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Abstract: The 12-lead electrocardiogram was invented more than 100 years ago and is still used as an
essential tool in the early detection of heart disease. By estimating the time-varying source of the
electrical activity from the potential changes, several types of heart disease can be noninvasively
identified. However, most previous studies are based on signal processing, and thus an approach that
includes physics modeling would be helpful for source localization problems. This study proposes a
localization method for cardiac sources by combining an electrical analysis with a volume conductor
model of the human body as a forward problem and a sparse reconstruction method as an inverse
problem. Our formulation estimates not only the current source location but also the current direction.
For a 12-lead electrocardiogram system, a sensitivity analysis of the localization to cardiac volume,
tilted angle, and model inhomogeneity was evaluated. Finally, the estimated source location is
corrected by Kalman filter, considering the estimated electrocardiogram source as time-sequence
data. For a high signal-to-noise ratio (greater than 20 dB), the dominant error sources were the
model inhomogeneity, which is mainly attributable to the high conductivity of the blood in the
heart. The average localization error of the electric dipole sources in the heart was 12.6 mm, which is
comparable to that in previous studies, where a less detailed anatomical structure was considered. A
time-series source localization with Kalman filtering indicated that source mislocalization could be
compensated, suggesting the effectiveness of the source estimation using the current direction and
location simultaneously. For the electrocardiogram R-wave, the mean distance error was reduced
to less than 7.3 mm using the proposed method. Considering the physical properties of the human
body with Kalman filtering enables highly accurate estimation of the cardiac electric signal source
location and direction. This proposal is also applicable to electrode configuration, such as ECG
sensing systems.

Keywords: electrocardiography; cardiac source localization; finite difference methods; inverse problems

1. Introduction

An electrocardiogram (ECG) is an essential tool for the early detection of heart
disease [1]. A 12-lead ECG displays the records of signals expanded to 12 patterns based
on the potentials measured at standardized electrode positions: six electrodes are located
on the patient’s chest, and one electrode is attached to each arm and left leg [1]. The ECG
waveforms record a combination of electrical activity from various cardiac cells; a typical
waveform consists of three phases: P-wave, QRS-complex, and T-wave. Much attention
has been paid to the classification of diseases and localization of cardiac sources with ECG
waveform (e.g., [2–5]). By estimating the time-varying source of the electrical activity from
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the potential changes, several types of heart disease can be noninvasively identified. How-
ever, most previous studies are based on signal processing, and thus additional approach
based on physics would be helpful, especially for localization.

The localization of the cardiac source based on a 12-lead ECG is a well-known ill-posed
problem [6]. This is because only nine observation points are considered, whereas the
unknown or potential source locations/directions are substantial. A unique solution to the
source localization problem cannot be exactly determined. Moreover, it is difficult to model
the observed potential in a straightforward manner because of the inhomogeneity of the
human body, which is composed of tissues with different electrical conductivity values.
Therefore, the development of a cardiac source localization technique using a 12-lead ECG
is an essential research topic for several clinical applications.

Previous studies have been conducted to solve the inverse problem of electrocardiog-
raphy [7–9]. In these studies, a forward problem analysis was conducted using geometric
conductor models representing a human torso or realistic torso model. However, mis-
placement of the electrode positions causes substantial errors in clinical ECG signals [10].
Moreover, the position of the limb electrodes directly influences all leads in terms of the
shape and amplitude of the ECG waveform [11]. Thus, to reproduce a realistic 12-lead
ECG, it is essential to analyze the electric potential over a whole-body model [12,13].

Substantial computational cost is required to analyze the cardiac phenomena in a
whole-body model, which commonly consists of a relatively large number of elements
(e.g., voxel models applying finite difference methods and tetrahedral models using finite
element methods). One of the limitations to processing whole-body models is the computa-
tionally expensive forward problems that need to be resolved to solve the main inverse
problem [14].

To solve a single forward problem, the volume conductor model must be solved
through an iterative process [15,16]. Therefore, a fast-forward problem solver can signifi-
cantly contribute to accelerating the entire process. Owing to its notable success in solving
finite-difference problems, a geometric multi-grid method [16] was used in our previous
study [17].

A common cardiac source localization technique is based on the lead field matrix (LFM)
algorithm [18–21]. An LFM is a projection matrix that defines the ratio between the cardiac
current density (electric dipoles) and measured potential at the electrodes located on the
body surface. The cardiac current density is then estimated through a linear inverse filter
or a reconstruction algorithm based on the LFM. However, in principle, the computations
required to construct an LFM associated with the test dipoles are extremely expensive.

The localization algorithm is also an important factor in the problem. The most
common solution to this ill-posed problem is the minimum norm estimation [22,23]. How-
ever, this method contains non-physiological characteristics and estimates overly smeared
sources [24–26]. Therefore, numerous studies have considered the inclusion of regular-
ization terms [19,20,27,28]. These methods require a computational memory proportional
to the square number of voxels (O(N2)). Conversely, sparse signal processing solutions
have been applied to avoid estimating an overly smeared source in a bioelectromagnetic
inverse problem [25,29,30]. Our focus here is the sparse-based ECG localization algorithm
applied toward more accurate source estimation. In [31], numerous sparse reconstruction
methods were proposed. An orthogonal matching pursuit (OMP), which is a simple, sparse
reconstruction algorithm, requires a computational time and memory space proportional
to the number of modeled voxels (i.e., O(N) only).

In addition to current source localization, a more detailed diagnostic based on the
current direction equivalent to a vectorcardiogram is proposed [1,32]. However, a detailed
analysis of this has not been demonstrated in the aforementioned studies. Hence, we
propose to estimate the current location and direction simultaneously, which could be
useful to improve the estimation accuracy. This information could then be useful for
time-series analysis to compensate for the localization error (LE).
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In the present study, we propose an ECG source localization method that combines
the scalar-potential finite-difference (SPFD) method as a forward problem analysis and an
OMP for solving the source localization (inverse problem). The localization performance
of the proposed method is demonstrated in a whole-body human model with a spatial
resolution of 2.0 × 2.0 × 2.0 mm. Moreover, we evaluate the localization performance
variation corresponding to a homogeneous model, which is a model obtained by converting
the anatomical human body model into a uniform homogenous tissue. We then compare
the effect of the model inhomogeneity, cardiac volume, and cardiac orientation on the
localization accuracy with that of the previously mentioned human body model. The novel
feature of our formulation is that it estimates not only the current source location but also
the current direction. For a time-domain ECG waveform, the method is augmented with a
Kalman filter to improve the accuracy of the localization.

2. Materials and Methods

The proposed method consists of three main steps. First, we solve the ECG forward
problem using an equivalent current source with an electric dipole. An LFM is then
constructed through an evaluation of the forward problem, and the ECG source is estimated
based on the LFM with an OMP. Finally, the estimated source location is corrected by a
Kalman filter considering the estimated ECG source as multiple time data. A depiction of
the proposed method is presented in Figure 1.

Figure 1. Schematic explanation of the proposed method for cardiac current source estimation.

2.1. Whole-body Models

A human anatomical model named TARO, which has approximately the mean size
and weight of a Japanese adult male, is used in this study [33]. This model consists
of 51 anatomical tissues or organs, including the skin, muscle, bone, and heart, with a
resolution of 2 mm. In TARO, the heart is represented by only one tissue; the atrium
and ventricle are not explicitly identified. The electrical conductivity of the TARO model
(Table 1) is computed based on the 4-Cole–Cole model at 1 Hz; the conductivity of the skin
is assigned a value of 0.1 S/m [34,35]. Moreover, a homogeneous whole-body model created
by changing the structure of TARO into a single homogenous tissue is also considered for
comparison. The conductivity of a single homogeneous tissue is assigned as 2/3 that of



Sensors 2021, 21, 4275 4 of 18

the muscle tissue. Figure 2 displays the coronal and sagittal cross-sectional slices of the
volume conductor models used in this study.

It is essential to assign an appropriate conductivity distribution to the volume conduc-
tor model [36]. Although extremely low skin conductivities have been reported in specific
studies, in the present study, the conductivity of the skin is assigned as 0.1 S/m [35]. Lower
values could correspond to the stratum corneum [37] and are thus inappropriate to be
used here.

Table 1. Conductivity of human tissues.

Tissues Conductivity (S/m) Tissues Conductivity (S/m)

Adrenal 0.20 Hypothalamus 0.02
Air 0.00 Internal air 0.00
Bile 1.40 Kidneys 0.05

Bladder 0.20 Lens 0.30
Blood 0.70 Ligaments 0.25

Bone (cancellous) 0.07 Liver 0.02
Bone (cortical) 0.02 Lung 0.20

Cartilage 0.15 Muscle 0.20
Cerebellum 0.04 Nerve 0.01

Cerebrospinal fluid 2.00 Pancreas 0.50
Colon 0.01 Seminal capsule 0.20

Content of the large intestine 0.20 Skin 0.10
Content of the small intestine 0.20 Small intestine 0.50

Content of the stomach 0.20 Spleen 0.03
Cornea 0.40 Stomach 0.50

Corpus spongiosum 0.20 Tendon 0.25
Diaphragma sellae 0.20 Testicle 0.20

Duodenum 0.50 Testis prostate 0.40
Esophagus 0.50 Thalamus 0.02

Fat 0.04 Thyroid thymus 0.50
Gall bladder 0.90 Tongue 0.25

Glandula pinealis 0.02 Tooth 0.02
Glandula salivaria 0.20 Trachea 0.30
Glandula pituitaria 0.02 Urine 0.70

Gray matter 0.02 Vitreous humor 1.50
Heart 0.05 White matter 0.02

Figure 2. Coronal (left) and sagittal (right) cross-sectional slices of (a) TARO and (b) its homogenized
models.
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2.2. Solving the Forward Problem

A single electric dipole with a 2 mm (1 voxel) length, which is equivalent to the
cardiac current source, is simulated. This setup is a typical assumption of an ECG forward
problem [1,17]. Because the dominant frequency component of the cardiac action potential
is the order of 1 Hz [1,38]. Thus, the displacement current can be ignored, which is much
less than the applicable lower frequency of 100 kHz [39]. This is an estimate of the quasi-
static regime in biological tissue. In this study, we compute the potentials in the analysis
area using the SPFD method, which is a fast computational method for biological tissues
in the frequency domain. Because of the discretization of the whole region into voxels,
anatomical human body models can be easily used [40,41].

The scalar potential ϕ induced in the volume conductor is given by Poisson’s equation:{
∇ · (σ∇φ) = −∇ · J in Ω
(σ∇φ) · nB = 0 on BS

, (1)

where σ, J, nB, Ω, and Bs are the electrical conductivity of biological tissue, current density,
unit vector outwardly normal to the body surface, volume of biological tissues, and model
surface, respectively. Based on quasi-static approximation [42], the following equation can
be obtained by discretizing Equation (1):(

6

∑
n=1

Sn

)
φ0 −

6

∑
n=1

Snφn = − ∂

∂t
q, (2)

where n, ϕn, ω, and q denote the node indexes, scalar potential at the nth node, angular
frequency, charge at node “0”, respectively. Sn is edge conductance from the nth node to the
0 node, which is derived from the tissue conductivity of the surrounding voxels. The current
flowing from one node to its neighboring node along the side of the voxels is derived by
defining the scalar potentials at each node of a voxel. This branch current includes a scalar
potential resulting from the applied electric charge and impedance between the nodes.
Simultaneous equations are derived using Kirchhoff’s current law. The scalar potentials
are solved iteratively using the successive over-relaxation (SOR) with multi-grid methods
as a preconditioner [43]. There are six multigrid levels to reduce the time required for the
iterative calculations, which are continued until the relative residual is less than 10−6.

2.3. Location of Cardiac Source

An LFM is a projection matrix defined by the ratio of the potential measured at the M
electrodes and the equivalent current density at N known myocardium points (voxels) [19];
it is expressed through the following equation:

L · j = Φ (3)

where L, j, and Φ are the lead field matrix of size M × 3N, current density vector of 3N × 1,
and potential vector of M × 1, respectively. We selected nine electrode (observation) points
corresponding to the electrode positions of the standard 12-lead ECG located on the chest
and limbs of the human model. Here, L is constructed by solving the forward problem
described in Section 2.2. First, the potential vector Φ = [φ1 φ2 · · · φM]T and current density
in the myocardium for a single electric dipole of unit magnitude oriented in the x-direction
as an input source are calculated using the SPFD method. The potential vector is then
assigned as an LFM column vector; for the other (N − 1) voxels and orthogonal directions,
we follow the same procedure. The LFM follows the following equation:

L = [L1x · · ·LNxL1y · · ·LNyL1z · · ·LNz]

=

[
Φ1

‖j1
xanode‖

· · · ΦN

‖jN
xanode‖

Φ1

‖j1
yanode‖

· · · ΦN

‖jN
yanode‖

Φ1

‖j1
zanode‖

· · · Φ1

‖j1
zanode‖

]
(4)
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where jxanode , jyanode , and jzanode are the current density at the anode point in each base direction.
During this procedure, a set of 909 points are selected at a 6 mm interval distance,

assuming that all six contact surfaces of the cardiac tissue voxel were adjacent to the cardiac
tissue. Figure 3 displays the analysis points for the forward problem.

Figure 3. All points of forward problem analysis. The black dots represent the positions of the
analysis points over a volume rendering of the TARO heart model.

It is well known that there is no unique solution to Equation (3) because the num-
ber of electrodes is extremely small compared to the size of the current density vec-
tor. Thus, we represent the electrical activity of the heart within sparse time/spatial
domains [44–46]. The equivalent cardiac source is localized by the OMP, which is a sparse
modeling technique [31]. Table 2 presents the pseudocode of the proposed algorithm. The
basic idea of this algorithm is to construct a sparse vector by selecting the most plausible
basis vector from the dictionary matrix. Using this approach, a sparse current density ĵ can
be calculated from L, which corresponds to the dictionary matrix. The cost function can be
expressed through the following equation:

^
j(î) = argmin

j
‖L · j−Φ‖2

2 subject to supp
{

^
j
}
⊂ S, (5)

where S is a set of support vectors.

Table 2. Pseudocode of proposed algorithm using matching pursuit.

Description Code

Set L as in Equation (4) for i = 1:3N
corrcoe f (i) = Φ×Li

‖Φ‖‖Li‖
end for

Estimated source location: î = arg max
i

corrcoe f (i)

Support vector: L̂ = [Lîx, Lîy, Lîz]

Current density: ĵ(î) = L̂+ ·Φ

As indicated in Table 2, we solve Equation (5) through the pseudoinverse L̂+ using
the Moore–Penrose pseudoinverse [47].

2.4. Simulation Protocol

A small electric dipole 2 mm in length, when assuming the electrical activity of the
heart, is placed in the cardiac tissue at a randomly selected position rt. The potential vector
Φ and current density in the myocardium are calculated using the SPFD method. Gaussian
noise is added to Φ corresponding to signal-to-noise ratios (SNRs) of 0, 10, 20, 30, and ∞
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[dB]. Finally, the estimated source location r̂ is derived from the OMP algorithm mentioned
in Section 2.3. We then define LE and direction error (DE) of the current density as follows:

LE =

∥∥∥∥^
r− rt

∥∥∥∥, (6)

DE =arccos


^
j · jtanode∥∥∥∥^
j
∥∥∥∥∥∥∥jtanode

∥∥∥
, (7)

where jtanode is the current density at the anode point of a test dipole. The average esti-
mation error and standard deviation are then calculated as an evaluation metric for the
localization accuracy.

2.5. Kalman Filtering

For a realistic cardiac source estimation, the input is ECG signals. Adapting the
Kalman filter corrects the estimated localization for multiple time data such as an ECG
signal using a state-space model.

Assuming that the ventricular conduction velocity is constant, the motion of the source
is described by the discrete state-space model as follows:{

x(t) = x(t− 1) + dt · u(t) + W
r̂(t) = x(t) + V

, (8)

where x, r̂, u, W, and V are the true source location, source location estimated by OMP,
direction vector of ventricular conduction velocity, process noise, and observation noise,
respectively. We assume that process and observation noise follow a Gaussian probability
distribution with zero mean, and their variances are Q and R. Here, Q is the variance of the
LE at 100 test dipole sources, and R is the variance of the estimated localization by randomly
extracting ten databases of 500 points from the LFM. The input u(t) is calculated using the
current density vector ĵ estimated by OMP and the ventricular conduction velocity and is
expressed through the following equation:

u(t) = vventricular · ĵ(t)/
∥∥ĵ(t)

∥∥, (9)

where vventricular is 1.9 m/s [1,38]. The source location x̂− is predicted from the noise-free
case of the described state-space model. As indicated in Table 3, an iterative procedure is
applied to correct the estimated source locations using Kalman filtering.

Table 3. Pseudocode for estimated localization correction using Kalman filtering.

Description Code

Initialize variance-covariance matrix: P(0) = Q
Initialize quantity of state: x̂−(0) = [AV− node location]

for t = 1:N

Prediction step: x̂−(t) = x̂−(t− 1) + dt · u(t)
P−(t) = P(t− 1) + dt2 ·Q

Update step:
K(t) = P−(t)/P−(t) + R
P(t) = (I−K(t))P−(t)

x̂(t) = x̂−(t) + K(t)(r̂(t)− x̂−(t))
end for

3. Results

In the forward problem, the electrical potential over the whole body can be easily
computed with a relatively low computational cost if the geometric multigrid method is
applied. The average computational time required for each (dipole) source was approxi-
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mately 60 s with an Intel Xeon Gold-6130 @ 2.10 GHz running CentOS 7.5 (32 cores). Thus,
the total time required to develop the LFM was approximately 2700 min (900 locations for
three rectangular directions). The post-processing time required for estimating the cardiac
source location was negligible.

3.1. Determining Criteria for the Number of Test Dipoles

Figure 4 displays the estimation accuracy for different numbers of randomly selected
test dipoles with the inhomogeneous model. The mean estimated LE and standard devia-
tion are calculated with the estimation results of each test dipole. It can be confirmed that
the mean accuracy remained at the same level after the number of test dipoles was greater
than approximately 100 (at less than 2 mm). Thus, we set the number of test dipoles to 100
as the criteria and evaluated the estimation accuracy in the following sections.

Figure 4. Estimated accuracy for each number of test dipoles with SNR = ∞ dB.

3.2. Evaluation of Estimation Performance

Two sets of the 100 test dipoles are estimated using an LFM, constructed of the homo-
geneous and the inhomogeneous models. Table 4 presents the localization performance
with SNR = ∞ [dB]. Figure 5 displays a visualization of the LE and DE for each of the
100 test dipoles. As indicated in Figure 5, the LEs and DEs are typically less than 10 mm
and 10◦, respectively, whereas clear differences are observed for certain locations.

Figure 6a displays the localization characteristics of the homogeneous model that can
be localized regardless of the target position to be estimated. As indicated in Figure 6b, it is
clear that the LE is maximum at the center of the cardiac tissue adjacent to the blood and
lung, where the conductivity contrast is high. It can be confirmed from Figure 6a,b that the
error in the homogenized model is small. Figure 7 displays the average LE for SNR = 0,
10, 20, 30, and ∞ dB. The added noise was white Gaussian noise, and 1000 patterns were
repeated. As indicated in Figure 7, TARO and its homogenized model have a comparable
LE for an SNR less than 10 dB.

Table 4. Statistics of localization performance with SNR = ∞.

LE (mm) DE (◦)
Homogeneous 5.01 ± 4.07 1.91 ± 2.09

Inhomogeneous 12.64 ± 11.35 9.93 ± 11.67
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Figure 5. Relationship between LE and DE for each model with SNR = ∞.

Figure 6. Visualized LE for each of 100 test dipoles: (a) homogeneous and (b) inhomogeneous.

Figure 7. Average LE for different SNRs. Error bars represent the standard deviation.
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3.3. Sensitivity Due to Cardiac Modeling

We next investigated the personalization of the proposed method. A demonstration
was conducted while assuming cardiac tissue in different potential positions in a single
beat frame. The cardiac source was estimated using the LFM of the original TARO model
obtained in the previous section. This provides a better understanding of the accuracy of
the proposed method at different cardiac positions and can simulate realistic situations.
The cardiac tissue was rotated from −10◦ to 10◦ with respect to the z-axis. Moreover, the
cardiac tissue was scaled to represent expanded/contracted volumes with a factor ranging
from 90% to 110% [48].

Figures 8 and 9 display the variations in the cardiac model for TARO with rotation
and scaling operations. Any potential vacant volume produced after the cardiac affine
transformation was filled with lung-like tissue. Figures 10 and 11 display the variability of
the mean estimated accuracy for 100 test dipoles with the rotated and scaled cardiac tissue.
From Figure 10, it can be observed that the estimation accuracy deteriorates depending on
the rotation angle. Moreover, Figure 11 indicates that there is minimal DE variability with
respect to the scaling of the cardiac volume.

Figure 8. Variations of TARO cardiac model: rotation with ±2, ±5, and ±10 degrees displayed in
ascending order from left to right. Upper images are axial cross-sectional slices, and bottom images
are volume renderings.

Figure 9. Variations in TARO cardiac model: scaling with a value of ±2%, ±5%, and ±10% of
the original volume displayed in ascending order from left to right. Upper images are coronal
cross-sectional slices, and bottom images are volume renderings.
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Figure 10. Variability of estimation accuracy for each rotation angle of heart with SNR = ∞. Error
bars represent standard deviation over 100 test dipoles.

Figure 11. Variability of estimation accuracy for each scaling of heart with SNR = ∞. Error bars
represent standard deviation over 100 test dipoles.

3.4. Demonstration of Source Localization Using Pseudo-ECG

Figure 12a displays the multiple cardiac sources estimated using the proposed method
with a pseudo-ECG. The pseudo-ECG is a 12-lead waveform developed in our previous
study [17] and different from single isolated points of dipoles used in the earlier Sections.
A demonstration was conducted at 34 ms of an R-wave. The green vectors in Figure 12b
illustrate the estimated direction of the electric dipole source by the proposed method. The
red vectors in Figure 12b indicate how the estimated direction of the electric dipole source
by the proposed method can be compensated by Kalman filtering. A more consistent track
path, which is closer to the ideal pathway, can be clearly observed. Table 5 displays the
localization performance of the estimation results for the OMP with and without Kalman
filtering. From these results, it is clear that the Kalman filter adaptation significantly
improves the estimation results.

The performance of Kalman filtering was further evaluated by adding 1000 patterns
of white Gaussian noise with SNR = 20 dB to the R-wave, as indicated in Figure 13. The
LE of the R-wave time step is illustrated in Figure 13. It can be observed that the LE is
extremely small in the central part of the time frame; the standard deviation demonstrates
relatively smaller values of the whole signal. These results indicate that Kalman filtering
compensates for variations in the OMP results and provides robust and stable estimation
results. The performance of Kalman filtering with the rotated and scaled cardiac models is
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displayed in Figure 14. These results demonstrated that the estimation accuracy depends
on the cardiac state during a beating motion.

Figure 12. (a) ECG waveform in lead II constructed based on [16] and (b) multiple source localization
corresponding to R-wave. Blue dots represent an ideal pathway. Red and green color vectors
represent the estimated direction of electric dipole source at an elapsed time corresponding to OMP
with and without Kalman filtering, respectively.

Table 5. Localization performance error with and without Kalman filtering.

RMSE
Mean Distance Error (mm)

x-Axis y-Axis z-Axis

OMP w/o Kalman 4.63 10.37 13.19 15.30

OMP w/ Kalman 3.31 6.12 4.40 7.26

Figure 13. LE on R-wave time step with SNR = 20 dB. Error bars represent standard deviation.
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Figure 14. LE on R-wave for each rotation angle and scaling of heart. Error bars represent
standard deviation.

4. Discussion

In this study, we proposed a new method of ECG source localization that considers a
realistically shaped and inhomogeneous human whole-body model based on an OMP. One
feature of our method is that it estimates the source location and direction simultaneously.
The estimated result was processed in the time domain using a Kalman filter to improve
the localization performance.

As indicated in Figure 5, the LE was less than 10 mm for more than 90% of the
source positions in the homogeneous model. Moreover, it was confirmed that the DE was
approximately 10◦ or less. For a homogeneous model, the propagation of the potential
only follows the geometry of the volume conductor, and thus, the influence of the tissue
inhomogeneity on the estimation accuracy is excluded. As indicated in Figure 6b, the
LE varied for different places because the tissue surrounding the cardiac tissue differs
depending on the position of the estimation target. In particular, the high conductivity of
the blood could result in a change in the potential propagation and consequently influence
the estimation accuracy if not modeled accurately. As indicated in Figure 7, the LE was
stable and more accurate when the SNR was 20 dB or greater in the proposed method for
the anatomical model. This suggests that a denoizing technique is required for an SNR
less than 20 dB (see [48,49] for a reduction in the Gaussian noise). However, these LEs are
for single isolated time points of each dipole. Therefore, when multiple time points are
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used, as in ECG signals, the Kalman filter can improve the estimation, as demonstrated in
Section 3.4.

Figure 10 indicates that the proposed method is sensitive to simple rotations of the
cardiac tissue, which depends on the cardiac model used for constructing the LFM. Cardiac
tissue is a moving object whose exact static orientation is difficult to recognize. Thus,
the anatomical models are provided with static phase representation of the cardiac tissue
except for the 4D extended cardiac-torso model [50]. An imaging technique that avoids
spatial artifacts such as the position and angle of the cardiac tissue is necessary for per-
sonalizing the proposed method [51,52]. We applied the proposed method to multiple
source localizations during cardiac activity, as displayed in Figure 12. Mislocalization can
easily occur if the time series is computed as indicated by the green vector in Figure 12b.
However, the physical laws, i.e., the current continuity, must be satisfied. As indicated in
Table 5, the application of a Kalman filter significantly improved the estimation results,
where the state-space model uses estimated directions as input. Thus, improvement of the
localization is supported by the proposed method for an estimation of the current source
location and direction simultaneously. Note that the estimation of the current direction is
stable, unlike the location, which is influenced by the model inhomogeneity.

We compared our localization accuracy with that of a previous study [53,54]. Table 6
summarizes the localization performance of the proposed method, and that reported in
previous studies. Note that the majority of recent papers [8,20,53] have considered a greater
number of electrodes (e.g., 100) to improve the localization accuracy. The minimum LE for
an SNR of greater than 30 dB was approximately 5.0 and 12.6 mm in the homogeneous and
inhomogeneous models, respectively. The latter value is somewhat greater than 10.1 mm,
as reported by Svehlikova et al. [53].

The position of test dipoles in [53] was selected just from the voxels (points) used for
developing transfer matrices, whereas it was selected randomly from all voxels in the heart
volume in our study. In general, the inverse problem for unknown points has a greater
localization error than for known points. Moreover, the input source in [53] is 30 ms of
signal for one estimation point, which may not be suitable for time-series estimation.

The minimum LE in [54] was 4.4 mm. A straightforward comparison is infeasible
because the edge length of the tetrahedral torso model in [54] is 6.7 ± 1.5 mm, whereas
it is 2 mm in our study. In general, models constructed with a lower resolution provide
a greater estimation accuracy, although the definition of exact location inside a single
voxel or tetrahedral is arbitrary. An LE less than the tetrahedral dimension could result
in zero errors (e.g., [55] for localization of an electroencephalogram source). Moreover, as
described in [54], the skin, fat, and muscle are homogenized as one tissue. In our previous
study [56] on EEG (electroencephalography), we demonstrated that tissue inhomogeneity
may cause the localization error, which is attributable to the abrupt change of electrical
conductivity). Thus the inhomogeneity in this study and that in [54] are different.

The maximum error in our estimation was 54 mm, which is comparable to 60 mm, as
reported in [54]. The worst estimation was observed in the left ventricle summit region
and at the endocardial apex of the right ventricle in [54], whereas it was near the surface of
the central part of the heart in our study. As indicated in Figure 6b, the estimation error in
the corresponding region would be less than 20 mm. In our study, this difference can be
attributed to the higher inhomogeneity of the conductivity. In general, our computational
results provide a comparable or somewhat better accuracy than the previous study. This
computational approach is thus applicable not only for accurate localization but also for
the design of wearable ECG sensing systems. The limitation of this study is that, as is
similar to other computational studies, personalized human body models are needed to
apply measured results. Thus, further study on the morphing human body models would
be needed [57,58].
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Table 6. Localization performance and specifications of the proposed method and related work.

(Proposed) Svehlikova, 2018. [53] Potyagaylo, 2016. [54]

Source dipole dipole double layer

Electrode 9 100 9

Resolution (mm) 2.0 - 6.7 ± 1.5

SNR (dB) ∞ ∞ ∞

Localization error (mm) 12.64 ± 11.35 10.13 ± 5.13 4.4 ± 5.4

Number of tissue 51 12 12

5. Conclusions

A localization method for determining cardiac sources was proposed by combining
an electrical analysis of a realistic human body as the forward problem and a sparse
reconstruction method as the inverse problem. For a 12-lead electrocardiogram system,
a sensitivity analysis of the localization to the cardiac volume, tilted angle, and model
inhomogeneity was conducted. Once an LFM was constructed, the estimation of the source
location was virtually instantaneous.

For a noise-free condition, the average LE for an isolated time point was 12.6 mm,
which is comparable to or somewhat superior to that reported in a previous study. Time-
series source localization with Kalman filtering for the estimated location in terms of
estimated current direction and location demonstrated that source mislocalization could
be compensated, suggesting the effectiveness of the proposed method. For the ECG
R-wave, the mean distance error was reduced to less than 7.3 mm using the proposed
method. This highly accurate estimation was achieved because the proposed approach
uses an estimation of the current direction, which is less sensitive to different error sources.
Considering the physical properties of the human body with Kalman filtering enables
highly accurate estimation of the cardiac electric signal source location and direction. Our
proposal is applicable to the electrode configuration in wearable sensing systems where
non-conventional locations would be more essential.
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