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Abstract: The focusing properties of elegant third-order Hermite–Gaussian beams (TH3GBs) and
the radiation forces exerted on dielectric spherical particles produced by such beams in the Rayleigh
scattering regime have been theoretically studied. Numerical results indicate that the elegant TH3GBs
can be used to simultaneously trap and manipulate nanosized dielectric spheres with refractive
indexes lower than the surrounding medium at the focus and those with refractive indexes larger
than the surrounding medium in the focal vicinity. Furthermore, by changing the radius of the beam
waist, the transverse trapping range and stiffness at the focal plane can be changed.

Keywords: optical trapping; third-order Hermite–Gaussian beam; radiation force; Rayleigh scatter-
ing theory

1. Introduction

Optical trapping and manipulation of particles have demonstrated significant progress
in recent applications in the fields of micromachines, biology, and colloidal chemistry [1–3].
Previously, the conventional optical tweezers or optical trap was constructed with a highly
focused Gaussian beam, and it was used to capture particles with high refractive indexes,
larger than that of the surrounding medium in the focal region [4,5]. Recent theoretical
studies on radiation forces demonstrated that a beam with a Gaussian-like intensity profile
should be used to trap a refractive index greater than that of the ambient medium. A beam
with a hollow-like intensity profile is applicable in capturing a refractive index lower than
that of the ambient medium. In comparison with the bright spot in the conventional high
refractive index particle trap, the realization of a low refractive index particle trap needs
zero central intensity, which inevitably requires complex beam-shaping technology. Various
methods have been used to generate hollow-like intensity profile beams: the hollow optical
fibers [6], geometrical optical [7], transverse mode selection [8], and computer-generated
hologram methods [9]. Several types of hollow-like intensity profile beams have been
constructed in recent years, with Laguerre–Gaussian [10,11], circular airy [12–14], higher-
order Bessel [9,15], multi-Gaussian Schell-model [16], and hollow Gaussian beams [17–19]
being the most common types of beams. At present, holographic beam-shaping or interfer-
ence pattern-realizing dark space beam has also been used to capture low-refractive-index
particles [20]. To the best of our knowledge, the focusing properties of hollow elegant
third-order Hermite–Gaussian beams (TH3GBs) have not been studied.

The Hermite–Gaussian beams are extensively used in the fields of electron accelera-
tion, nonlinear optics, free-space optical communication, and optical manipulation [21–25].
To date, the trapping characteristics of different Hermite–Gaussian beams, such as Hermite–
Gaussian correlated Schell-model [26], Hermite–Gaussian vortex [21], and partially co-
herent Hermite–Gaussian array beams have been studied [27]. Since Siegman introduced
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new Hermite–Gaussian solutions known as elegant Hermite–Gaussian modes that sat-
isfy the paraxial wave function, [28] studies on the focusing properties of the elegant
Hermite–Gaussian beam have garnered increasing attention. Zhao studied the trapping
characteristics of elegant Hermite-cosine-Gaussian beams [29], whereas Luo studied the
radiation forces of elegant Hermite-cosh-Gaussian beams [30]. Although these two types
of beams produce a dark hollow beam profile at the focal plane and simultaneously trap
particles of high and low refractive indexes, both beams are modulated by sinusoidal
factors. We found that the simplest form of the elegant third-order Hermite–Gaussian
beam composed of the third-order Hermitian-polynomial and Gaussian functions can
also simultaneously capture two kinds of particles with different refractive indexes in the
optical trap.

The optical force that allows trapping and manipulation of particles are produced
by the transfer of angular momentum and momentum from the electromagnetic field to
the particles. Particles change the momentum and angular momentum flux of the beam
by scattering. Therefore, the calculation of light force is essentially the calculation of light
scattering [31–33]. In this paper, we have derived the analytical expression of the elegant
TH3GBs exerted on the high and low refractive index particles in the Rayleigh scattering
regime. The hollow elegant third-order Hermite–Gaussian beam is also a hollow beam after
focusing, and there is a dark region in the center of the focal plane along with a doughnut
configuration in the focal vicinity; thus, the low-refractive-index particles can be captured
at the focus. Moreover, the electromagnetic energy at the center of the hollow beam is very
low, and the scattering force acting on the particle trapped at the focal point is very small;
therefore, the particles are not easily damaged owing to a reduction of heat absorption.
Finally, we analyze the stable capture conditions for the effective capture and manipulation
of particles.

2. Materials and Methods

In our discussion, the electric field distribution of the doughnut elegant TH3GBs at
z1 =0 is expressed as follows:

E1(r1, z1 = 0) = A0H3(
r1
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) exp(− r1

2

w02 ) (1)
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where A0 is determined by the incident power P. Term w0 denotes the waist radius of
the input Gaussian beams, whereas nm denotes the refractive index of the surrounding

medium (liquid). Terms r1 =
√

x2
1 + y2

1 and z1 indicate the transverse and axial coordinates,
respectively, in the input plane of the incident beam. Term H3 represents the third-order
Hermite polynomials.

It is well known that when the refractive index of the particle is larger than that of the
surrounding medium, the gradient force directs the particles to the region of maximum
intensity. When the refractive index of the particle is smaller than that of the surrounding
medium, the gradient force has the opposite direction and guides the particle to the region
of smaller light intensity. From Figure 1a, we observe that the arrows representing the
electromagnetic field intensity gradient of the focused Gaussian beam are directed towards
the centers, and the directions and lengths of the arrows represent the directions and
magnitudes of the resultant forces. Gaussian beams are usually used to trap high-index
(with respect to the surrounding medium) particles. In comparison with the fundamental
Gaussian beams, the gradient force distribution of the elegant TH3GBs is almost absent
at the center, and it appears as a ring distribution, as indicated in Figure 1b. In the
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field of optical tweezing, it has been revealed that the focused dark hollow trap has
some advantages over the conventional optical tweezers for minimizing photodamage
on the trapped particles in experimental trapping. At the same time, the gradient force
characteristics of low refractive index particles show that the center of the dark hollow trap
can be used to capture low refractive index particles. Compared with the fundamental
Gaussian beams, the elegant TH3GBs have a doughnut-shaped intensity distribution at the
input plane, so the performance of the optical tweezers would be improved.
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Figure 1. Spatial distribution of the fundamental Gaussian beams (a) and the elegant TH3GBs (b) at the input plane.
(c) shows the schematic of the elegant TH3GBs. The intensity distribution of the elegant TH3GB is represented at different
positions along the z-axis (at the input plane, at the focal plane, and the output plane located at δz = 2 µm after the focal plane.
where z is the longitudinal coordinate at the beginning of the focusing lens, z = f + δz, δz is the distance from the focal
point on the axis and f is the focal length of the thin lens. The colors represent the normalized magnitudes of the radiation
forces. The directions and lengths of the black arrows represent the directions and magnitudes of the resultant forces.

Now, we consider the elegant TH3GBs propagation through a thin lens focusing
system, as shown in Figure 1c. The focal length of the thin lens is located at the input
plane with f = 5 mm, and z is the axial distance from the input plane to the output planes.
λ = 1064 nm is the wavelength of the input wave in the medium. A, B, C, and D are the
transfer matrix elements of the lens optical system.(
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Under the framework of paraxial approximation, the propagation of light beams

through an optical ABCD system are determined by the extended Huygens–Fresnel diffrac-
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tion integral [34]. Using the integral formula Equation (4) and substituting Equations (1)–(4)
into Equation (5), the propagation formula of the TH3GBs at the cylindrical coordinates are
derived and obtained as follows:
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where a1 = 1
ω2

0
+ i kA

2B and p = k r
B . r1 and r =

√
x2 + y2 denote radial coordinates in

the input and output planes, respectively. 1F1 is the Kummer confluent hypergeometric
function. Term k = 2π/λ = k0nm represents the wavenumber with nm. k0 denoting the
wave number in a vacuum, whereas nm denotes the refractive index of the surrounding
medium (liquid).

The evolutions of the focusing characteristics of the elegant TH3GBs versus x for
several δz are illustrated in Figure 2. Term δz represents the distance between the focal and
output planes. It is clearly observed from Figure 2 that the intensity distribution is sensitive
to δz. TH3GBs has rotational symmetry of the doughnut-shaped intensity at δz = 0 µm.
We find that the intensity of the beams is doughnut-shaped at the center of the focusing
plane and tiny side lobes are located near the main peaks, therefore, low refractive index
particles can be trapped at the dark center of the focal plane of the focused beam. Away
from the focus (by decreasing or increasing δz), the intensity profiles of the focused beam
gradually transform into a single peak distribution with a maximum intensity at its center.
The hollow profile of the elegant TH3GBs disappears. Owing to the focus prosperities of
the elegant TH3GBs, we expect these beams to be used for capturing two kinds of particles
with different refractive indexes.
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3. Results
Radiation Forces Produced by the Focused Elegant TH3GBs

The radius of particles is assumed to be sufficiently smaller than the wavelengths of
laser beams. The Rayleigh dielectric particles can be treated as a simple point dipole in the
light fields. The radiation force can be calculated using the following expressions [32,35]:

FGrad =
1
4

ε0εmRe(β)∇
∣∣∣E2
∣∣∣ (6)

Fscat =
ε0εm

3k0
4

12π

∣∣∣β2
∣∣∣∣∣∣E2

∣∣∣ (7)

β = 4πa3 εp − εm

εp + 2εm
(8)

where β is the polarizability of the Rayleigh particle, εm = n2
m and εp = n2

p denote the
dielectric function of the Rayleigh particle and that of the surrounding medium, respectively.
Term a is the radius of the particle. k0 denotes the vacuum wave number and ε0 is the
dielectric constant in a vacuum. The refractive index of the ambient is nm = 1.33 (i.e., water),
whereas that of the high-refractive-index particle and low-index particle is np = 1.592 (i.e.,
polystyrene) and np = 1 (i.e., air bubble), respectively. In the subsequent calculations, we
consider a particle of radius a = 20 nm.

Figure 3 illustrates the distributions of the longitudinal and transverse radiation forces
of the focused elegant TH3GBs exerted on the high-index (np = 1.592) and low-index
(np = 1) particles. The sign of the gradient force represents the direction of the force: for
the positive FGrad,x the transverse gradient force is along the +x direction, whereas for the
negative FGrad,−x is along the -x direction. Similarly, for positive (negative) FGrad,+z, the
longitudinal gradient force is in the +z (−z) direction. The scattering force is always along
the +z direction (as can be seen in Figure 3b). From Figure 3a,b, we can observe that there
is an equilibrium point at the focus for the low-index particles, and the gradient force along
the z-direction (as can be seen in Figure 3b) is always larger than the forward-scattering
force as shown in Figure 3d. This indicates that the particles with a low index can be stably
trapped by the elegant TH3GBs at the focus. From Figure 3d, we note that the scattering
acting on the low-index particle at the focus of the focused elegant TH3GBs force is zero.
From Figure 3a,c, we find that two equilibrium points are present (x = ±0.28 µm) near
the focus where the high-index particle (np = 1.592)can be trapped. Therefore, Figure 3
demonstrated that the focused elegant TH3GBs can simultaneously manipulate or trap two
types of particles, and this is superior to the fundamental Gaussian beams that have no
equilibrium point for low-index particles at the focus.

The effects of the waist radius of the beams and those of particles through the radiation
forces exerted on the low-index particles are indicated in Figure 4. From Figure 4a–c, we
find that as the waist radius of the beam increases, both the gradient and scattering forces
increase, but the transverse region of trapping particles shrinks. Therefore, the larger value
of ω0 corresponds to the easier trapping for the low-index particles. Similarly, by increasing
the radius of particles in Figure 4d–f, the radiation forces also increase, but the transverse
trapping range is not affected by the radius of particles. Consequently, the stiffness of the
optical trap can be enhanced by adjusting the value of ω0.
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Figure 3. Radiation forces produced by the elegant TH3GBs on high- (blue dashed curve) and low-
index particles (black solid curve). (a) Transverse gradient force at the focal plane. (b) Longitudinal
gradient force at the focal point; (c) Longitudinal gradient force at the point x = 0.28 µm. (d)
Scattering force at the focal point. We select a sphere with a radius a = 20 nm and nr = np/nm

represents the relative refractive index. nm = 1.332 is the refractive index of the surrounding field,
and the high and low refractive indices are the homogeneous Rayleigh particles. Other parameters
are λ = 1.064 µm, w0 = 5 mm, f = 5 mm, P = 1 W.
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Figure 4. Effect of waist radius of the beams (a–c) at particles’ radius a = 20 nm, and radius of particles (d–f) at waist radius
of the beams w0 = 5 mm on the radiation force for the low-index particles with (np = 1). (a,d) transverse gradient force at
the focal plane. (b,e) longitudinal gradient force at the focal point. (c,f) scattering force at the focal point.

Figure 5 illustrates the changes of the gradient and scattering forces exerted on the
high-index particles for several values of the waist radius of the beams and those of the
particles. The transverse gradient forces increase as the value of the waist radius increases,
similar to the case of low-index particles as shown in Figure 5a. Figure 5b–c depicts
the longitudinal gradient force at the point x = 0.28 µm, whereas Figure 5e,f plots the
scattering force at the point x = 0.28 µm. Figure 5b,c show that the position of the trapped
high-index particles is closely related to the value of waist radius. From Figure 5d–f, it
can be found that when the radius of particles becomes larger, the radiation force will also
become larger; thus, the magnitudes of transverse and longitudinal gradient forces can be
modulated by the radius of particles without affecting the trapping range. Figure 5c,f show
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that compared with the longitudinal gradient force in Figure 5b,e, the magnitude of the
scattering forces is significantly smaller than the axial gradient force.
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(a,d) transverse gradient force at the focal plane. (b,e) longitudinal gradient force at the point
x = 0.28 µm. (c,f) scattering force at the point x = 0.28 µm.

4. Discussion

Based on the above analysis, there are still several necessary conditions for stably
trapping particles using the elegant TH3GBs. The first necessary criterion for axial sta-
bility is that the backward longitudinal gradient force should be sufficiently greater to
overcome the forward scattering force, which is shown in Figure 3b,d for low-index par-
ticles. Similarly, Figures 3c and 5c show the longitudinal gradient force and scattering
force at x = 0.28 µm, respectively, for high-index particles. Therefore, the first stability
criterion is well-fulfilled. Second, because the particle is significantly small (a� λ), it
suffers from the Brownian motion owing to the thermal fluctuation from the ambient (e.g.,
water). For stable trapping, the potential well of the gradient force trap must be larger
to conquer the Brownian force. This condition can be determined using the fluctuation-
dissipation theorem of Einstein, the magnitude of the Brownian force can be calculated
by FB =

√
12πηakBTΓ(t) where η = 7.977× 10−4 Pa·s is the viscosity of water at room

temperature, T = 300 K, kB is the Boltzmann constant, Γ(t) is a normalized Gaussian
white-noise process and a = 20 nm [36–38]. Adopting the above parameters, we obtain the
value of the Brownian force, FB, which is approximately 1.6× 10−3 pN, we established that
the gradient force exerted on the two types of particles are larger than the Brownian force
from Figure 3a–c. Therefore, the magnitude of the Brownian force of the Rayleigh particles
is much smaller than the gradient forces, and they could be ignored.

5. Conclusions

In this study, we present the analytical expression for the propagation of the elegant
TH3GBs using a paraxial ABCD optical system. Based on the extended Huygens-Fresnel
principle and Rayleigh scattering regime, we investigated the focusing properties of the
elegant TH3GBs. Owing to the dark hollow beam profile produced at the focal plane, the
energy of the elegant TH3GBs at the focus is very low; thus, the heat absorbed by the
particles could be significantly reduced to avoid damage to the particle. Subsequently, we
show that this beam can simultaneously capture high refractive index spheres on the focal
plane. In addition, it is demonstrated that the trapping stiffness and transverse trapping
range increase as the value of the waist radius increases. Finally, we explicitly analyze
the trapping stability. Our results have theoretical reference values in the field of optical
micromanipulation and optical tweezers.
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