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Vaccination remains a critical element in the eventual solution to the COVID-19 public health crisis. Many
vaccines are already being mass produced and supplied in many countries. However, the COVID-19 vac-
cination programme will be the biggest in history. Reaching herd immunity will require an unprece-
dented mass immunisation campaign that will take several months and millions of dollars.
Using different network models, COVID-19 pandemic dynamics of different countries can be recapitu-

lated such as in Italy. Stochastic computational simulations highlight that peak epidemic sizes in a pop-
ulation strongly depend on the network structure. Assuming a vaccine efficacy of at least 80% in a mass
vaccination program, at least 70% of a given population should be vaccinated to obtain herd immunity,
independently of the network structure. If the vaccine efficacy reports lower levels of efficacy in practice,
then the coverage of vaccination would be needed to be even higher. Simulations suggest that the ‘‘Ring
of Vaccination” strategy, vaccinating susceptible contact and contact of contacts, would prevent new
waves of COVID �19 meanwhile a high percent of the population is vaccinated.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The novel Coronavirus SARS-CoV-2 epidemic which first
emerged from Wuhan, China in December 2019 has spread glob-
ally, causing high levels of mortality and morbidity worldwide.
To curb the spread, governments across the world have imple-
mented measures ranging from quarantining, social distancing,
wearing of face masks among others. Amidst this crisis, national
health care systems such as in Italy and the United States of Amer-
ica have been overwhelmed by the ever-increasing number of
infection cases (Miller et al., 2020).

In studying infectious diseases, mathematical models play a sig-
nificant role in estimating disease transmission parameters as well
as the severity and intensity of an outbreak (Brauer et al., 2012).
The development of these models is crucial in providing insights
and making predictions about the disease so as to effectively plan
mitigation strategies and policies (Scarpino and Petri, 2019;
Colizza et al., 2007). For instance, during the Severe Acute Respira-
tory Syndrome (SARS) outbreak, mathematical models were used
to forecast transmission risks of the disease as well as to develop
relevant vaccination strategies (Chretien et al., 2015; Meyers
et al., 2005; Colizza et al., 2007).

COVID-19 epidemiological models have been formulated to
understand and curb the spread of the disease. Many of these mod-
els follow an SIR framework (Bailey et al., 1975; Kermack and
McKendrick, 1927) either in the deterministic or stochastic form
or both (Anderson et al., 2020a; Weitz et al., 2020; Sameni, 2020;
Simha et al., 2020; Calafiore et al., 2020; Chatterjee et al., 2020).
Other variations and modifications to this general model have been
considered including SEIR (Kucharski et al., 2020; Peng et al., 2020;
Ricardo-Azanza and Hernandez-Vargas, 2020) and SIRD (Fanelli
and Piazza, 2020) compartmental models. Some models also
include parameters such as age-heterogeneity (Singh and
Adhikari, 2020), guiding the flow of users in supermarkets
(Hernandez-Mejia and Hernandez-Vargas, 2020), and governmen-
tal policies (Lin et al., 2020; Arenas et al., 2020; Ricardo-Azanza
and Hernandez-Vargas, 2020). In addition, a few studies incorpo-
rate the dynamics of the disease within an individual host
(Hernandez-Vargas and Velasco-Hernandez, 2020; Almocera
et al., 2020). However, only a few of these models, currently pre-
dicting the SARS-CoV-2 pandemic, consider the structure of the
population and the underlying interactions between individuals
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(Firth et al., 2020; Zaplotnik et al., 2020; Herrmann and Schwartz,
2020).

The assumption of random homogeneous mixing in epidemio-
logical models has been documented to be unrealistic as popula-
tions have underlying structural properties and individuals tend
to interact with each other (Ferretti et al., 2012). Increasingly, net-
work theory is being used in epidemiology (Meyers et al., 2005;
Keeling and Eames, 2005; Rizzo et al., 2016; Getz et al., 2019). In
particular, social networks have gained popularity in conceptualis-
ing the effects of social interaction during epidemics in a given
population (Moinet et al., 2018; Kabir et al., 2019; Sharma et al.,
2017). Contacts between individuals in a given population can be
captured in a network where nodes represent individuals and the
edges represent the connections between them (Hernandez-
Vargas et al., 2019). Social networks are thus important determi-
nants of infectious disease transmission, for example, infections
transmitted by close contact can easily spread along the paths of
a network.

Many studies in network theory have found that networks may
display varying connectivity properties such as randomness and
regularity. Some well-known network models include random net-
works, scale-free networks, and small-world networks. Random
networks such as the Erdos–Renyi network, are characterised by
a Poisson distribution of nodes whereby there is equal distribution
of nodes. Such models do not have hubs and clustering effect is
absent. However, scale-free networks such as the Barabási and
Albert model, follow a power-law distribution and have an
inhomogeneous degree distribution of nodes (Barabási, 2003) (that
is, the number of connections a node has to other nodes). In
small-world networks such as the Watts and Strogatz model, the
pattern of connectivity between nodes is more localized (Watts
and Strogatz, 1998) and the average path length is comparable
with a homogeneous random network, without any regard to
clustering.

During a disease outbreak, it is less likely for the disease to
reach epidemic proportions in the power-law network than it is
in random networks (Dezs}o and Barabási, 2002; Volz, 2008). This
is because power-law networks are made up of vertices with few
contacts and a very small proportion of hubs (or superspreaders)
whereas vertices in random networks are fairly homogeneous.
Thus, while it is possible to reach an epidemic in power law net-
works with a high enough transmissibility, a random network
reaches an epidemic threshold only when the outbreak leads to
an epidemic (Eguiluz and Klemm, 2002; Meyers et al., 2005).

Since the declaration of SARS-CoV-2 as a pandemic, initial con-
trol efforts have relied heavily on the use of non-pharmaceutical
Fig. 1. Model scheme. An illustration of infection spread with vaccination on a social netw
nodes exposed to the virus and those who do not have the virus can potentially lead to a
The epidemic state of each node is represented by a colour: Susceptible, S, ( ), Exposed

2

interventions (NPIs), including physical distancing, wearing of
masks, and hand hygiene. In many countries across the globe,
school closures and national lockdowns have been implemented
as part of NPIs to mitigate infection (Flaxman et al., 2020; Viner
et al., 2020; Lavezzo et al., 2020). However, with the continuation
of SARS-CoV-2 in many parts of the world, the push for a vaccine
has become highly necessary. Pharmaceutical companies are in a
race to develop suitable vaccines as there is a lack of other alterna-
tives. As of October 2020, there were 17 candidate vaccines under-
going trial at various stages. Because it is a novel viral disease, it is
still unclear what levels of vaccine efficacies will be sufficient to
curb the spread of the virus. Identifying such efficacies earlier
can direct vaccine development and administration in the popula-
tion (Hodgson et al., 2020). Previous studies suggest that vaccina-
tion would be effective for protecting the host against SARS-CoV-2
(Krammer, 2020), however, there have not been many studies to
evaluate the potential effects of different vaccination programs
over a network model.

A key question to be answered is, how many vaccines are
required to create herd immunity to dismantle SARS-CoV-2 trans-
mission? (Anderson et al., 2020c). In other words, how many peo-
ple need to be vaccinated to reach herd immunity? Here, we
employ a network-based approach to explore the potentials of
two vaccination schemes, classical mass vaccination and ring vac-
cination, in minimizing the spread of SARS-CoV-2, see Fig. 1. Ring
vaccination is a vaccination strategy in which infected cases and
contacts of cases are identified and vaccinated (Greenhalgh,
1986; Müller et al., 2000). This strategy is especially efficient in
controlling rare pathogens and has been successful in the eradica-
tion of Smallpox and the Ebola virus disease (Geddes, 2006; Foege
et al., 1971; Wells et al., 2015).

Our analysis uses different stochastic network simulation mod-
els of SARS-CoV-2 transmission to examine its control by mass and
ring vaccination strategies with varying vaccine efficacies in the
presence of non-pharmaceutical disease control interventions.
Given that vaccinating millions of people will require a lot of time,
this study implements a lockdown period as a further control mea-
sure during vaccination strategies in our simulations. It is impor-
tant to note that the roll out of vaccines can play an increasing
role in reducing the number of infections – thereby causing gov-
ernments to ease lockdown measures. However, in order to keep
our model mathematically tractable, we assume that social con-
tacts follow lockdown-period patterns throughout the vaccination
campaign. The main objective here is to identify the necessary vac-
cine efficacy thresholds capable of preventing an epidemic under
such conditions.
ork. Individuals in the social network are considered as nodes and contact between
transmission. Persons who are vaccinated are considered to be immune to infection.
, E, ( ), infectious, I, ( ), Vaccinated, V , ( ) and Recovered, R, ( ).



Fig. 2. Infection cases between the network model simulation using bðtÞ and Italian
SARS-CoV-2 data from February 22 2020 to September 1 2020. The y-axis shows the
infection cases. Parameter values used are b1 ¼ 0:028; b2 ¼ 0:001; r1 ¼ 0:09;
r2 ¼ 0:04; m1 ¼ 50; m2 ¼ 126.
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2. Modelling epidemic spread on networks

2.1. Model setup

Network Generation. To study the impact of vaccination on the
epidemic dynamics of SARS-CoV-2, the underlying structure of
human interactions is represented by a complex network. As
heterogeneous networks are often used to explore epidemic
spread, we consider the infection dynamics on a random Erdos-
Renyi (ER) network and a scale-free Barabási-Albert (BA) network
due to their tractability and practicability (Kepes, 2007, Chapter
1; Barabási, 2003). The ER network is based on the Gðn;MÞ random
graph model characterized by two parameters; the network size n
and the number of edges M which assigns exactly M edges to each
graph. In the ER networks used for this study, n ¼ N;M ¼ 5N, that
is GðN;5NÞ, which yields an average degree distribution hki ¼ 10.
On the other hand, the BA network is created using GðN;m; pÞ con-
sisting of N vertices and m outgoing edges for each vertex with a
power constant p of the nonlinear model equal to one. For the sim-
ulations using the BA network, m ¼ 5 and p ¼ 1 which ensures a
degree distribution of hki ¼ 10 as in the ER network.

Epidemic Spread. SARS-CoV-2 is a disease which spreads pri-
marily through close contact with an infected person. Following
the exposure to the SARS-CoV-2 virus and before symptom onset,
individuals go through an incubation period of about 2� 14 days
with the average being about 5� 6 days (Liu et al., 2020a;
Russell et al., 2020; Burke, 2020). After this incubation period,
infectious individuals become symptomatic and can transmit to
others through respiratory droplets or by direct contact (Liu
et al., 2020a).

Epidemic States.We simulated a Susceptible – Asymptomatic –
Infectious – Recovered – Vaccinated (SAIRV) process on an Erdos–
Renyi and a Barabási-Albert network with N ¼ 106 nodes and
hki ¼ 10 in both networks. At any instant during the infection pro-
cess, the status of a node can be in any one of five possible states:
Susceptible (S, not infected but can be infected), Asymptomatic (A,
infectious, may not show symptoms and can transmit to others),
Infectious (I, infectious and symptomatic, capable of transmission
to others), Recovered (R, recovered and immune to the disease)
and Vaccinated (V, vaccinated). Therefore, at any time, t, in the
infection process, NðtÞ ¼ SðtÞ þ AðtÞ þ IðtÞ þ RðtÞ þ VðtÞ.

Epidemic Process. The model (depicted in Algorithm 1) pro-
ceeds in discrete one-day time steps for a period of 360 days to
determine the dynamics of the disease. Simulation codes can be
found in https://github.com/systemsmedicine/COVID-19-Net-
work-Model. At the initial state of the epidemic process, all indi-
viduals in the network are susceptible except one (patient zero)
which is in the exposed state. On each day during the epidemic
process, there is an interaction between individuals and infected
persons can potentially transmit to their susceptible contacts. If a
susceptible individual comes into contact with someone who has
the virus (that is, a person in the A or I state), a Binomial trial is
used to determine if the contact results in an infection. If yes, the
newly infected susceptible individual moves from the S state to
the A state. Any individual exposed to the disease remains in the
A state for the duration of the incubation period. After the incuba-
tion period, infected nodes either move to the I state with a prob-
ability d or to the R state with a probability ð1� dÞ. Infectious
individuals can transmit to their neighbours, when they come into
contact, in a Binomial trial with a given probability, bðtÞ and then
move into the R state after the infectious period.
3

In the course of an epidemic, the effective rate of infection is
never constant. As interventions are being executed, the per-
capita transmission rate of infection decreases, and when these
interventions cease, this rate will increase towards its pre-
intervention level. To model this response, we consider a double
logistic function to model the various phases of the infection
dynamics leading to a decline in cases when interventions are ini-
tiated and a resurgence in cases when interventions cease. The
double logistic function used to define a time-dependent probabil-
ity of infection, bðtÞ is as follows:
bðtÞ ¼ b1 þ ðb2 � b1Þ �1þ 1
1þ e�r1ðt�m1Þ þ 1þ e�r2ðt�m2Þ

� �
ð1Þ
where b1 is the first boundary (i.e. function value at time zero), b2 is
the second boundary, r1 is the rate of change of first period, r2 is rate
of change of second period, m1 is the midpoint of the first period
(start of interventions), m2 is the midpoint of the second period
(end of interventions) and t is time. Note that if b1 > b2 the function
increases first and then decreases, and vice versa. To get a good set
of parameters for bðtÞ, we applied Eq. (1) to emulate infection data
(from February 22 to September 1 2020) from Italy, one of the worst
hit countries during the first wave of SARS-CoV-2 pandemic (see
Fig. 2).

The main goal of vaccination in this model is to prevent trans-
mission. At the beginning of each epidemic simulation, a fraction
of the population (%vac) is given a vaccine. Due to delayed immu-
nity of the vaccine, these vaccinated individuals remain in the S
state for a period of 14 days. Within this 14 day window, these
individuals, which we denote as Vs, are still prone to interaction
with asymptomatic and infectious individuals which can lead to
more infections with a probability b. After 14 days, individuals in
Vs who do not have the virus, move to V state. Individuals in V that
become exposed to the virus due to contact with an exposed indi-
vidual move into the A state with probability ð1� gÞbðtÞ, where g is
the efficacy of the vaccine. Individuals for whom the vaccine is
effective remain in the V state whilst those for whom the vaccine
is not effective move into the A state. Furthermore, depending on
the vaccination strategy being modelled, the time of vaccination
as well as population coverage varies.

https://github.com/systemsmedicine/COVID-19-Network-Model
https://github.com/systemsmedicine/COVID-19-Network-Model


Algorithm 1. Epidemic process on social network
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For the first strategy which we refer to as the classical mass
vaccination strategy, a fraction of individuals start in the V state
(denoted %vac) with one index case (patient zero) and the rest
in the S state. The population coverage in this case ranges from
10%;20%; � � � ;100%. The modelling process follows as in Algorithm
1.

For the second strategy which we refer to as ring vaccination,
vaccination occurs after a percentage (1% or 3%) of the population
has been exposed to the virus during the epidemic. In this case, we
simulate the epidemics as described above (in Algorithm 1) with
no vaccination and only begin vaccine administration after a pro-
portion of the population (%exposed) has been exposed (see Algo-
rithm 2 for more details). We assume that once a case is
diagnosed, all the contacts or neighbours are traceable and vacci-
Table 1
Definition of key terms and parameters.

Key term Definition

N number of nodes in the network

hki average degree distribution of nodes in the networ
transmission probability b the probability that infection is spread due to cont

susceptible node
incubation period the interval between exposure to virus and initial
infection period interval between symptom onset to recovery
vaccine efficacy g efficacy of vaccine

%vac percentage of population vaccinated prior to infect
T epidemic duration
%exposed percentage of population exposed to virus before o
symptomatic probability, d the probability that a person in the A class moves

4

nated. To initiate the ring vaccination, susceptible contacts of
exposed individuals can be vaccinated in a binomial trial with
probability ð1� gÞbðtÞ. This vaccination is further extended to
susceptible contacts of these first contacts with the assumption
that contacts are identified through contact tracing. Contacts of
contacts are also vaccinated with the same probability. In our
model, we also assume that traced and identified susceptible
contacts and contacts of contacts are vaccinated. This process is
described in Algorithm 2 and detailed implementation can be
found at https://github.com/systemsmedicine/COVID-19-Net-
work-Model.

In both strategies, we assume that the vaccine does not have an
effect on infectious or asymptomatic individuals. Table 1 summa-
rizes all parameters and key terms used in this study.
Value

106

k 10
act between an infectious node and a Eq. (1)

occurrence of symptoms 1� 5 days (Burke, 2020)
6� 19 days (Liu et al., 2020a)
varies (Callaway and Mallapaty,
2021)

ion (before case zero) varies
360 days

nset of vaccination varies
to the I class 0.2 (Anderson et al., 2020b)

https://github.com/systemsmedicine/COVID-19-Network-Model
https://github.com/systemsmedicine/COVID-19-Network-Model


Algorithm 2. Ring vaccination model on social network
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Epidemic Process in Mathematical Form
The model depicted in Algorithm 1 proceeds in discrete one-day

time steps for a period of 360 days to determine disease dynamics.
Each node i ¼ 1; � � � ;N has an individual state xit at time t. We

initialize the model simulation by randomly assigning #I 2 ð0;NÞ
nodes to the infectious state (I), that is setting xi0 ¼ I; i 2 I0 and
the rest of the nodes to the susceptible state, xj0 ¼ S for j 2 S0.
We denote by Xt the set of nodes with state xit ¼ X at time t.
Conditional on current state xit , the next state xit0 for node i is deter-
mined as follows.
5

� Susceptible nodes
xit0 jðxit ¼ SÞ ¼ A with binomial trial Bð1; bðtÞÞ
S otherwise

�
ð2Þ
� Asymptomatic nodes
xit0 jðxit ¼ AÞ ¼ I after incubation period
R otherwise

�
ð3Þ
� Infectious nodes
xit0 jðxit ¼ IÞ ¼ R after infectious period
I otherwise

�
ð4Þ



Table 2
Vaccination scenarios with corresponding population coverages and vaccine efficacies considered in this study.

Scenario Coverage Time of vaccination Effect of vaccine (%)

No vaccination 0% – –
Mass vaccination 10%;20%; � � � ;100% Before case zero 40;60;80;100
Ring vaccination 1st order and identified contacts

AND contacts of contacts
After percentage of population infectious
(varies between 1%;3%)

40;60;80;100

Fig. 3. Distribution of the final infectious cases in different timing for scenarios without vaccination in both networks. A population of N = 106 individuals was generated and
100 simulations were run to simulate the epidemic in the course of one year. An individual was chosen randomly as patient zero for each run. Circles represent mean infection
cases for each month connected by lines. (a): Erdos–Renyi network, (b): Barabasi-Albert network.

Fig. 4. Comparing infection peaks in both networks.
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� Recovered nodes
xit0 jðxit ¼ RÞ ¼ R with probability 1 ð5Þ

� Vaccinated nodes
xit0 jðxit ¼ VsÞ ¼
S within 14 days post vaccination
V after 14 days post vaccination

8><
>:

ð6Þ

xit0 jðxit ¼ VÞ ¼ A with binomial trial Bð1; ð1� gÞ � bðtÞÞ
V otherwise

�

ð7Þ
6

2.2. Simulation scenarios

Several scenarios are explored here. First, we consider an epi-
demic implemented with no vaccination. This scenario is evident
of the epidemic outcome without the discovery of a vaccine. Sub-
sequent scenarios consist of the overall performance of the vaccine
by considering its efficacy in preventing transmission and symp-
tomatic infection using either the classical mass vaccination or
the ring vaccination strategy. In our simulations, vaccine efficacy
varied between 40%� 100%whereas population coverage for clas-
sical vaccination varied between 10%� 100%. For ring vaccination,
the proportion of exposed individuals (%exposed) varied as 1% and
3% (see Table 2). For ER simulations: N ¼ 106; b1 ¼ 0:028; b2 ¼



Fig. 5. Outcome for mass vaccination scenarios for each vaccine efficacy percentage on an Erdos–Renyi network. This shows the changes in mean infected cases over time
under the different vaccine efficacies. In (a), (b), (c) and (d) vaccine efficacies are 40%; 60%; 80% and 100% respectively.

Fig. 6. Outcome for mass vaccination scenarios for each vaccine efficacy percentage on a Barabasi Albert network. This shows the changes in mean infected cases over time
under the different vaccine efficacies. In (a), (b), (c) and (d) vaccine efficacies are 40%; 60%; 80% and 100% respectively.

Josephine N.A. Tetteh, Van Kinh Nguyen and E.A. Hernandez-Vargas Journal of Theoretical Biology 531 (2021) 110894
0:001; r1 ¼ 0:09; r2 ¼ 0:04; m1 = day 50, m2 = day 126 and
T ¼ 360 days. For BA simulations: N ¼ 106; b1 ¼ 0:013; b2 ¼
0:001; r1 ¼ 0:09; r2 ¼ 0:04; m1 = day 50, m2 = day 126 and
T ¼ 360 days. Each scenario is repeated 100 times and the mean
of infection cases taken for analysis.
7

2.3. High-performance computing

Implementations of this network model were computationally
demanding and challenging using conventional resources. For
instance, one simulation can take up to several hours or days to



Fig. 7. Comparing average proportion of unvaccinated individuals who got exposed in the course of the infection in both networks.

Fig. 8. Comparing average proportion of vaccinated individuals who got exposed in the course of the infection in both networks.
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complete on a modern desktop computer. Thus, due to these limi-
tations, we employed a High-Performance Computing (HPC) clus-
ter for our simulations. The cluster used is FUCHS-CSC from the
Center for Scientific Computing (CSC, Frankfurt, Germany). It is
based on 72 dual-socket AMD Magny-Cours CPU compute nodes
with 64 GB of RAM, 250 dual-socket AMD Istanbul compute nodes
with 32 GB of RAM and 36 quad-socket AMD Magny-Cours com-
pute nodes with 128 GB of RAM each. A simulation in the HPC
takes about 5 h to complete for the classical vaccination scenarios
and about 5� 8 days for the ring vaccination scenarios. This pro-
ject is coded in Python and the codes can be found in this
https://github.com/systemsmedicine/COVID-19-Network-Model.
3. Results

The parameter value of bðtÞ shows infection peaks at compara-
ble time points with varying population percentages but essen-
tially a qualitative fit of the data (see Fig. 2). The parameter
values used to fit bðtÞ are: b1 ¼ 0:028; b2 ¼ 0:001; r1 ¼
0:09; r2 ¼ 0:04; m1 ¼ 50; m2 ¼ 126.

3.1. COVID-19 dynamics – control scenario

In a completely susceptible population, the introduction of one
exposed individual leads to the spread of the infection with more
8

than one peak of cases of infection after some months. In Fig. 3,
the mean number of infectious cases peaks at 0:83% for ER net-
work and 0:07% for BA network.
3.2. Mass vaccination scenarios

These scenarios determine the outcome of vaccination in both
networks when Algorithm 1 is used. From Fig. 4 and Tables S1
and S4, we observe that generally, infection peaks are much lower
in Barabasi-Albert network than in the Erdos–Renyi network.

In the Erdos–Renyi network, when vaccine efficacy is 40%, a
population coverage of 40% or more is needed to achieve infection
peak with less than 1% infection cases in the population. Table S1
(and also Fig. 4) reveals that with vaccine efficacy of 60%, a cover-
age more than 60% keeps mean infection cases on the low with
elimination of the peak occurring when coverage is more than
80%. Furthermore, low cases of infection are observed when 70%
or more of the population is vaccinated and vaccine efficacy is
80%. On the other hand, a vaccine which is 100% efficacious
requires just 20% or more of the population to be vaccinated to
ensure there is no peak of infections.

In the Barabasi-Albert network, with a vaccine efficacy of 40%, a
population coverage of more than 60% ensures elimination of
infection peaks whereas when vaccine efficacy is 60%, a coverage
more than 70% achieves elimination. In addition, when 70% or

https://github.com/systemsmedicine/COVID-19-Network-Model


Fig. 10. Outcome for ring vaccination scenarios for each vaccine efficacy percentage on a Barabasi Albert network. This shows the changes in mean infected cases over time
when there is 1% and 3% prior exposed population in (a) and (b) respectively.

Fig. 9. Outcome for ring vaccination scenarios for each vaccine efficacy percentage on a Erdos-Renyi network. This shows the changes in mean infected cases over time when
there is 1% and 3% prior exposed population in (a) and (b) respectively.

Table 3
Average population coverage (in %) for ring vaccination scenarios in both ER and BA networks considering vaccine efficacy.

Vaccine Efficacy

40% 60% 80% 100%

(ER Network)
(1% of population exposed before vaccination)

0:71� 0:20 0:77� 0:23 0:67� 0:20 0:68� 0:19

(3% of population exposed before vaccination)
0:81� 0:23 0:89� 0:26 1:00� 0:29 0:65� 0:19

(BA Network)
(1% of population exposed before vaccination)

0:062� 0:02 0:068� 0:02 0:043� 0:01 0:032� 0:01

(3% of population exposed before vaccination)
0:073� 0:02 0:049� 0:02 0:057� 0:02 0:65� 0:19

Table 4
Average proportion (in %) of unvaccinated (susceptible) individuals who got exposed in the course of the infection in both ER and BA networks under ring vaccination.

Vaccine Efficacy

40% 60% 80% 100%

(ER Network)
(1% of population exposed before vaccination)

0:71� 1:00 0:82� 1:01 0:77� 1:04 0:71� 0:99

(3% of population exposed before vaccination)
1:85� 2:68 2:26� 2:81 2:56� 2:90 1:72� 2:63

(BA Network)
(1% of population exposed before vaccination)

0:40� 1:00 0:65� 1:27 0:66� 1:78 0:41� 1:04

(3% of population exposed before vaccination)
1:98� 4:95 1:57� 4:12 2:17� 4:59 1:52� 4:38
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more of the population is vaccinated with an 80% efficacious vac-
cine, infection cases are almost negligible. In the case when a 100%
efficacious vaccine is administered, a population coverage more
than 20% keeps infection peaks at bay.

As seen in Figs. 5 and 6 (see also Figs. S1–S4 and S7–S10 in Sup-
plementary Material), peak(s) of infection cases are observed when
a small percentage of the population is vaccinated in both net-
works with double infection peaks more frequent in the
Barabasi-Albert network. For instance, in both networks, there is
at least one peak of infection for vaccine coverage between 20%
and 60% even when g varies. Therefore, vaccinating a small pro-
portion of the population is not useful in these instances as cases
can still peak even with a vaccine with 100% efficacy. Thus, the
key to eliminating infection peaks is to administer very efficacious
vaccines to many individuals.

Furthermore, infection cases in vaccinated and unvaccinated
individuals is much higher in the ER model than in the BA model
(see Figs. 7a, 8a, 7b, 8b and Tables S6, S5, S3, S2). In both net-
works, a 100% efficacious vaccine ensures that no susceptible
(unvaccinated) individual gets exposed to the disease (Fig. 7).
Similar results are observed in the proportion of vaccinated indi-
viduals who later become exposed (Fig. 8). For the ER network,
the highest infection cases occur when vaccine efficacy is 40%
and only 10% of the population is vaccinated. In the BA network
however, this is seen at a vaccine efficacy of 40% and 20% pop-
ulation coverage.

In the population of unvaccinated individuals for the ER net-
work, higher cases of infection are observed with a vaccine efficacy
of 80% or less and population coverage less than 40% (Fig. 7a).
However, for the BA network, observed cases of infection are usu-
ally low in comparison with the ER network (Fig. 7b). In the popu-
lation of vaccinated individuals for the ER network, higher cases of
infection are observed with a vaccine efficacy of 60% or less and
population coverage less than 40% (Fig. 8a). Again, for the BA net-
work, observed cases of infection are usually low in comparison
with the ER network (Fig. 8b).

3.3. Ring vaccination scenarios

We carried out simulations using Algorithm 2 to determine the
infection outcome when ring vaccination is used in both networks.
In Figs. 9 and 10 (see also Figs. S5, S6, S11, S12 and Table 3), we
show these outcomes with varying scenarios of vaccine efficacy
and when 1% or 3% of the population is already exposed to the dis-
ease before the onset of vaccination.

We see that in both networks, there are less cases realised with
a 1% exposed population before the start of vaccination as com-
pared to a 3% exposed population. In addition, the number of
infected cases in these scenarios are considerably lower than that
of the classical vaccination method. Also, even with a 100% effica-
cious vaccine, total eradication of the peak is not achieved irrespec-
Table 5
List of candidate vaccines currently in use. Adapted from World Health Organisation (202

SARS-CoV-2 Vaccine Manufacturer/ Developer Vaccine platform

University of Oxford/AstraZeneca Non-replicating vira
Sinovac Inactivated
Janssen Pharmaceutical Companies Non-replicating vira
Moderna/NIAID RNA
CanSino Biological Inc./Beijing Institute of Biotechnology Non-replicating vira
BioNTech/Fosun Pharma/Pfizer RNA
Beijing Institute of Biological Products/Sinopharm Inactivated
Novavax Protein subunit
Gameleya Research Institute/ Sputnik Non-replicating vira
Medicago Inc. Virus-like particle (
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tive of the exposed population prior to vaccination and regardless
of the network. This can be seen in Figs. S5, S6, S11 and S12.

In comparison to mass vaccination, a lower percentage of the
population has to be vaccinated when using a ring vaccination pro-
tocol in order to attain low infection cases (see Table 3). This is
especially so as with effective contract tracing, more individuals
can be vaccinated and thus decreasing the number of infections.
It is worth noting also that even with the above results, the per-
centage of vaccinated individuals is lesser when only 1% of the
population is exposed prior to vaccination than when the prior
exposed population is 3%. Also, from Table 3 we see that for each
network, the vaccinated populations are very similar in both sce-
narios (that is when 1% or 3% of the population is exposed) irre-
spective of the efficacy of the vaccine.

Table 4 shows the average proportion of unvaccinated (suscep-
tible) individuals who got exposed in the course of the infection in
both ER and BA networks under ring vaccination. Similar to the
average infection peaks, there are fewer cases in unvaccinated
individuals in the BA network than in the ER network. In addition,
more cases are seen when 3% of the population is exposed than
when 1% is exposed. From our simulations for ring vaccination
in both networks, vaccinated individuals remain vaccinated and
do not get exposed during the course of the infection.
4. Discussion

With the ongoing spread of SARS-CoV-2 worldwide, pharma-
ceutical companies have also been in a race to produce safe and
highly effective vaccines to counter the transmission of the disease.
As of December 2020, there were 52 vaccine candidates in clinical
trials in humans, 13 of which were in Phase 3 trials (World Health
Organisation, 2020). In November 2020, some pharmaceutical
companies and institutes, including Pfizer Inc and BioNTech, Mod-
erna, the University of Oxford (in collaboration with AstraZeneca),
announced positive results from the first interim analyses of their
Phase 3 vaccine trials (Moderna, 2020; Oxford University, 2020;
Pfizer Inc, 2020). Initial data released from these trials report that
the vaccines manufactured by Pfizer Inc/BioNTech and Moderna
both yielded 95% efficacy whereas that by University of Oxford
(in collaboration with AstraZeneca) yielded 70% efficacy. On 2
December 2020, the UK medicines regulator MHRA granted tem-
porary regulatory approval for the Pfizer-BioNTech vaccine
(Mullard, 2020) which was under evaluation for emergency use
authorization (EUA) status by the United States Food and Drug
Administration (United States Food and Drug Authority, 2020)
and approved for use on 11 December 2020 (Mullard, 2020) in
the United States.

Although the Pfizer, Moderna and University of Oxford/AstraZe-
neca vaccines are being used worldwide, in other countries such as
China and Russia, other vaccines (from Sinovac in China and Game-
0) and BioSpace (2021).

Timing of doses Overall Efficacy (from BioSpace, 2021)

l vector 0, 28 days 74%
0, 14 days 50%

l vector 0 or 0, 56 days 72%
0, 28 days 92%

l vector 66%
0, 21 days 95%
0, 21 days 73%
0, 21 days 89%

l vector 0, 21 days 91%
VLP) 0, 21 days –



Josephine N.A. Tetteh, Van Kinh Nguyen and E.A. Hernandez-Vargas Journal of Theoretical Biology 531 (2021) 110894
leya Research Institute in Russia) have been developed and are cur-
rently in limited use. Table 5 summarizes candidate vaccines cur-
rently in use as well as their manufacturers and vaccine platform
(that is, a system that uses certain basic components as the back-
bone but is relatively flexible and can be adapted quickly to be
used against different pathogens Hume and Lua, 2017).

In this study, we modelled the spread of SARS-CoV-2 infection
using an SAIRV model structure on social networks. We run
stochastic simulations to determine vaccine efficacy and popula-
tion coverage limits capable of extinguishing the disease. We con-
sidered two vaccination strategies, each with varying scenarios
regarding vaccine efficacy and population coverage. We found that
the introduction of a single infectious person into a completely
susceptible population leads to the spread of infection giving rise
to more infectious cases and subsequently more than one infection
peak. This is an indication that in the absence of a good enough
vaccine, there is a much higher chance of more than one infection
peak which is already being observed in some countries
(Cacciapaglia et al., 2020; Bontempi, 2020).

In addition, the introduction of vaccination lowered the number
of infectious cases irrespective of the type of vaccination and con-
tact network. Our simulations and analysis show that when using a
mass vaccination strategy, the lower the efficacy of the vaccine, the
more people needed to be vaccinated against the disease in order
to eliminate infection peak(s). This is true for both ER and BA net-
works. For instance, in an ER network, a vaccine with an efficacy of
40%will require more than 40% of the entire population to be vac-
cinated in order to reach low infection peak values less than 1%
whereas in a BA network, a population coverage more than 70%
with a vaccine efficacy of 80% achieves negligible infection cases.
In both networks, a 100% effective vaccine will require just about
20% of the population to be vaccinated.

Even though there are some vaccines which require a single
dose regimen to achieve acclaimed efficacy levels, from Table 5,
it can be seen easily that the majority of vaccines require more
than one dose to achieve the levels of efficacy claimed by manufac-
turers. Given that this is a simplified model to explore the effects of
vaccination strategies in general, it is worth pointing out that our
model is limited when considering a two-dose vaccine regimen
and hence results from our model can likely be influenced under
such circumstances.

Given the experimental nature and limited initial supply of vac-
cines, a classical mass vaccination campaign might not be feasible
in many countries. However, ring vaccination of likely case con-
tacts and contacts of cases could provide an effective alternative
in distributing the vaccine to ensure low levels of infection and
subsequently preventing infection peaks. This is with the assump-
tion of effective contract tracing of infectious people.

Researchers, policy makers and the general public are of the
opinion that the discovery of a vaccine will allow the return to nor-
mality of life before the SARS-CoV-2 pandemic. It is worth noting
that, the discovery of a proven-to-be effective vaccine however,
might not reduce transmission completely. This is because a vac-
cine that effectively reduces the severity of transmission does not
necessarily reduce virus transmission to a comparable degree
(Kissler et al., 2020).

It is also important to consider the potential impact of voluntary
mass vaccination in the efforts of clearing the epidemic (Omer
et al., 2009; Phadke et al., 2016; Larson et al., 2014; Cooper et al.,
2008). In years past, the roll-out of vaccination has been faced with
declining vaccine confidence in the general public which could
lead to hesitancy in getting vaccinated (de Figueiredo et al.,
2020). Such instances could easily lead to a disruption of people
receiving a vaccine voluntarily thus, having a detrimental effect
on efforts to eradicate the disease, and hence such situations
should not be underestimated.
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4.1. Limitations and future work

Though exploring the effects of SARS-CoV-2 transmission on
social networks, in this study we have limited our analysis to
two types of social network which are the Erdos–Renyi network
and the Barabasi-Albert network models. To proceed towards
increasing practicality, the analysis performed in this study can
be extended to consider disease spread and vaccination on other
social networks and small-world network (Watts and Strogatz,
1998) models, using similar scenarios and protocols. Such network
models can be compared with each other and the outcomes anal-
ysed. Data on known social networks such as contact matrices
and age mixing patterns can also be used for further analysis and
evaluation. Some of these social contact networks include existing
survey data social networks such as from the POLYMOD study in
Mossong et al. (2008), age-related social networks in Kenya (Kiti
et al., 2014) and social contact networks in Great Britain (Danon
et al., 2013).

Simulations in this study were performed with the assumption
of an optimistic condition in which all infectious individuals are
identified. In reality, contact tracing is especially difficult in the
course of an ongoing epidemic. In the particular case of
SARS-CoV-2, traditional interview based approaches as well as
recent digital contact-tracing apps have proven to be less effective
(Li and Guo, 2020; Bashir et al., 2020). Thus identifying all infec-
tious contacts and their secondary contacts (especially for the ring
vaccination strategy) becomes difficult and comes at a higher cost
(McClain and Rainie, 2020; Kretzschmar et al., 2020). In effect,
these challenges can potentially reduce the impact of vaccination
efforts, as presented in this study.

Also, the model used here assumes there is equal mixing of indi-
viduals and their neighbours in the network whereas in reality, this
is not the case (Herrmann and Schwartz, 2020; Newman, 2002;
Prem et al., 2020). Consequently, infection cases could be lower
and population coverage may be reduced.

The model also assumes that all infectious people recover from
the disease and are immune. The effect of mortality on the dynam-
ics of the disease is not considered as this model aims to study the
general transmission dynamics and the effects of varying vaccina-
tion strategies. Within-host dynamics such as the viral dynamics
and immune responses would be important to be included in a
framework with higher resolution (Nguyen et al., 2018).

Epidemiological models of disease spread and transmission
generally take into account the reproduction number (R0) of the
disease to gain knowledge on the transmission process (You
et al., 2020; Alimohamadi et al., 2020). Estimates of R0 vary widely
as data continue to emerge in an ongoing epidemic (Pan et al.,
2020; Liu et al., 2020b). This study however, does not examine this
parameter since it does not directly impact the transmission
dynamics.

In summary, this study describes the transmission dynamics of
SARS-CoV-2 on a social contact network and the vaccine efficacy
thresholds needed to prevent new waves of the disease. For
future work, we will focus on other social network models and
their analysis with respect to SARS-CoV-2. We will also consider
the transmission potential based on R0 and the dynamics in this
regard.
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