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Abstract
The unprecedented impact of the coronavirus disease 2019 (COVID-19) pandemic has resulted in global challenges to our health-
care systems and our economic security. As such, there has been significant research into all aspects of the disease, including
diagnostic biomarkers, associated risk factors, and strategies that might be used for its treatment and prevention. Toward this end,
eosinopenia has been identified as one of many factors that might facilitate the diagnosis and prognosis of severe COVID-19.
However, this finding is neither definitive nor pathognomonic for COVID-19. While eosinophil-associated conditions have been
misdiagnosed as COVID-19 and others are among its reported complications, patients with pre-existing eosinophil-associated
disorders (e.g., asthma, eosinophilic gastrointestinal disorders) do not appear to be at increased risk for severe disease; interestingly,
several recent studies suggest that a diagnosis of asthmamay be associatedwith some degree of protection. Finally, although vaccine-
associated aberrant inflammatory responses, including eosinophil accumulation in the respiratory tract, were observed in preclinical
immunization studies targeting the related SARS-CoV and MERS-CoV pathogens, no similar complications have been reported
clinically in response to the widespread dissemination of either of the two encapsulated mRNA-based vaccines for COVID-19.
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Introduction

First identified in 1879 by Paul Ehrlich [1], eosinophils are a
small subset of granulocytes that represent a relatively small
fraction of the pool of the circulating leukocytes under homeo-
static conditions. Eosinophils develop from pluripotent pro-
genitor cells in the bone marrow that differentiate under the
control of various cytokines, including interleukin (IL)-3, IL-
5, and granulocyte-macrophage colony-stimulating factor,
and undergo development from committed progenitors in

response to transcriptional signals from PU.1 as well as the
c/EBP and GATA families of transcription factors [2]. Once
released into circulation, eosinophils ultimately migrate to tis-
sues, both at homeostasis and in association with numerous
disease processes, most notably parasitic infestation and aller-
gy [3–6]. While the Th2 cytokine, IL-5, is best known for its
role in promoting eosinophil differentiation and activation,
eosinophils can be generated and maintained at low levels in
circulation and tissues in the absence of this mediator [7].

The properties and essential functions of eosinophils re-
main poorly understood. The profound degree of eosinophilia
observed in response to Th2 cytokine–mediated diseases, no-
tably that associated with allergies and parasitic infection,
prompted an initial focus on the roles and properties of eosin-
ophils in these settings. Based on the results from these earliest
studies, eosinophils were perceived as end-stage effectors ca-
pable of delivering largely cytotoxic mediators to promote
host defense, often associated with collateral damage and tis-
sue dysfunction. In recent years, a more nuanced view of
eosinophils has emerged, largely due to the results of studies
focused on resident homeostatic populations [5, 8, 9], cell
type–specific heterogeneity [10–12], and eosinophil functions
that are not directly linked to classical Th2 responses [9,
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13–15]. These findings build directly on principles initially
outlined by Lee et al. [16] in the “LIAR” hypothesis, in which
local immunity and tissue remodeling were presented as uni-
fying features of eosinophil function.

To this end, several groups have explored the role of eo-
sinophils in the setting of acute virus infection [17, 18].
Studies in mouse models revealed that eosinophils can pro-
mote host defense in experiments involving Sendai virus, hu-
man immunodeficiency virus, influenza virus, respiratory syn-
cytial virus (RSV), and the RSV-related pathogen, pneumonia
virus of mice [19–27]. Among these findings, Adamko et al.
[25] reported eosinophil-mediated antiviral activities in guinea
pigs sensitized to ovalbumin prior to infection with
parainfluenza virus. Drake et al. [21] identified nitric oxide
production as a critical mechanism underlying eosinophil-
mediated reductions in viral burden. Likewise, Phipps et al.
[19] reported an eosinophil-mediated clearance of RSV from
the airways of hypereosinophilic mice mediated by the TLR7-
MyD88 signaling axis, and Sabogal Pineros et al. [26] found
that eosinophils could internalize and inactivate both RSV and
influenza via a mechanism that was defective in cells isolated
from patients with asthma. Likewise, Percopo et al. [20] re-
ported that cytokine-activated eosinophils provided profound
protection against the lethal sequelae of infection with PVM.
Most recently, Samarasinghe et al. [27] found that adoptive
transfer of eosinophils from allergen sensitized and challenged
mice resulted in diminished virus replication and morbidity in
recipient mice infected with influenza. However, the critical
underlying mechanism, i.e., whether eosinophils promote di-
rect broad-spectrum antiviral activity or (as per the LIAR hy-
pothesis) serve to activate and regulate local immunity at sites
of viral infection, remains undetermined.

In the sections to follow, we will review the current literature
that links the circulating and tissue eosinophils with the diag-
nosis, pathogenesis, and vaccine strategies used to combat co-
ronavirus disease 2019 (COVID-19), the multi-system disease
that results from acute infection with the coronavirus pathogen,
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2; Table 1). The reader is referred to the many excellent reviews
of this pathogen and the pandemic at large for additional insight
into coronavirus biology and disease pathogenesis [28–32].
Likewise, several related reviews provide an in-depth focus
on the topics covered in this review [33–38].

Eosinopenia and the role of eosinophils
in COVID-19

Diagnosing eosinopenia

Mature human eosinophils are released from the bone marrow
and circulate in the peripheral blood for a period of 1–2 days
before they migrate into the tissues. Eosinophil counts are

determined via a standard Wright–Giemsa-stained leukocyte
differential either visually or by automated instruments that
detect their unique staining properties, including a bilobed
nucleus and large red-staining granules within the cytoplasm.
At homeostasis, eosinophils represent a minor population of
the circulating leukocytes. The US National Institutes of
Health Clinical Center Laboratory normal range for blood
eosinophils is 40–360 cells per microliter or 0.7–5.8% of the
total circulating leukocyte population. Clinical eosinophilia,
the term used to describe elevated eosinophil counts in periph-
eral circulation, has been defined as > 500 eosinophils per
microliter of blood. By contrast, eosinopenia may be some-
what more difficult to recognize. Although the formal defini-
tion of eosinopenia is < 10 eosinophils per microliter of blood
[39], some clinical laboratories score eosinophil counts of “0”
as within normal limits.

Of critical note, eosinopenia is not pathognomonic for any
disorder or clinical state. Many clinical conditions (including
severe infection with the pandemic SARS-CoV-2 pathogen,
as discussed in the section to follow) have been associated
with clinical eosinopenia, including a wide variety of acute
bacterial and virus infections, chronic obstructive pulmonary
disease, burn injuries, and alcoholism [40–43].

Eosinopenia and the diagnosis and prognosis of
SARS-CoV-2 infection

There are now numerous reports that document eosinopenia in
patients that present with moderate-to-severe COVID-19
[44–52]. Eosinopenia is not an isolated finding in any of these
cases and is typically accompanied by reductions in peripheral
lymphocyte, platelet, and monocyte counts, as well as elevat-
ed levels of C-reactive protein and IL-6. While not all of these
reports document eosinopenia that falls within the formal def-
inition of this condition (as above, < 10 per microliter of
blood), eosinophil counts have been included in several algo-
rithms used to predict disease severity. Collectively, the re-
sults from these studies document eosinopenia as a presenting
sign of SARS-CoV-2 and report an association between
eosinopenia and disease severity. Ma et al. [53] introduced a
risk stratification score (COVID-19-REAL) based on both
clinical and hematologic factors and included eosinophils at
< 5 per microliter among the criteria used to identify patients
who are likely to be presenting with COVID-19. Similarly,
Tordjman et al. [54] introduced the PARIS score, in which
presenting eosinophil counts < 60 per microliter were among
several hematologic parameters included in an algorithm used
to predict the likelihood of a SARS-CoV-2 diagnosis.

Peripheral eosinophil counts typically return to near-
normal levels as patients recover from moderate-to-severe in-
fection [46–48, 51, 52, 55]. For example, Chen et al. [55]
found that eosinophil counts, while low at admission, ulti-
mately rebounded in a cohort of patients who ultimately
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recovered from severe COVID-19. By contrast, eosinophil
counts remained low throughout the course of infections with
fatal outcomes. Of interest, Glickman et al. [56] found that the
prognostic utility of peripheral eosinophil counts and percent-
ages varied based on patient race and ethnicity.

Several groups have explored the value of peripheral blood
eosinophil counts at patient presentation for distinguishing
between COVID-19 and influenza virus infection. As both
respiratory virus infections present with fever, malaise, head-
ache, and cough, it would be helpful to identify factors that
might predict a specific diagnosis. Among these reports, Shen
et al. [57] found that patients diagnosed with COVID-19 pre-
sented with small but significantly lower eosinophil counts
than those ultimately diagnosed with influenza. While the de-
finitive differential diagnosis will of course rely on virus-
specific diagnostic strategies, several algorithms that include
peripheral eosinophil counts have already been developed to
assist clinicians to discriminate between these two respiratory
virus infections [58, 59].

Mechanisms underlying eosinopenia and eosinophil
responses to COVID-19

Mechanistically, eosinopenia may result from one or a com-
bination of factors, including decreased production and/or

release of eosinophils from the bone marrow, increased se-
questration within the vasculature (i.e., margination), in-
creased migration to somatic tissues, and/or decreased surviv-
al in peripheral circulation. The precise mechanism or mech-
anisms underlying eosinopenia associated with COVID-19
remain unclear at this time. Among these potential mecha-
nisms that may result in eosinophil depletion, self-
perpetuating pathologic hyper-inflammation (i.e., the cytokine
storm) has been identified as a central feature of severe
COVID-19 [60–63]. Under these conditions, cytokines may
act individually or via additive or synergistic mechanisms to
modulate responses (e.g., margination, apoptosis) of circulat-
ing, recruited, and/or tissue-resident eosinophils.
Interestingly, stress-based cortisol responses which in other
circumstances might lead to eosinopenia [64] are impaired in
moderate-to-severe COVID-19 [65–68].

Several intriguing insights have emerged from unbiased
systematic evaluations of leukocyte populations and plasma
cytokines in patients diagnosed with COVID-19. Lucas et al.
[69] presented the results of longitudinal profiling of both
plasma cytokines and peripheral blood leukocytes from 113
patients who required hospitalization due to COVID-19.
Among their findings, they report that progressive severity
was associated with an aberrant Th2 and eosinophil response,
including elevated levels of IL-5, IL-13, IgE, and eotaxin-2

Table 1 Key points
Eosinopenia and COVID-19 Eosinopenia

• Has been reported at diagnosis and during the course of
severe COVID-19

• Typically persists in patients with fatal outcomes

Molecular mechanisms underlying eosinophil
responses to COVID-19

Severe disease has been associated with

• Aberrant Th2 responses

• Emergence of CD62L+ eosinophils in response to IFNγ

• Upregulated expression of PD-L1 on circulating eosinophils

COVID-19 in patients with
eosinophil-associated diseases

COVID-19 presents

• No specific increased risk to patients diagnosed with asthma
or EGIDs noted at this time

• No specific contraindications to therapy

Eosinophil-associated complications and
misdiagnoses associated with COVID-19

Complications reported include

• Pulmonary eosinophilic vasculitis

• Eosinophilic pneumonia

• Eosinophilic myocarditis

Conditions that have been misdiagnosed as COVID-19
include

• Eosinophilic granulomatosis with polyangiitis

Vaccines Eosinophil-mediated enhanced disease

• Was observed in animal models of vaccines designed to
prevent SARS-CoV-1 and MERS-CoV

• Has not been reported in response to either of the
FDA-approved lipid encapsulated mRNA vaccines
currently in use to prevent SARS-CoV-2 infection and
COVID-19
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accompanied by increasing numbers of eosinophils in periph-
eral blood. Rodriguez et al. [70] performed longitudinal pro-
filing of circulating immune cells from 39 patients during
recovery from severe COVID-19. Among their findings, they
identified a unique subset of interferon (IFN)-induced
CD62L(L-selectin)-positive eosinophils that emerged just be-
fore clinical deterioration. These results are somewhat unex-
pected, as proinflammatory activation typically results in
CD62L downregulation in eosinophils [71]; as such, the clin-
ical consequences of this immunomodulatory response have
not yet been defined. Similarly, Vitte et al. [72] performed an
unbiasedmapping study focused on critical surface markers of
circulating leukocytes in patients diagnosed with COVID-19.
In these cases, eosinophil-mediated expression of the pro-
grammed death receptor ligand 1 (PD-L1) correlated positive-
ly with disease severity. We note that Arnold et al. [73] pre-
viously identified a role for IFNγ in promoting PD-L1 expres-
sion in eosinophils. IFNγ has been identified in numerous
studies as a critical component of the COVID-19-associated
cytokine storm [67–77]. As such, further exploration of the
dynamics and kinetics of the production and signaling medi-
ated by IFNγ might provide a critical insight into the role of
eosinophils and their responses to COVID-19.

Interestingly, and despite the modulation of blood eosino-
phil counts during the course of this disease, few to no eosin-
ophils have been detected in bronchoscopy specimens and
only occasionally in lung tissue at autopsy [78, 79].

COVID-19 in patients
with eosinophil-associated diseases
and complications

Asthma

Individuals with inflammation-associated predisposing co-
morbidities (e.g., obesity, diabetes, hypertension) are at sig-
nificantly increased risk for severe COVID-19 [80–82]. These
observations led to concern regarding the relative risk posed to
those diagnosed with asthma, a condition associated with both
chronic inflammation and respiratory dysfunction [83, 84].
Given the previous findings suggesting a role for eosinophils
in host defense against respiratory virus infection [17, 18, 24],
Carli et al. [85] considered the possibility that Th2-
predominant eosinophilic asthma might be protective against
severe COVID-19. This hypothesis was supported by the find-
ings of Camiolo et al. [86], who found that peripheral blood
eosinophil counts in stratified cohorts of asthma patients cor-
related inversely with the expression of the SARS-CoV-2 re-
ceptor, ACE2, in the bronchial epithelium. Consistent with
these findings, Ferastroanu et al. [87] reported that patients
carrying a diagnosis of asthma who presented with a high
eosinophil count (≥ 150/μl) were less likely to be hospitalized

with COVID-19 and, if hospitalized, were less likely to suc-
cumb to severe disease. Similarly, in their evaluation of out-
comes in one of the earliest patient cohorts, Li et al. [88]
reported that the prevalence of asthma was markedly lower
among those diagnosed with COVID-19 compared to the pop-
ulation of Wuhan at large.

Interestingly, a similar analysis of the potential role of al-
lergic airways inflammation and the pathogenesis of respira-
tory virus infection was presented earlier by Varner [89].
These concepts were recently considered and expanded in a
systematic review published by Veerapandian et al. [90].

There are numerous case reports, clinical studies, and sev-
eral meta-analyses published to date that indicate that a diag-
nosis of asthma presents no increased risk for developing se-
vere COVID-19 and that current medication regimens, includ-
ing inhaled corticosteroids (ICS) and biologics, remain safe
for use at this time [91–96]. Interestingly, a meta-analysis of
131 studies presented by Liu et al. [97] that included more
than 400,000 cases revealed that patients with asthma may
have a lower risk of death due to COVID-19. Similarly, results
from a recent systematic review and meta-analysis published
by Sunjaya et al. [98] indicated that individuals diagnosed
with asthma are at a lower risk for developing COVID-19
and are less likely to require hospitalization.

By contrast, Lee et al. [99] found that, although asth-
ma was not a risk factor for poor prognosis, higher
mortality was observed among those who had experi-
enced an acute exacerbation during the previous year.
Similarly, Choi et al. [100] reported that a pre-existing
diagnosis of asthma was associated with poor outcomes
among those with COVID-19, although asthma severity
and the use of asthma medications were not independent
risk factors. However, a study published by Izquierdo
et al. [101] revealed that asthma patients with COVID-
19 were significantly older and suffered from more rel-
evant comorbidities (hypertension, diabetes, dyslipid-
emia, and obesity) than were reported among asthma
patients who remained uninfected and that the use of
medications (including ICS and biologics) was associat-
ed with an overall protective effect among those diag-
nosed with COVID-19.

Eosinophilic gastrointestinal diseases (EGIDs)

Similar concerns emerged for patients diagnosed with and
undergoing treatment for EGID. Chiang et al. [102] reported
a diminished expression of ACE2 in esophageal tissue from
adults with eosinophilic esophagitis (EoE) compared to
healthy controls. While the number of patients that have been
evaluated remains limited, Savarino et al. [103, 104] reported
that a diagnosis of EGID presents no specific increased (or
decreased) risk with respect to prognosis and outcomes of
SARS-CoV-2 infection.
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Eosinophil-associated complications of COVID-19

Several isolated incidents of eosinophil-associated complica-
tions of COVID-19 have been reported in the literature.
Among these cases, Luecke et al. [105] documented a case
of isolated pulmonary eosinophilic vasculitis in an older male
patient undergoing mechanical ventilation for severe COVID-
19. Similarly, Murao et al. [106] reported a case of acute
eosinophilic pneumonia triggered by COVID-19 that
responded to treatment with prednisolone. Likewise, Craver
et al. [107] documented the case of a previously healthy 17-
year-old male who presented in cardiac arrest and was diag-
nosed post-mortem with fatal eosinophilic myocarditis asso-
ciated with a positive nucleic acid test for SARS-CoV-2.
Finally, two case reports documented clinical findings of three
patients who presented with eosinophilic granulomatosis, with
polyangiitis, and with signs and symptoms that largely mim-
icked those of acute SARS-CoV-2 infection [108, 109].
Collectively, the findings presented in these case studies sug-
gest that clinicians should be on high alert for eosinophil-
associated findings and complications associated with
COVID-19.

Eosinophils and vaccines to prevent
SARS-CoV-2 infection

Vaccines and strategies promoting mass vaccination have
most certainly changed the course of human history [110].
Unfortunately, several previous trials of vaccines designed to
target respiratory viruses have resulted in untoward conse-
quences. Among the most egregious of these results emerged
from a 1960s trial in which a formalin-fixed RSV vaccine
formulation was administered to infants and toddlers; in re-
sponse to a subsequent encounter with the natural RSV path-
ogen, many vaccines experienced an aberrant Th2 response
accompanied by profound and in some cases lethal eosino-
philic inflammation in the lower respiratory tract [111–113].
As such, any new vaccine formulation designed to target re-
spiratory virus pathogens needs to consider and to rule out the
possibility of similar aberrant immune-mediated inflammato-
ry responses. Animal model studies focused on vaccine strat-
egies designed to combat SARS-CoV and MERS-CoV were
notable for significant Th2-mediated eosinophilic lung immu-
nopathology [114–118]. At the same time, several vaccination
strategies were identified that might be effective at combating
this complication. Among these, Iwata-Yoshikawa et al. [119]
reported that co-vaccination with toll-like receptor agonists,
including lipopolysaccharide, poly U, or poly I:C, limited the
Th2-mediated eosinophilic response to a UV-inactivated vac-
cine preparation of SARS-CoV. Similarly, Hoda-Okubo et al.
[120] found that co-inoculation with delta inulin, an oligosac-
charide and TLR4 agonist [121], enhanced Th1 (i.e., IFNγ-

mediated) responses to both recombinant subunit and
inactivated SARS-CoV vaccines and protected against Th2-
mediated lung pathology.

These findings provide important insight into strategies
that might be used to develop vaccines against pandemic
SARS-CoV-2. While there are several vaccine formulations
in current use worldwide, at this time, only two have been
granted emergency use authorization by the US Food and
Drug Administration (FDA). Both vaccines include mRNA
encoding the SARS-CoV-2 Spike (S) protein encapsulated
in a lipid coat that facilitates transfection of target host cells
[122–124]. There are no published reports of any Th2-
mediated pulmonary immunopathology associated with any
of the vaccines currently in use, although concern might be
heightened once one or more of these vaccines become avail-
able to young children [125]. Of note, while the specific for-
mulations used in these mRNA-based vaccines remain a pro-
prietary information at this time, it would not be surprising to
find that one or more of the vaccine components (i.e., the
specific lipid carrier molecules and/or the virus nucleic acid
itself) serve to direct appropriate immune responses via the
activation of cognate pattern recognition receptors.
However, this conjecture remains speculative at this time.

Conclusions

Eosinophils are circulating and tissue-dwelling leukocytes
that have been implicated in allergic respiratory pathology
and antiviral host defense. While eosinopenia has been iden-
tified as a factor that may facilitate disease diagnosis and de-
termine prognosis, this finding is neither definitive nor patho-
gnomonic for COVID-19.While recent case reports document
misdiagnosis and eosinophil-associated complications of
COVID-19, current evidence suggests that patients with
longstanding eosinophil-associated disorders are at no in-
creased risk for severe disease at this time. Finally, although
vaccine-associated aberrant inflammatory responses were ob-
served in animal model studies of vaccines under develop-
ment to combat SARS-CoV andMERS-CoV, no similar com-
plications have been reported to date in response to the now
widespread distribution of the two FDA-approved mRNA-
based COVID-19 vaccines.
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