig 1). This analysis identified a

set of 17 complexes with a common binding mode and shared heavy chain germline genes

(IGHV3-53, IGHV3-66), a feature that has been noted in previous studies describing SARS-

CoV-2 antibody-RBD complex structures [19,20]. Other sets of co-clustered antibodies within

the 8 Å RMSD cutoff were limited to antibody pairs, with the exception of a set of five antibod-

ies, of which three (2–15, Ab2-4, C121) share the IGHV1-2 heavy chain germline gene, sugges-

tive of another germline-mediated binding mode. However, other antibodies possessing the

IGHV1-2 germline gene exhibited distinct binding modes based on the clustering analysis

(298, S2E12), indicating that the heavy chain CDR3 sequence and light chain are relevant fac-

tors for that orientation. An example of co-clustered antibodies based on this analysis is shown

in Fig 1B, showing a shared RBD binding mode (heavy chain orientation RMSD: 2.2 Å) for

neutralizing antibodies S304 [21] and EY6A [22], and additional examples of co-clustered

pairs are shown in S2 Fig.

High resolution antibody footprinting and clustering analysis

To further delineate features underlying antibody-RBD recognition, we analyzed detailed anti-

body footprints on the RBD with unsupervised clustering, using the number of atomic con-

tacts by an antibody to each RBD residue as input. Individual antibody footprints and

resultant clusters are shown in Fig 2 (a more detailed heatmap including more RBD residues is

Fig 1. Hierarchical clustering of SARS-CoV-2 RBD antibody binding modes. (A) Pairwise root mean square distances (RMSDs) between heavy chain or

nanobody binding orientations were determined for 70 antibody-RBD complex structures and used to perform hierarchical clustering. Boxes denote clusters

containing multiple antibodies at distance cutoff of 8 Å (shown as dashed horizontal black line), and dashed magenta square denotes co-clustered structures

shown in panel (B). (B) Example of co-clustered antibodies S304 (PDB code 7JX3) [21] and EY6A (PDB code 6ZCZ) [22] with a shared RBD binding mode

(2.2 Å heavy chain orientation RMSD). Structures are superposed by RBD (gray), and S304 and EY6A heavy and light chains are colored separately as

indicated.

https://doi.org/10.1371/journal.pcbi.1009380.g001
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given in S3 Fig) along with calculated and previously reported properties of the antibodies for

reference, including interface buried surface area (BSA), neutralization (SARS-CoV-2 neutrali-

zation or SARS-CoV-1/SARS-CoV-2 cross-neutralization), ACE2 blocking, and capability to

bind the RBD in the context of the closed (or down) spike conformation. This separated the

antibodies into four main clusters; these are similar but not identical to previously described

SARS-CoV-2 antibody classifications [23], which are shown as the “BBclass” colored sidebar

Fig 2. High resolution mapping and clustering of SARS-CoV-2 RBD antibody binding. RBD residue contact profiles were generated for each antibody based on

number of antibody atomic contacts for each RBD residue within a 5 Å distance cutoff. RBD residues and antibodies are ordered using hierarchical clustering analysis,

with dendrograms shown on top and left. The antibodies are separated into four major clusters based on contact profiles, and cluster numbers (1–4) are indicated on left.

Contacts in heatmap are colored by number of RBD residue antibody atomic contacts, as indicated in the key. For reference, antibody type (Antibody: heavy-chain

antibody, Nanobody: single-chain antibody), binding to RBD-closed spike conformation (Closed spike), ability to block ACE2 binding (ACE2 block), SARS-CoV-2

neutralization or SARS-CoV-2/SARS-CoV-1 cross-neutralization (“Y” and “Cross”, respectively, under Neutralization), and interface buried surface area (BSA, Å2) are

shown on the left sidebars. Closed spike binding and ACE2 blocking were calculated based on the structures, as described in the Methods. The top bar above the heatmap

indicates RBD residues contacted by ACE2 (5 Å distance cutoff) in an ACE2-RBD complex structure (PDB code 6LZG) [52]. For clarity, 100 RBD residues are shown in

heatmap; a heatmap with the full set of 139 contacted RBD residues which was used to cluster the antibodies in this figure is shown in S2 Fig. RBD residues that are

mutated in SARS-CoV-2 variants of concern (K417, L452, E484, N501) are labeled at bottom and highlighted with gray boxes in heatmap.

https://doi.org/10.1371/journal.pcbi.1009380.g002
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in S3 Fig. Inspection of the heatmap indicates that Clusters 1 and 4 are most distinct, which is

supported by high bootstrap confidence levels (100% and 99% respectively, S4 Fig), while

Clusters 2 and 3 are more diverse, and have bootstrap confidence levels of 87% and 83% (S4

Fig). Due to the moderately lower bootstrap confidence, it is possible that some antibodies

from Clusters 2 and 3, particularly those proximal to the inter-cluster boundaries and includ-

ing some cryo-EM structures that have poorer resolutions (S1 Fig), could have potential ambi-

guity in Cluster 2 versus Cluster 3 assignments. Visualization of the distribution of the

antibody positions on the RBD surface (Fig 3) shows that Clusters 1 and 2 are spatially proxi-

mal and overlap with the ACE2 binding site, and the relatively constrained positions of Cluster

1 antibodies are reflective of our RMSD-based analysis (Fig 1) and known conserved binding

mode of that set. Cluster 3 extends to the RBD hinge and N-glycan at RBD position N343,

while Cluster 4 occupies a distinct region of the RBD. Principal component analysis using the

antibody atom contact data as input enabled visualization of the antibody distributions along

the first two principal components, which collectively represent approximately 50% of the data

(S5 Fig), and generally supports the hierarchical clustering.

The contact-based clusters in Fig 2 highlight several notable features within and between

sets of RBD-targeting antibodies. Cluster 1 antibodies all neutralize SARS-CoV-2, block ACE2

binding, can only bind the spike in its open conformation, and have relatively high RBD inter-

face buried surface area (BSA). Cluster 2 contains antibodies that can bind the closed spike,

some of which can engage multiple RBDs in that context, and all are predicted or confirmed to

block ACE2 binding. Cluster 3 is dominated by antibodies that can bind the closed spike, and

most Cluster 3 antibodies are predicted to block ACE2 binding through steric hindrance and/

or binding site overlap. In Cluster 4, which is mapped closer to the N- and C-termini and the

hinge that connects the RBD to the spike (Fig 3), multiple antibodies are confirmed to be

cross-neutralizing between SARS-CoV-2 and SARS-CoV-1 [21,24,25], and no antibodies are

predicted to recognize spike in the RBD-closed conformation. The mapped antibody foot-

prints show varying degrees of overlap with ACE2 binding site residues (gray bars at top of Fig

2) among the clusters. Residues highlighted in Fig 2 that are associated with viral variants of

concern (E484, L452, K417, N501) show that Cluster 2 is primarily associated with E484

engagement, Cluster 1 is associated with engagement of K417 and N501, while residue L452,

which is mutated in the Delta variant, contacts many of the antibodies in Clusters 2 and 3.

Antibodies in Cluster 4 exhibit few or no contacts with those residues, suggesting that they are

less susceptible to binding disruption and viral resistance due to variability at those sites.

Binding energetic features and hotspots

To provide a more detailed and comprehensive view of key residues and energetic features

underlying antibody-RBD recognition, all interface structures were analyzed for hydrogen

bonds with RBD residues (Fig 4) and energetically important RBD residues based on compu-

tational alanine scanning (Fig 5). Hydrogen bonding patterns in RBD-targeting antibodies

(Fig 4) showed clear preferences for hydrogen bond RBD residue interactions among Cluster

1 antibodies, with frequently observed interactions with residues R403, K417, D420, Y421,

N487, and Y505. Many Cluster 2 antibodies exhibit hydrogen bond interactions with residue

E484 and/or Q493, whereas antibodies from Clusters 3 and 4 have limited shared RBD resi-

dues involved in hydrogen bond interactions.

To map key RBD sites and energetic hotspots in the set of antibody-RBD interfaces, we per-

formed computational alanine scanning (Fig 5) using a mutagenesis protocol in Rosetta [26].

The protocol used for this analysis was selected based on predictive performance from bench-

marking of nine computational methods using approximately 350 experimentally determined

PLOS COMPUTATIONAL BIOLOGY Profiling SARS-CoV-2 antibody recognition and impact of variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009380 September 7, 2021 5 / 23

https://doi.org/10.1371/journal.pcbi.1009380


alanine mutant ΔΔG values for antibody-antigen interfaces (S2 Table). While many energeti-

cally important residues identified by this analysis are reflective of the key residues identified

by hydrogen bond analysis, including residues N487 and E484 (Cluster 1) and E484 (Cluster

2), numerous hydrophobic RBD residues were additionally identified as important for binding

Fig 3. Distribution of antibody clusters on the receptor binding domain. (A) Each antibody is represented as a sphere at the

paratope center (centroid of all non-hydrogen atoms within 5 Å of the RBD), and colored by contact-based antibody cluster (1: blue, 2:

green, 3: red, 4: magenta). A representative RBD structure (from PDB code 7KN5) is shown in gray, and the N-glycan at residue N343

from that structure is shown as orange sticks. (B) RBD structure with antibody clusters and superposed ACE2 receptor (tan cartoon;

PDB code 6LZG [52]). (C) RBD antibody clusters shown in the context of the spike glycoprotein (light blue cartoon; PDB code 6VYB

[68]) with the RBD in an open state. (D) Representative antibodies from each cluster, labeled by antibody name and colored by cluster,

superposed onto the RBD.

https://doi.org/10.1371/journal.pcbi.1009380.g003
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Fig 4. RBD hydrogen bond contacts of SARS-CoV-2 antibodies. Hydrogen bonds to RBD residue side chains were calculated for all antibody-RBD

complexes using the hbplus program [51]. Each hydrogen bond contact is colored by number of hydrogen bond interactions, as indicated on the key, and

RBD positions are ordered by hierarchical clustering based on hydrogen bond profile similarities, with corresponding dendrogram shown at top. Antibodies

(rows) are ordered and clustered as in Fig 2, based on the RBD contact profile similarities, and RBD hydrogen bond contacts with ACE2 (PDB code 6LZG)

are shown in the top bar. RBD residues that are mutated in SARS-CoV-2 variants of concern (K417, E484, N501) are labeled at bottom and highlighted with

gray boxes in heatmap.

https://doi.org/10.1371/journal.pcbi.1009380.g004
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Fig 5. Computational mapping of SARS-CoV-2 RBD hotspot residues. Computational alanine scanning of RBD residues in antibody-RBD interfaces was

performed using Rosetta [26], to generate binding energy change (ΔΔG) values for alanine substitutions at each RBD position based on modeling of residue

substitutions and scoring using an energy-based function. ΔΔG values are in Rosetta Energy Units (REU) which are comparable to energies in kcal/mol.

Alanine residues in the native complex were mutated to glycine for ΔΔG calculations, and glycine RBD residues were omitted from the analysis. In order to
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within antibody clusters. These residues include Y505 (Cluster 1), F486 and Y489 (Clusters 1

and 2), and Y449 and F490 (Clusters 2 and 3). As with the analysis of RBD residue contacts,

analysis of hydrogen bonds and computational alanine scanning support the overall impor-

tance of N417 and Y501 for Cluster 1 antibodies, and E484 for Cluster 2 antibodies. While resi-

due L452 is present in Fig 2, it is not present in Fig 5 as the hydrophobic leucine residue does

not form antibody hydrogen bonds.

Epitope conservation and targeting of escape variants

To assess the degree to which antibodies of different classes can target sites that are conserved

among sarbecoviruses, we calculated the fraction of RBD epitope residues conserved between

SARS-CoV-2 and SARS-CoV-1 for each antibody-RBD interface (Fig 6). Antibodies in Clus-

ters 1–3 exhibit limited conservation (approximately 50% or lower conserved antibody contact

residues), with the exception of S309, which shows over 80% epitope residue conservation; this

result is in accordance with the observed cross-neutralizing capability for that antibody [27].

In contrast with the other antibody clusters, antibodies in Cluster 4, which includes three con-

firmed cross-neutralizing antibodies (Fig 2), exhibit markedly higher epitope conservation,

highlight substantial predicted binding energy changes, only ΔΔGs with absolute values> 0.5 REU are represented. RBD residues are ordered by hierarchical

clustering based on ΔΔG profile similarities, with corresponding dendrogram shown at top. Antibodies (rows) are ordered and clustered as in Fig 2, based on

the RBD contact profile similarities. For reference, ΔΔGs for ACE2 binding based on the ACE2-RBD complex structure (PDB code 6LZG) are shown in the

top bar. RBD residues that are mutated in SARS-CoV-2 variants of concern (K417, L452, E484, N501) are labeled at bottom and highlighted with gray boxes

in heatmap.

https://doi.org/10.1371/journal.pcbi.1009380.g005

Fig 6. Epitope residue conservation in SARS-CoV-1 by antibody cluster. (A) Epitope conservation, defined as the fraction of RBD epitope

residues (< 5 Å distance to antibody) conserved between SARS-COV-1 and SARS-COV-2, was calculated for 70 antibody-RBD complex structures,

and conservation values are shown as a boxplot grouped by antibody clusters, with all conservation values shown as points. The outlier point for

Cluster 3 (S304 antibody) is labeled, and the total numbers of points are 17 (Cluster 1), 32 (Cluster 2), 9 (Cluster 3), and 12 (Cluster 4). (B)

Conserved RBD residues are highlighted on the RBD structure, with conserved RBD residues shown as orange and non-conserved residues gray,

and represented as in Fig 3A with antibody cluster paratopes as spheres.

https://doi.org/10.1371/journal.pcbi.1009380.g006
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with all values 78% or higher. This suggests that the highly conserved site targeted by Cluster 4

antibodies, which is inaccessible in the closed spike conformation, is potentially important in

conferring immunity across sarbecoviruses.

To directly assess the effects of RBD mutations present in recently described SARS-CoV-2

variants of concern, we performed computational mutagenesis to gauge whether antibody

binding affinities are predicted to be disrupted by individual RBD substitutions, as well as

effects on ACE2 binding. For initial simulations, we utilized the same protocol that was used

for computational alanine scanning; we found this method to have similar predictive perfor-

mance for point residue substitutions to all residue types in comparison with performance for

alanine-only substitutions (Pearson Correlation Coefficient (PCC) with experimental ΔΔGs of

0.5 for all residues, versus 0.53 for alanine-only; S2 Table). RBD substitutions K417N, K417T,

L452R, S477N, T478K, E484K, E484Q, and N501Y were modeled in all interfaces and assessed

for antibody and ACE2 ΔΔGs; these substitutions are collectively represented in variants of

concern Alpha (B.1.1.7; N501Y), Beta (B.1.351; K417N, E484K, N501Y), Gamma (P.1; K417T,

E484K, N501Y), and Delta (B.1.617.2; L452R, T478K), and variant of interest Kappa

(B.1.617.1; L452R, E484Q). Comparison of predicted ΔΔGs (Fig 7) indicates that K417N,

K417T, and to a lesser extent N501Y, are predicted to predominantly affect antibodies in Clus-

ter 1, whereas disruptive effects of E484K and E484Q are primarily observed for antibody

Cluster 2. Cluster 3 antibodies with predicted ΔΔG values of over 1 Rosetta Energy Unit (REU)

were observed for E484 substitutions, but were very limited (two antibodies for E484K, one

antibody for E484Q). In contrast, antibodies in Cluster 3 and 4 exhibit little overall predicted

effects from the variant RBD point substitutions considered here, and other variants substitu-

tions did not show marked predicted effects on antibody binding. The binding affinity for

ACE2 was predicted to decrease for substitutions K417N and K417T, and increase for N501Y,

while remaining the same for other substitutions. This is in accordance with recently reported

ACE2-RBD binding measurements, where N501Y led to a 2-fold improvement in ACE2 bind-

ing, K417N led to a 7-fold loss in ACE2 binding, and E484K maintained ACE2 binding

(< 2-fold affinity change) [28]. We also tested predicted binding effects using a different

modeling tool (FoldX), which uses a distinct modeling and scoring protocol from Rosetta, and

found similar trends among antibody classes for the effects of the variants (S6 Fig). However,

there are some differences between FoldX and Rosetta ΔΔG predictions, such as the L452R

RBD variant, for which FoldX predicted more antibody binding disruptions than Rosetta.

To more directly assess the effects of SARS-CoV-2 variants on antibody binding, we calcu-

lated ΔΔGs for combinations of RBD substitutions found in variants of concern Beta, Gamma,

and Delta (Fig 8). Binding effects for Alpha, which is equivalent to N501Y in Fig 7 as it con-

tains the same RBD substitution, are also shown in Fig 8 for reference. Based on comparison

of ΔΔG predictions with recently published experimentally measured neutralization results for

variants and monoclonal antibodies overlapping with the set in this study (S3 and S4 Tables),

FoldX was included along with Rosetta in Fig 8, as the former showed a modest improvement

in sensitivity over the Rosetta ΔΔG protocol, detecting one more antibody-variant pair with

loss of neutralization in each of S3 and S4 Tables. Overall, the comparison of measured neu-

tralization changes and predicted ΔΔG values shows that the structure-based affinity predic-

tions can in most cases reflect neutralization effects. Predicted ΔΔGs for the antibody clusters

from Rosetta (Fig 8A) indicated that the Alpha, Beta, and Gamma variants are disruptive for

Cluster 1 antibodies, and Beta and Gamma variants are disruptive for Cluster 2 antibodies;

those results are generally in agreement with FoldX (Fig 8B). However, in contrast with

Rosetta which predicted minor effects from the Delta variant on antibody recognition, FoldX

predicted that the Delta variant would markedly disrupt antibody binding in Clusters 2 and 3.

Given its modestly higher performance in the comparison with experimentally determined
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variant neutralization effects (S3 and S4 Tables), the predictions of disruption from the FoldX

protocol seem more likely to reflect the antibody binding effects for that variant.

Discussion

Utilizing a curated set of experimentally determined antibody-RBD complex structures, we

have performed detailed mapping of antibody recognition determinants on the SARS-CoV-2

RBD, which were used to identify antibody clusters that exhibit distinct structural and ener-

getic signatures. Notably, these clusters exhibited different destabilizing effects for RBD substi-

tutions found in circulating variants, expanding upon previous observations by others on the

effects of specific substitutions such as E484K for specific groups of antibodies [23,28,29]. We

found that Cluster 2 antibodies, which overlap with Class 2 antibodies reported by Barnes et al.

[23], are susceptible to resistance from SARS-CoV-2 variants with the E484K substitution,

which include Beta (B.1.351) and Gamma (P.1), whereas other antibodies are not likely to be

Fig 7. Profiling antibody and receptor binding effects of RBD point substitutions from circulating SARS-CoV-2 variants. Computational mutagenesis in Rosetta

[26] was used to predict binding affinity effects (ΔΔGs) of RBD variant substitutions K417N, K417T, L452R, S477N, T478K, E484K, E484Q, and N501Y for 70

antibodies that target the RBD, as well as the ACE2 receptor. ΔΔG values are shown as boxplots grouped by antibody clusters, with all antibody ΔΔG values shown as

points, and the ACE2 ΔΔG value represented as a horizontal bar in each boxplot. ΔΔG values are in Rosetta Energy Units (REU), which are comparable to energies in

kcal/mol.

https://doi.org/10.1371/journal.pcbi.1009380.g007
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affected by that substitution. In contrast, substitutions at residues K417 and N501, which are

found in several variants of concern, were primarily associated with binding disruption for

Cluster 1 antibodies based on our computational mutagenesis. Given that the E484K substitu-

tion appears specifically associated with viral escape, as noted by others [30] and supported by

recent studies of monoclonal and polyclonal antibody neutralization of variant viruses and

specific mutants [7,8], our work highlights the relative importance of Cluster 2 antibodies in

the neutralizing response against SARS-CoV-2 due to natural infection or immunization.

Our analysis highlights the ability of computational structure-based protocols to rapidly

predict and profile resistance for new and emerging SARS-CoV-2 variants. This is exemplified

by our results for the Delta variant, which was designated a variant of concern (VOC) in May

2021 and is responsible for a recent global rise in COVID-19 cases. We found that the Delta

variant is predicted to be resistant to antibodies in Clusters 2 and 3, and this is likely driven by

the L452R RBD substitution. This resistance is corroborated by recent reports of monoclonal

Fig 8. Profiling antibody and receptor RBD binding effects for circulating SARS-CoV-2 variants. Computational mutagenesis was used to predict binding affinity

effects (ΔΔGs) of SARS-CoV-2 variants of concern Alpha (B.1.1.7; RBD substitution N501Y), Beta (B.1.351; RBD substitutions K417N, E484K, N501Y), Gamma (P.1;

RBD substitutions K417T, E484K, N501Y), and Delta (B.1.617.2; RBD substitutions L452R, T478K), using (A) Rosetta and (B) FoldX. ΔΔG values are shown as boxplots

grouped by antibody clusters or ACE2 receptor, with all antibody ΔΔG values shown as points, and the ACE2 ΔΔG value represented as a horizontal bar in each boxplot.

Both Rosetta and FoldX ΔΔG values are commensurate with energies in kcal/mol.

https://doi.org/10.1371/journal.pcbi.1009380.g008
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antibody resistance [31] and lower neutralization in vaccinated individuals [32] for the Delta

variant, which can lead to breakthrough infections in some cases [33]. Based on our predic-

tions for the effects of K417N (Figs 7 and S6), the “Delta plus” variant which includes that

mutation would likely exhibit resistance to additional antibodies, including antibodies in Clus-

ter 1, albeit with possibly reduced ACE2 binding.

This study is distinguished from other recently described structure-based [23] and binding

competition-based [21,34] reports to compare and classify antibodies that target SARS-CoV-2,

as we directly assessed detailed antibody binding signatures, generated using atomic contact

counts to RBD residues, and used unsupervised clustering with these features to generate the

resultant classes. Furthermore, we generated an energetic map of RBD antigenicity based on

comprehensive computational alanine scanning mutagenesis. To provide an updated reference

to the community, we report these clusters on our CoV3D site of coronavirus protein struc-

tures [13] (https://cov3d.ibbr.umd.edu/antibody_classification), which includes the 70 com-

plexes reported in this study as well as newly reported complexes. We also provide a prototype

interface on the CoV3D site for the community to input new experimentally determined struc-

tures or models of antibody-RBD or protein-RBD complexes to characterize binding foot-

prints and assign contact-based clusters.

Certain elements of our analysis of antibody binding determinants can be expanded in

future studies. The calculation of antibody contacts and energetic determinants on the RBD

did not include non-protein atoms, such as water molecules and N-glycans, and in some cases,

certain residues were disordered in the experimentally determined structures. Water mole-

cules, which could mediate hydrogen bonds between antibody and RBD, were not included

here, to avoid bias due to varying experimental structural resolutions which in many cases

could not resolve water molecules, necessitating modeling of explicit water molecules which

would lead to additional uncertainties in subsequent calculations [35]. Likewise, the N-glycans

of the RBD, specifically the glycan at residue N343, has varying occupancies in experimentally

determined structures. Though this glycan is contacted by the S309 antibody [27], such glycan

contacts appear to be rare in antibody-RBD complex structures, at least for structurally charac-

terized neutralizing antibodies, of which most compete with ACE2 binding and thus target

sites that are not proximal to that N-glycan. Modeling of missing N-glycans, water molecules,

and any missing residues may still provide possible insights into recognition features, as well

as simulations of interface molecular dynamics, or docking simulations of separated antibody

and RBD molecules to assess binding energy funnels [36]. Predictive computational docking

and template-based modeling can also be used to generate antibody-RBD complex models for

antibodies with sequences available but no known structure, enabled in part by databases con-

taining sequences of RBD-targeting antibodies [37]. An additional avenue for expansion

would be the analysis of antibodies that target other regions of the spike glycoprotein, includ-

ing the N-terminal domain (NTD), which have been described in recent structural and anti-

genic mapping studies [38,39]. We currently represent this set as the “NTD” antibody class on

the CoV3D site, and may perform a more detailed energetic and footprinting analysis of this

set in the future.

In addition to providing a view of the detailed landscape of antibody-RBD recognition

determinants and key sites, our results indicate that certain sets of antibodies are less suscepti-

ble to resistance from variants and have higher average epitope sequence conservation with

SARS-CoV-1. Furthermore, several of the antibodies in Cluster 4 have been experimentally

confirmed cross-neutralize SARS-CoV-1 and SARS-CoV-2. Recently reported broadly reactive

RBD-binding antibodies that recognize human and zoonotic SARS-like coronaviruses (sarbe-

coviruses) [40–42] can provide additional structural data to map these key conserved regions

and epitopes. Prospective structure-based antigen design studies could potentially focus the
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antibody response to the corresponding epitopes of the SARS-CoV-2 RBD, versus the epitopes

collectively targeted by antibodies in Clusters 1 and 2. As binding of Cluster 4 antibodies is

prevented in the context of the closed-RBD spike conformation, open spike antigen designs or

RBD-only antigens would likely facilitate elicitation of these antibodies. Several recent studies

have reported success using RBDs displayed on self-assembling nanoparticles [43–45], and

structure-guided RBD optimization in the context of such a platform could lead to improved

elicitation of antibodies associated with a cross-sarbecovirus response. Such antigen design

efforts could result in an effective vaccine that provides protection against SARS-CoV-2 vari-

ants as well as future emerging coronaviruses.

Materials and methods

Structure assembly and curation

Structures of antibody-RBD complexes were downloaded from the CoV3D database [13],

which identifies antibody-RBD structures in the Protein Data Bank [14] on a weekly basis

through sequence similarity to coronavirus reference protein sequences in conjunction with

identification and annotation of antibody chains. The set of antibody-RBD structures (down-

loaded in February 2021) was filtered for antibody nonredundancy based on antibody name

and sequence identity, as well as resolution (< 4.0 Å). In cases of an antibody present in multi-

ple antibody-RBD complex structures, the structure with highest resolution was selected for

analysis. For consistency among antibody-RBD complex structures, and to facilitate calcula-

tions, antibodies were truncated to include variable domains, and full spike glycoproteins were

truncated to include only RBD residues (residues 333–527) of the sole or primary target of the

antibody. To provide uniform input structures for atomic contact and other calculations, non-

amino acid HETATMs were removed prior to structural analysis, and to resolve double occu-

pancies and add missing side chain atoms, structures were pre-processed by the “score” appli-

cation in Rosetta version 3.12 [46]. Two complexes with missing side chain atoms in the

experimental PDB coordinates were processed using the FastRelax protocol in Rosetta [47], to

perform constrained local minimization and to resolve unfavorable energies due to clashes

from rebuilt side chains (antibodies DH1047, C104; PDB codes 7LD1, 7K8U). Parameter flags

used in FastRelax (“relax” executable in Rosetta 3.12) are:
-relax:constrain_relax_to_start_coords
-relax:coord_constrain_sidechains
-relax:ramp_constraints false
-ex1
-ex2aro
-no_optH false
-flip_HNQ
-renumber_pdb F
-nstruct 1

The set of pre-processed structures, aligned to a common RBD reference frame, is available

through the CoV3D site [13], at: https://cov3d.ibbr.umd.edu/download (“Nonredundant

RBD-antibody complex structures” link).

Information regarding neutralization of SARS-CoV-2 and SARS-CoV-1 was obtained from

the CoV-AbDab site [37], as well as from the literature for certain antibodies, where noted in

S1 Table.

Computational structural analysis

RMSD values between antibody heavy chain or nanobody orientations were determined by

superposition of RBDs from two complexes using least-squares fitting of backbone atoms,
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followed by superposition of one antibody variable domain onto another using least squares

fitting of framework residue backbone atoms, and calculation of backbone RMSD between

superposed and non-superposed variable domain. RBD residues used for superposition (pres-

ent in all structures in this set) are 338–356, 375–382, 397–442, 448–454, 462–467, 490–501,

and 503–514. Antibody variable domain framework residues used for superposition and

RMSD calculations are 3–7, 21–24, 41–46, 52–57, 78–82, 89–93, 102–108, and 141–144, based

on the AHo numbering system [48]. Interface contacts are defined as inter-atomic distance

between non-hydrogen atoms of less than 5 Å, and antibody-RBD residue contact maps were

generated based on the total number of antibody atom contacts with each RBD residue. Hier-

archical clustering of antibody RMSDs was performed in R version 4.0.3 (www.r-project.org)

with the distance matrix of RMSDs as input, and Ward’s minimum variance method (“ward.

D2” method in hclust). Hierarchical clustering of antibodies and RBD positions based on con-

tact data was performed in R, using Manhattan distance to compute differences in contact pro-

files between antibodies or RBD positions, and Ward’s minimum variance method for

clustering. Hierarchical clustering of RBD positions based on hydrogen bond or calculated

ΔΔG values, for the respective heatmap figures, was likewise performed in R, using Manhattan

distances and Ward’s clustering algorithm. RBD residue dimension reduction for representa-

tion in main heatmap (Fig 2) was performed by selecting exemplar residues from 100 hierar-

chical clusters, which removed residues with highly similar contact profiles (based on

Manhattan distance) with respect to those shown in the heatmap. The pvclust method [49], as

implemented in R, was used to calculate bootstrap confidence of contact-based hierarchical

clusters of antibodies, using 20,000 bootstrap replicates. Principal component analysis of anti-

body-RBD contact profile data was performed with the scikit-learn Python module.

Buried surface areas (BSAs) were calculated using the naccess program (v. 2.1.1) [50], sub-

tracting the solvent accessible surface area of the antibody-RBD complex structure from the

total solvent accessible surface area of the separate antibody and RBD structures, dividing by

two to avoid double-counting interface area and to make BSA values commensurate with

those from other tools including PISA (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html).

Antibody-RBD interface hydrogen bonds were calculated using the hbplus program (v. 3.15)

[51], with default parameters.

An X-ray structure of the ACE2-RBD complex (PDB code 6LZG) [52] was used to calculate

ACE2-RBD residue contacts, hydrogen bonds, ΔΔGs, as well as antibody blocking of ACE2

binding to the RBD. For calculations of ACE2 blocking, after superposition of ACE2-RBD and

antibody-RBD complexes by RBD, the number of inter-atomic clashes, defined as non-hydro-

gen atom pairs with distances < 2.5 Å, was calculated between ACE2 and each antibody struc-

ture. Antibodies with> 20 atomic clashes with ACE2 were classified as likely to block ACE2

binding.

Structure-based calculations of antibody binding to the closed spike structure were per-

formed using the SARS-CoV-2 closed spike structure reported by Walls et al. (PDB code

6VXX) [53]. Antibodies with< 100 atomic clashes with spike atoms outside of the target RBD

structure and chain after superposition of the antibody-RBD complex onto the 6VXX structure

were classified as predicted to bind the closed spike. Clash thresholds were selected based on

agreement with structures and experimental data regarding ACE2 blocking and closed spike

binding, when available. Four antibodies that engaged the closed spike and exhibited cross-

protomer binding, as confirmed by inspection of antibody-spike complex structures (S2M11,

C144, mNb6, LY-CoV555; PDB codes 7K43, 7K90, 7KKL, 7L3N) [23,54–56], were annotated

accordingly in the contact heatmap.
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Computational mutagenesis

Computational modeling and prediction of antibody binding energy changes (ΔΔGs) for ala-

nine substitutions and other residue substitutions was performed using Rosetta version 2.3

[26], Rosetta version 3.12 [46], and FoldX version 4 [57]. Benchmarking of computational ala-

nine scanning predictive performance was performed using a subset of the AB-Bind dataset

[58] that contains alanine point substitutions with quantified experimental ΔΔG measure-

ments and known wild-type complex structures (347 mutants and ΔΔG values). A larger set

with all point substitutions (including non-alanine substitutions) was also tested (531 mutants

and ΔΔG values). Pearson correlation coefficients (PCC) between measured and predicted

ΔΔG values, and receiver operating characteristic area under the curve (AUC) values for pre-

diction of hotspot residues (measured ΔΔG for alanine residue substitution > 1 kcal/mol),

were calculated using scipy and scikit-learn (sklearn) Python libraries, respectively.

Rosetta 2.3 ΔΔG calculations were performed using the “interface” protocol [26,59]. An

example command line is:
rosetta.mactel -interface -intout pdb.ddgs.out -ignore_unrecogni-
zed_res -safety_check -skip_missing_residues -mutlist pdb.muts.txt
-extrachi_cutoff 1 -ex1 -ex2 -ex3 -constant_seed -jran 12 -yap -s
input.pdb

The input files specified on the command line denote the input PDB file (“input.pdb”) and

the list of mutations (“pdb.muts.txt”). The default protocol only models the mutant residue for

ΔΔG calculation (“Ros2.3_norepack” in S2 Table), and additional flags were used on the com-

mand line to perform minimization of mutation-proximal side chains (“-min_interface

-int_chi” flags; “Ros2.3_minint_chi” in S2 Table), minimization of mutation-proximal side

chains and backbone (“-min_interface -int_bb -int_chi” flags; “Ros2.3_minint_bb_chi” in

S2 Table), and rotamer-based packing of mutation-proximal side chains (“-repack” flag,

“Ros2.3_repack” in S2 Table).

Rosetta 3 ΔΔG calculations were performed with two available computational mutagenesis

protocols. One Rosetta 3 computational alanine scanning protocol was downloaded from a pub-

lic resource containing benchmarks and Rosetta tools [60], and represents a separate implemen-

tation of the Rosetta 2.3 mutagenesis protocol noted above [26,59]. This protocol was recently

used to predict TCR-peptide-MHC interface ΔΔG values [61]. In addition to the default proto-

col that does not repack neighboring side chains (“Ros3_norepack” in S2 Table), we also tested

this protocol with repacking of neighboring side chains (“Ros3_repack” in S2 Table).

An example command line for running this protocol is:
rosetta_scripts.linuxgccrelease -s input.pdb -parser:protocol
alascan.xml -parser:view -inout:dbms:mode sqlite3 -inout:dbms:-
database_name rosetta_output.db3 -no_optH true -parser:script_vars
pathtoresfile = input.resfile chainstomove = 1,2 -ignore_zero_occu-
pancy false

We additionally performed alanine scanning using the Flex ddG protocol, which was devel-

oped recently in Rosetta 3 [62]. This protocol uses the backrub algorithm [63] to sample pro-

tein backbone conformations at the interface. We tested two sets of ΔΔG scores that are output

by Flex ddG, representing different scoring functions reported by the authors [62]; they are

shown as “flex_ddG-fa_talaris2014” and “flex_ddG-fa_talaris2014-gam” in S2 Table.

An example command line used for Flex ddG calculations in this study is:
rosetta_scripts.linuxgccrelease -s input.pdb -parser:protocol
flexddg.xml -parser:script_vars chainstomove = 1,2
mutate_resfile_relpath = input.resfile number_backrub_trials = 35000
max_minimization_iter = 5000 abs_score_convergence_thresh = 1.0 back-
rub_trajectory_stride = 7000 -restore_talaris_behavior -in:file:
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fullatom -ignore_unrecognized_res -ignore_zero_occupancy false -ex1
-ex2

Prior to running ΔΔG calculations in Rosetta for alanine and non-alanine substitutions,

antibody-RBD complex structures were pre-processed using Rosetta’s FastRelax protocol [47],

using the FastRelax flags noted above, to perform constrained backbone and side chain mini-

mization to resolve unfavorable energies and anomalies that would bias energetic calculations,

and to normalize such effects due to the differing resolutions of the experimentally determined

structures.

For point substitution ΔΔG calculations in FoldX [57], complex structures were pre-pro-

cessed using the FoldX RepairPDB command, and ΔΔG values were calculated using the

FoldX PSSM command. Calculations of ΔΔGs for multiple substitutions were performed using

the FoldX BuildModel command (using PDB files that were pre-processed by RepairPDB), fol-

lowed by the AnalyseComplex command; reported ΔΔG values represent the mean ΔΔG from

five simulations. FoldX version 4 was used for all FoldX simulations.

In the small number of cases where a variant RBD residue was not present in an experimen-

tally determined structure, that structure was not included in the ΔΔG calculations for that res-

idue and in the corresponding figure (Figs 7, S6 or 8). Those antibodies (and residues) are:

C110, C135, S2H13, Sb23 (residue 477); C110, C135, S2H13 (residue 478); C135 (residue 484).

Sequence conservation

Assessment of sequence conservation of SARS-CoV-2 RBD positions in the SARS-CoV-1

sequence was performed using SARS-CoV-2 (GenBank: QHD43416) and SARS-CoV-1 (Gen-

Bank: AAP13441) spike reference sequences aligned with BLAST [64]. The epitope residues of

each antibody were defined as any SARS-CoV-2 residue within 5 Å of any antibody residue.

An in-house Perl script was used to analyze SARS-CoV-2 antibody-antigen interfaces and cal-

culate epitope conservation.

Figures

Figures of structures were generated using PyMOL version 1.8 (Schrodinger, Inc.). Boxplots

and dendrograms were generated using the ggplot2 [65] and factoextra [66] packages in R,

and heatmaps were generated using the ComplexHeatmap package [67] in R.

Supporting information

S1 Table. Antibody-spike and antibody-RBD complex structures analyzed in this study.

(DOCX)

S2 Table. Performance of computational alanine scanning ΔΔG prediction for antibody-

antigen interfaces.

(DOCX)

S3 Table. Comparison of ΔΔG predictions with measured monoclonal antibody neutraliza-

tion of SARS-CoV-2 variants from Wang et al. [29].

(DOCX)

S4 Table. Comparison of ΔΔG predictions with measured monoclonal antibody neutraliza-

tion of SARS-CoV-2 variants from Planas et al. [31].

(DOCX)

S1 Fig. Comparison of structural determination methods. (A) Resolution, (B) interface bur-

ied surface area (BSA), and (C) number of interface atomic contacts between antibody and
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RBD within a 5 Å distance cutoff were compared for structures obtained by cryo-EM and X-

ray diffraction. Structures containing antibodies and nanobodies were separated to avoid pos-

sible bias in interface size due to smaller size of nanobodies. Statistical significance (Wilcoxon

rank-sum test) between properties of cryo-EM and X-ray antibody-RBD structures is indicated

at top (�: p< 0.05; ��: p< 0.01; ���: p< 0.001). Due to small number of values for nanobody

cryo-EM complex structures (N = 3), statistical comparisons were not performed for the nano-

body-containing structures.

(PDF)

S2 Fig. Examples of co-clustered antibodies, based on antibody RMSD, with shared RBD

binding modes. Shown are (A) antibodies MR17 (PDB code 7C8W) and 298 (PDB code

7K9Z), which have a 4.7 Å heavy chain orientation RMSD, (B) antibodies SR4 (PDB code

7C8V) and Sb16 (PDB code 7KGK), which have a 1.2 Å heavy chain orientation RMSD, and

(C) antibodies BD-368-2 (PDB code 7CHF) and P2B-2F6 (PDB code 7BWJ), which have a 5.2

Å heavy chain orientation RMSD. The antibody-RBD structures are superposed by RBD

(gray), and antibody chains (heavy, light, or nanobody) are colored separately as indicated.

(PDF)

S3 Fig. Heatmap of antibody-RBD contacts, with the full set of 139 contacted RBD posi-

tions. Labels and annotations are in accordance with the corresponding labels/annotations in

Fig 2, and antibodies (rows) and RBD positions (columns) are ordered by hierarchical cluster-

ing in R. “BBClass” denotes the antibody classification from a previous study [23], with “ND”

(empty cell) indicating that the class for the antibody was not described in that work. Antibod-

ies in the heatmap are separated by the four major hierarchical clusters, which are labeled on

left.

(PDF)

S4 Fig. Antibody hierarchical clustering bootstrap confidence values. Multiscale bootstrap

resampling was performed in pvclust [49] in R, with the antibody-RBD contact data and

10,000 replicates. Values at each node denote the Approximately Unbiased (AU) bootstrap

confidence, and red boxes delineate the four major clusters noted in this study, labeled accord-

ingly.

(PDF)

S5 Fig. Principal component analysis of antibody-RBD residue footprint data. The x and y

axes represent the first two principal components (PC1, PC2), with percentage of data variance

represented by each principal component shown in parentheses. The 70 antibodies are shown

as points, with colors and shapes representing Clusters 1–4, which were determined by hierar-

chical clustering analysis of antibody-RBD contact profiles. Selected points representing anti-

bodies that are located on the periphery of cluster distributions are labeled by corresponding

antibody names.

(PDF)

S6 Fig. Computational assessment of antibody and ACE2 receptor ΔΔG values for RBD

variants using FoldX. FoldX [57] was used to simulate and compute binding affinity changes

(ΔΔGs, in units of kcal/mol) for RBD point substitutions in 70 antibody-RBD complex struc-

tures and the ACE2-RBD complex structure (PDB code 6LZG). ΔΔG values for each RBD sub-

stitution are shown as a separate boxplot, with antibodies grouped by contact based cluster (1–

4). The ACE2 ΔΔG value for each RBD point substitution is shown as a horizontal bar.

(PDF)

PLOS COMPUTATIONAL BIOLOGY Profiling SARS-CoV-2 antibody recognition and impact of variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009380 September 7, 2021 18 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009380.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009380.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009380.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009380.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009380.s010
https://doi.org/10.1371/journal.pcbi.1009380


Acknowledgments

Computing resources from the University of Maryland Institute for Bioscience and Biotech-

nology Research High Performance Computing Cluster were used in this study.

Author Contributions

Conceptualization: Rui Yin, Brian G. Pierce.

Data curation: Rui Yin, Johnathan D. Guest, Ghazaleh Taherzadeh, Ragul Gowthaman, Ipsa

Mittra, Jane Quackenbush, Brian G. Pierce.

Funding acquisition: Brian G. Pierce.

Investigation: Rui Yin, Johnathan D. Guest, Ghazaleh Taherzadeh, Ragul Gowthaman, Brian

G. Pierce.

Supervision: Brian G. Pierce.

Writing – original draft: Rui Yin, Brian G. Pierce.

Writing – review & editing: Rui Yin, Johnathan D. Guest, Ghazaleh Taherzadeh, Ragul

Gowthaman, Brian G. Pierce.

References
1. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020; 586(7830):516–27. Epub 2020/09/

24. https://doi.org/10.1038/s41586-020-2798-3 PMID: 32967006.

2. Jiang S, Zhang X, Yang Y, Hotez PJ, Du L. Neutralizing antibodies for the treatment of COVID-19. Nat

Biomed Eng. 2020; 4(12):1134–9. Epub 2020/12/10. https://doi.org/10.1038/s41551-020-00660-2

PMID: 33293725; PubMed Central PMCID: PMC7891858.

3. Simonis A, Theobald SJ, Fatkenheuer G, Rybniker J, Malin JJ. A comparative analysis of remdesivir

and other repurposed antivirals against SARS-CoV-2. EMBO Mol Med. 2021; 13(1):e13105. Epub

2020/10/06. https://doi.org/10.15252/emmm.202013105 PMID: 33015938; PubMed Central PMCID:

PMC7646058.

4. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited anti-

bodies to SARS-CoV-2 and circulating variants. Nature. 2021. Epub 2021/02/11. https://doi.org/10.

1038/s41586-021-03324-6 PMID: 33567448.

5. Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, et al. Prospective map-

ping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021; 371(6531):850–

4. Epub 2021/01/27. https://doi.org/10.1126/science.abf9302 PMID: 33495308.

6. Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA, et al. Neutralizing Activity of BNT162b2-

Elicited Serum. N Engl J Med. 2021. Epub 2021/03/09. https://doi.org/10.1056/NEJMc2102017 PMID:

33684280.

7. Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE, et al. Serum Neutralizing Activ-

ity Elicited by mRNA-1273 Vaccine—Preliminary Report. N Engl J Med. 2021. Epub 2021/02/18.

https://doi.org/10.1056/NEJMc2102179 PMID: 33596346.

8. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody Resistance of SARS-CoV-2 Variants

B.1.351 and B.1.1.7. Nature. 2021. Epub 2021/03/09. https://doi.org/10.1038/s41586-021-03398-2

PMID: 33684923.

9. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19

Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021. Epub 2021/03/17. https://doi.org/

10.1056/NEJMoa2102214 PMID: 33725432.

10. Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, et al. Comprehensive mapping of

mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human

plasma antibodies. Cell Host Microbe. 2021. Epub 2021/02/17. https://doi.org/10.1016/j.chom.2021.02.

003 PMID: 33592168; PubMed Central PMCID: PMC7869748.

11. Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, et al. Identification of SARS-CoV-2

spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe. 2021.

Epub 2021/02/04. https://doi.org/10.1016/j.chom.2021.01.014 PMID: 33535027; PubMed Central

PMCID: PMC7839837.

PLOS COMPUTATIONAL BIOLOGY Profiling SARS-CoV-2 antibody recognition and impact of variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009380 September 7, 2021 19 / 23

https://doi.org/10.1038/s41586-020-2798-3
http://www.ncbi.nlm.nih.gov/pubmed/32967006
https://doi.org/10.1038/s41551-020-00660-2
http://www.ncbi.nlm.nih.gov/pubmed/33293725
https://doi.org/10.15252/emmm.202013105
http://www.ncbi.nlm.nih.gov/pubmed/33015938
https://doi.org/10.1038/s41586-021-03324-6
https://doi.org/10.1038/s41586-021-03324-6
http://www.ncbi.nlm.nih.gov/pubmed/33567448
https://doi.org/10.1126/science.abf9302
http://www.ncbi.nlm.nih.gov/pubmed/33495308
https://doi.org/10.1056/NEJMc2102017
http://www.ncbi.nlm.nih.gov/pubmed/33684280
https://doi.org/10.1056/NEJMc2102179
http://www.ncbi.nlm.nih.gov/pubmed/33596346
https://doi.org/10.1038/s41586-021-03398-2
http://www.ncbi.nlm.nih.gov/pubmed/33684923
https://doi.org/10.1056/NEJMoa2102214
https://doi.org/10.1056/NEJMoa2102214
http://www.ncbi.nlm.nih.gov/pubmed/33725432
https://doi.org/10.1016/j.chom.2021.02.003
https://doi.org/10.1016/j.chom.2021.02.003
http://www.ncbi.nlm.nih.gov/pubmed/33592168
https://doi.org/10.1016/j.chom.2021.01.014
http://www.ncbi.nlm.nih.gov/pubmed/33535027
https://doi.org/10.1371/journal.pcbi.1009380


12. Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, et al. Complete Mapping of Mutations

to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host

Microbe. 2021; 29(1):44–57 e9. Epub 2020/12/02. https://doi.org/10.1016/j.chom.2020.11.007 PMID:

33259788; PubMed Central PMCID: PMC7676316.

13. Gowthaman R, Guest JD, Yin R, Adolf-Bryfogle J, Schief WR, Pierce BG. CoV3D: a database of high

resolution coronavirus protein structures. Nucleic Acids Res. 2021; 49(D1):D282–D7. Epub 2020/09/

06. https://doi.org/10.1093/nar/gkaa731 PMID: 32890396; PubMed Central PMCID: PMC7778948.

14. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, et al. The RCSB Protein Data

Bank: redesigned web site and web services. Nucleic acids research. 2011; 39(Database issue):D392–

401. Epub 2010/11/03. https://doi.org/10.1093/nar/gkq1021 PMID: 21036868; PubMed Central

PMCID: PMC3013649.

15. Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, et al. Rapid isolation and profiling of a

diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med.

2020. Epub 2020/07/12. https://doi.org/10.1038/s41591-020-0998-x PMID: 32651581.

16. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a Neutralizing

Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med. 2021; 384(3):238–51. Epub 2020/12/18.

https://doi.org/10.1056/NEJMoa2035002 PMID: 33332778; PubMed Central PMCID: PMC7781102.

17. Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 Neutralizing Antibody

LY-CoV555 in Outpatients with Covid-19. N Engl J Med. 2021; 384(3):229–37. Epub 2020/10/29.

https://doi.org/10.1056/NEJMoa2029849 PMID: 33113295; PubMed Central PMCID: PMC7646625.

18. Tuccori M, Ferraro S, Convertino I, Cappello E, Valdiserra G, Blandizzi C, et al. Anti-SARS-CoV-2 neu-

tralizing monoclonal antibodies: clinical pipeline. mAbs. 2020; 12(1):1854149. Epub 2020/12/16. https://

doi.org/10.1080/19420862.2020.1854149 PMID: 33319649; PubMed Central PMCID: PMC7755170.

19. Yuan M, Liu H, Wu NC, Wilson IA. Recognition of the SARS-CoV-2 receptor binding domain by neutral-

izing antibodies. Biochem Biophys Res Commun. 2021; 538:192–203. Epub 2020/10/19. https://doi.

org/10.1016/j.bbrc.2020.10.012 PMID: 33069360; PubMed Central PMCID: PMC7547570.

20. Barnes CO, West AP Jr., Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, et al. Structures

of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features

of Antibodies. Cell. 2020. Epub 2020/07/10. https://doi.org/10.1016/j.cell.2020.06.025 PMID:

32645326; PubMed Central PMCID: PMC7311918.

21. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping Neutralizing

and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided

High-Resolution Serology. Cell. 2020; 183(4):1024–42 e21. Epub 2020/09/30. https://doi.org/10.1016/j.

cell.2020.09.037 PMID: 32991844; PubMed Central PMCID: PMC7494283.

22. Zhou D, Duyvesteyn HME, Chen CP, Huang CG, Chen TH, Shih SR, et al. Structural basis for the neu-

tralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol. 2020. Epub

2020/08/02. https://doi.org/10.1038/s41594-020-0480-y PMID: 32737466.

23. Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, et al. SARS-CoV-2 neutraliz-

ing antibody structures inform therapeutic strategies. Nature. 2020; 588(7839):682–7. Epub 2020/10/

13. https://doi.org/10.1038/s41586-020-2852-1 PMID: 33045718.

24. Liu H, Wu NC, Yuan M, Bangaru S, Torres JL, Caniels TG, et al. Cross-Neutralization of a SARS-CoV-2

Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity. 2020; 53(6):1272–80 e5.

Epub 2020/11/27. https://doi.org/10.1016/j.immuni.2020.10.023 PMID: 33242394; PubMed Central

PMCID: PMC7687367 COVA1-16 and other antibodies first disclosed by Brouwer et al. (2020) has

been filed by Amsterdam UMC under application number 2020-039EP-PR. I.A.W. is a member of the

Immunity Editorial Board.

25. Lv Z, Deng YQ, Ye Q, Cao L, Sun CY, Fan C, et al. Structural basis for neutralization of SARS-CoV-2

and SARS-CoV by a potent therapeutic antibody. Science. 2020; 369(6510):1505–9. Epub 2020/07/25.

https://doi.org/10.1126/science.abc5881 PMID: 32703908; PubMed Central PMCID: PMC7402622.

26. Kortemme T, Kim DE, Baker D. Computational alanine scanning of protein-protein interfaces. Sci

STKE. 2004; 2004(219):pl2. https://doi.org/10.1126/stke.2192004pl2 PMID: 14872095.

27. Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-

CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020. Epub 2020/05/19. https://doi.org/

10.1038/s41586-020-2349-y PMID: 32422645.

28. Yuan M, Huang D, Lee CD, Wu NC, Jackson AM, Zhu X, et al. Structural and functional ramifications of

antigenic drift in recent SARS-CoV-2 variants. Science. 2021. Epub 2021/05/22. https://doi.org/10.

1126/science.abh1139 PMID: 34016740; PubMed Central PMCID: PMC8284396.

29. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants

B.1.351 and B.1.1.7. Nature. 2021; 593(7857):130–5. Epub 2021/03/09. https://doi.org/10.1038/

s41586-021-03398-2 PMID: 33684923.

PLOS COMPUTATIONAL BIOLOGY Profiling SARS-CoV-2 antibody recognition and impact of variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009380 September 7, 2021 20 / 23

https://doi.org/10.1016/j.chom.2020.11.007
http://www.ncbi.nlm.nih.gov/pubmed/33259788
https://doi.org/10.1093/nar/gkaa731
http://www.ncbi.nlm.nih.gov/pubmed/32890396
https://doi.org/10.1093/nar/gkq1021
http://www.ncbi.nlm.nih.gov/pubmed/21036868
https://doi.org/10.1038/s41591-020-0998-x
http://www.ncbi.nlm.nih.gov/pubmed/32651581
https://doi.org/10.1056/NEJMoa2035002
http://www.ncbi.nlm.nih.gov/pubmed/33332778
https://doi.org/10.1056/NEJMoa2029849
http://www.ncbi.nlm.nih.gov/pubmed/33113295
https://doi.org/10.1080/19420862.2020.1854149
https://doi.org/10.1080/19420862.2020.1854149
http://www.ncbi.nlm.nih.gov/pubmed/33319649
https://doi.org/10.1016/j.bbrc.2020.10.012
https://doi.org/10.1016/j.bbrc.2020.10.012
http://www.ncbi.nlm.nih.gov/pubmed/33069360
https://doi.org/10.1016/j.cell.2020.06.025
http://www.ncbi.nlm.nih.gov/pubmed/32645326
https://doi.org/10.1016/j.cell.2020.09.037
https://doi.org/10.1016/j.cell.2020.09.037
http://www.ncbi.nlm.nih.gov/pubmed/32991844
https://doi.org/10.1038/s41594-020-0480-y
http://www.ncbi.nlm.nih.gov/pubmed/32737466
https://doi.org/10.1038/s41586-020-2852-1
http://www.ncbi.nlm.nih.gov/pubmed/33045718
https://doi.org/10.1016/j.immuni.2020.10.023
http://www.ncbi.nlm.nih.gov/pubmed/33242394
https://doi.org/10.1126/science.abc5881
http://www.ncbi.nlm.nih.gov/pubmed/32703908
https://doi.org/10.1126/stke.2192004pl2
http://www.ncbi.nlm.nih.gov/pubmed/14872095
https://doi.org/10.1038/s41586-020-2349-y
https://doi.org/10.1038/s41586-020-2349-y
http://www.ncbi.nlm.nih.gov/pubmed/32422645
https://doi.org/10.1126/science.abh1139
https://doi.org/10.1126/science.abh1139
http://www.ncbi.nlm.nih.gov/pubmed/34016740
https://doi.org/10.1038/s41586-021-03398-2
https://doi.org/10.1038/s41586-021-03398-2
http://www.ncbi.nlm.nih.gov/pubmed/33684923
https://doi.org/10.1371/journal.pcbi.1009380


30. Altmann DM, Boyton RJ, Beale R. Immunity to SARS-CoV-2 variants of concern. Science. 2021; 371

(6534):1103–4. Epub 2021/03/13. https://doi.org/10.1126/science.abg7404 PMID: 33707254.

31. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity

of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021. Epub 2021/07/09. https://doi.

org/10.1038/s41586-021-03777-9 PMID: 34237773.

32. Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, et al. AZD1222-induced neutralising antibody

activity against SARS-CoV-2 Delta VOC. Lancet. 2021; 398(10296):207–9. Epub 2021/07/02. https://

doi.org/10.1016/S0140-6736(21)01462-8 PMID: 34197809; PubMed Central PMCID: PMC8238446.

33. Holtgrave DR, Vermund SH, Wen LS. Potential Benefits of Expanded COVID-19 Surveillance in the

US. JAMA. 2021. Epub 2021/07/16. https://doi.org/10.1001/jama.2021.11211 PMID: 34264262.

34. Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HM, Supasa P, Case JB, et al. The antigenic anatomy of

SARS-CoV-2 receptor binding domain. Cell. 2021. https://doi.org/10.1016/j.cell.2021.02.032 PMID:

33756110

35. Lensink MF, Moal IH, Bates PA, Kastritis PL, Melquiond AS, Karaca E, et al. Blind prediction of interfa-

cial water positions in CAPRI. Proteins. 2014; 82(4):620–32. Epub 2013/10/25. https://doi.org/10.1002/

prot.24439 PMID: 24155158; PubMed Central PMCID: PMC4582081.

36. Guest JD, Vreven T, Zhou J, Moal I, Jeliazkov JR, Gray JJ, et al. An Expanded Benchmark for Anti-

body-Antigen Docking and Affinity Prediction Reveals Insights into Antibody Recognition Determinants.

Structure. 2021;Accepted. https://doi.org/10.1016/j.str.2021.01.005 PMID: 33539768

37. Raybould MIJ, Kovaltsuk A, Marks C, Deane CM. CoV-AbDab: the Coronavirus Antibody Database.

Bioinformatics. 2020. Epub 2020/08/18. https://doi.org/10.1093/bioinformatics/btaa739 PMID:

32805021; PubMed Central PMCID: PMC7558925.

38. Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, et al. Potent SARS-CoV-2 neutralizing antibodies

directed against spike N-terminal domain target a single supersite. Cell Host & Microbe. 2021.

39. McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al. N-terminal domain anti-

genic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. https://doi.org/10.1016/j.cell.2021.

03.028 PMID: 33761326

40. Rappazzo CG, Tse LV, Kaku CI, Wrapp D, Sakharkar M, Huang D, et al. Broad and potent activity

against SARS-like viruses by an engineered human monoclonal antibody. Science. 2021; 371

(6531):823–9. Epub 2021/01/27. https://doi.org/10.1126/science.abf4830 PMID: 33495307; PubMed

Central PMCID: PMC7963221.

41. Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F, et al. Broad sarbecovirus neutral-

ization by a human monoclonal antibody. Nature. 2021. Epub 2021/07/20. https://doi.org/10.1038/

s41586-021-03817-4 PMID: 34280951.

42. Martinez DR, Schaefer A, Gobeil S, Li D, De la Cruz G, Parks R, et al. A broadly neutralizing antibody

protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice. bioRxiv.

2021. Epub 2021/05/06. https://doi.org/10.1101/2021.04.27.441655 PMID: 33948590; PubMed Central

PMCID: PMC8095197.

43. Walls AC, Fiala B, Schafer A, Wrenn S, Pham MN, Murphy M, et al. Elicitation of Potent Neutralizing

Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell. 2020; 183

(5):1367–82 e17. Epub 2020/11/09. https://doi.org/10.1016/j.cell.2020.10.043 PMID: 33160446;

PubMed Central PMCID: PMC7604136.

44. Zhang B, Chao CW, Tsybovsky Y, Abiona OM, Hutchinson GB, Moliva JI, et al. A platform incorporating

trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit

substantially higher neutralizing responses than spike alone. Scientific reports. 2020; 10(1):18149.

Epub 2020/10/25. https://doi.org/10.1038/s41598-020-74949-2 PMID: 33097791; PubMed Central

PMCID: PMC7584627.

45. Cohen AA, Gnanapragasam PNP, Lee YE, Hoffman PR, Ou S, Kakutani LM, et al. Mosaic nanoparti-

cles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science. 2021; 371

(6530):735–41. Epub 2021/01/14. https://doi.org/10.1126/science.abf6840 PMID: 33436524; PubMed

Central PMCID: PMC7928838.

46. Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF, et al. Macromolecular model-

ing and design in Rosetta: recent methods and frameworks. Nat Methods. 2020; 17(7):665–80. Epub

2020/06/03. https://doi.org/10.1038/s41592-020-0848-2 PMID: 32483333; PubMed Central PMCID:

PMC7603796.

47. Khatib F, Cooper S, Tyka MD, Xu K, Makedon I, Popovic Z, et al. Algorithm discovery by protein folding

game players. Proc Natl Acad Sci U S A. 2011; 108(47):18949–53. https://doi.org/10.1073/pnas.

1115898108 PMID: 22065763; PubMed Central PMCID: PMC3223433.

PLOS COMPUTATIONAL BIOLOGY Profiling SARS-CoV-2 antibody recognition and impact of variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009380 September 7, 2021 21 / 23

https://doi.org/10.1126/science.abg7404
http://www.ncbi.nlm.nih.gov/pubmed/33707254
https://doi.org/10.1038/s41586-021-03777-9
https://doi.org/10.1038/s41586-021-03777-9
http://www.ncbi.nlm.nih.gov/pubmed/34237773
https://doi.org/10.1016/S0140-6736%2821%2901462-8
https://doi.org/10.1016/S0140-6736%2821%2901462-8
http://www.ncbi.nlm.nih.gov/pubmed/34197809
https://doi.org/10.1001/jama.2021.11211
http://www.ncbi.nlm.nih.gov/pubmed/34264262
https://doi.org/10.1016/j.cell.2021.02.032
http://www.ncbi.nlm.nih.gov/pubmed/33756110
https://doi.org/10.1002/prot.24439
https://doi.org/10.1002/prot.24439
http://www.ncbi.nlm.nih.gov/pubmed/24155158
https://doi.org/10.1016/j.str.2021.01.005
http://www.ncbi.nlm.nih.gov/pubmed/33539768
https://doi.org/10.1093/bioinformatics/btaa739
http://www.ncbi.nlm.nih.gov/pubmed/32805021
https://doi.org/10.1016/j.cell.2021.03.028
https://doi.org/10.1016/j.cell.2021.03.028
http://www.ncbi.nlm.nih.gov/pubmed/33761326
https://doi.org/10.1126/science.abf4830
http://www.ncbi.nlm.nih.gov/pubmed/33495307
https://doi.org/10.1038/s41586-021-03817-4
https://doi.org/10.1038/s41586-021-03817-4
http://www.ncbi.nlm.nih.gov/pubmed/34280951
https://doi.org/10.1101/2021.04.27.441655
http://www.ncbi.nlm.nih.gov/pubmed/33948590
https://doi.org/10.1016/j.cell.2020.10.043
http://www.ncbi.nlm.nih.gov/pubmed/33160446
https://doi.org/10.1038/s41598-020-74949-2
http://www.ncbi.nlm.nih.gov/pubmed/33097791
https://doi.org/10.1126/science.abf6840
http://www.ncbi.nlm.nih.gov/pubmed/33436524
https://doi.org/10.1038/s41592-020-0848-2
http://www.ncbi.nlm.nih.gov/pubmed/32483333
https://doi.org/10.1073/pnas.1115898108
https://doi.org/10.1073/pnas.1115898108
http://www.ncbi.nlm.nih.gov/pubmed/22065763
https://doi.org/10.1371/journal.pcbi.1009380


48. Honegger A, Pluckthun A. Yet another numbering scheme for immunoglobulin variable domains: an

automatic modeling and analysis tool. J Mol Biol. 2001; 309(3):657–70. https://doi.org/10.1006/jmbi.

2001.4662 PMID: 11397087.

49. Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering.

Bioinformatics. 2006; 22(12):1540–2. https://doi.org/10.1093/bioinformatics/btl117 PMID: 16595560.

50. Hubbard SJ, Thornton JM. NACCESS. 2.1.1 ed: Department of Biochemistry and Molecular Biology,

University College London; 1993.

51. McDonald IK, Thornton JM. Satisfying hydrogen bonding potential in proteins. Journal of molecular biol-

ogy. 1994; 238(5):777–93. Epub 1994/05/20. https://doi.org/10.1006/jmbi.1994.1334 PMID: 8182748.

52. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and Functional Basis of SARS-CoV-

2 Entry by Using Human ACE2. Cell. 2020; 181(4):894–904 e9. Epub 2020/04/11. https://doi.org/10.

1016/j.cell.2020.03.045 PMID: 32275855; PubMed Central PMCID: PMC7144619.

53. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity

of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2):281–92 e6. Epub 2020/03/11. https://doi.

org/10.1016/j.cell.2020.02.058 PMID: 32155444; PubMed Central PMCID: PMC7102599.

54. Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, et al. Ultrapotent human antibod-

ies protect against SARS-CoV-2 challenge via multiple mechanisms. Science. 2020; 370(6519):950–7.

Epub 2020/09/26. https://doi.org/10.1126/science.abe3354 PMID: 32972994; PubMed Central PMCID:

PMC7857395.

55. Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, et al. An ultrapotent synthetic nano-

body neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science. 2020; 370(6523):1473–9. Epub

2020/11/07. https://doi.org/10.1126/science.abe3255 PMID: 33154106; PubMed Central PMCID:

PMC7857409.

56. Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, et al. LY-CoV555, a

rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of

SARS-CoV-2 infection. bioRxiv. 2020. Epub 2020/10/08. https://doi.org/10.1101/2020.09.30.318972

PMID: 33024963; PubMed Central PMCID: PMC7536866.

57. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online

force field. Nucleic Acids Res. 2005; 33(Web Server issue):W382–8. Epub 2005/06/28. 33/suppl_2/

W382 [pii] https://doi.org/10.1093/nar/gki387 PMID: 15980494; PubMed Central PMCID:

PMC1160148.

58. Sirin S, Apgar JR, Bennett EM, Keating AE. AB-Bind: Antibody binding mutational database for compu-

tational affinity predictions. Protein Sci. 2016; 25(2):393–409. https://doi.org/10.1002/pro.2829 PMID:

26473627; PubMed Central PMCID: PMC4815335.

59. Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein com-

plexes. Proc Natl Acad Sci U S A. 2002; 99(22):14116–21. https://doi.org/10.1073/pnas.202485799

PMID: 12381794.

60. S OC, Barlow KA, Pache RA, Ollikainen N, Kundert K, O’Meara MJ, et al. A Web Resource for Stan-

dardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and

Design. PLoS One. 2015; 10(9):e0130433. Epub 2015/09/04. https://doi.org/10.1371/journal.pone.

0130433 PubMed Central PMCID: PMC4559433. PMID: 26335248

61. Wu D, Gallagher DT, Gowthaman R, Pierce BG, Mariuzza RA. Structural basis for oligoclonal T cell rec-

ognition of a shared p53 cancer neoantigen. Nat Commun. 2020; 11(1):2908. Epub 2020/06/11. https://

doi.org/10.1038/s41467-020-16755-y PMID: 32518267; PubMed Central PMCID: PMC7283474.

62. Barlow KA, S OC, Thompson S, Suresh P, Lucas JE, Heinonen M, et al. Flex ddG: Rosetta Ensemble-

Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation. J Phys Chem B. 2018;

122(21):5389–99. Epub 2018/02/06. https://doi.org/10.1021/acs.jpcb.7b11367 PMID: 29401388;

PubMed Central PMCID: PMC5980710.

63. Smith CA, Kortemme T. Backrub-like backbone simulation recapitulates natural protein conformational

variability and improves mutant side-chain prediction. J Mol Biol. 2008; 380(4):742–56. https://doi.org/

10.1016/j.jmb.2008.05.023 PMID: 18547585.

64. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol.

1990; 215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712

65. Wickham H. ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag New York; 2016.

66. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses.

2020.

67. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional

genomic data. Bioinformatics. 2016; 32(18):2847–9. Epub 2016/05/22. https://doi.org/10.1093/

bioinformatics/btw313 PMID: 27207943.

PLOS COMPUTATIONAL BIOLOGY Profiling SARS-CoV-2 antibody recognition and impact of variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009380 September 7, 2021 22 / 23

https://doi.org/10.1006/jmbi.2001.4662
https://doi.org/10.1006/jmbi.2001.4662
http://www.ncbi.nlm.nih.gov/pubmed/11397087
https://doi.org/10.1093/bioinformatics/btl117
http://www.ncbi.nlm.nih.gov/pubmed/16595560
https://doi.org/10.1006/jmbi.1994.1334
http://www.ncbi.nlm.nih.gov/pubmed/8182748
https://doi.org/10.1016/j.cell.2020.03.045
https://doi.org/10.1016/j.cell.2020.03.045
http://www.ncbi.nlm.nih.gov/pubmed/32275855
https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.1016/j.cell.2020.02.058
http://www.ncbi.nlm.nih.gov/pubmed/32155444
https://doi.org/10.1126/science.abe3354
http://www.ncbi.nlm.nih.gov/pubmed/32972994
https://doi.org/10.1126/science.abe3255
http://www.ncbi.nlm.nih.gov/pubmed/33154106
https://doi.org/10.1101/2020.09.30.318972
http://www.ncbi.nlm.nih.gov/pubmed/33024963
https://doi.org/10.1093/nar/gki387
http://www.ncbi.nlm.nih.gov/pubmed/15980494
https://doi.org/10.1002/pro.2829
http://www.ncbi.nlm.nih.gov/pubmed/26473627
https://doi.org/10.1073/pnas.202485799
http://www.ncbi.nlm.nih.gov/pubmed/12381794
https://doi.org/10.1371/journal.pone.0130433
https://doi.org/10.1371/journal.pone.0130433
http://www.ncbi.nlm.nih.gov/pubmed/26335248
https://doi.org/10.1038/s41467-020-16755-y
https://doi.org/10.1038/s41467-020-16755-y
http://www.ncbi.nlm.nih.gov/pubmed/32518267
https://doi.org/10.1021/acs.jpcb.7b11367
http://www.ncbi.nlm.nih.gov/pubmed/29401388
https://doi.org/10.1016/j.jmb.2008.05.023
https://doi.org/10.1016/j.jmb.2008.05.023
http://www.ncbi.nlm.nih.gov/pubmed/18547585
https://doi.org/10.1016/S0022-2836%2805%2980360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
http://www.ncbi.nlm.nih.gov/pubmed/27207943
https://doi.org/10.1371/journal.pcbi.1009380


68. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the

2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483):1260–3. Epub 2020/02/23.

https://doi.org/10.1126/science.abb2507 PMID: 32075877.

PLOS COMPUTATIONAL BIOLOGY Profiling SARS-CoV-2 antibody recognition and impact of variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009380 September 7, 2021 23 / 23

https://doi.org/10.1126/science.abb2507
http://www.ncbi.nlm.nih.gov/pubmed/32075877
https://doi.org/10.1371/journal.pcbi.1009380

