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The role of functional data in interpreting the 
effects of genetic variation
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ABSTRACT Progress in DNA-sequencing technologies has provided a catalogue of millions 
of DNA variants in the human population, but characterization of the functional effects of 
these variants has lagged far behind. For example, sequencing of tumor samples is driving an 
urgent need to classify whether or not mutations seen in cancers affect disease progression 
or treatment effectiveness or instead are benign. Furthermore, mutations can interact with 
genetic background and with environmental effects. A new approach, termed deep muta-
tional scanning, has enabled the quantitative assessment of the effects of thousands of muta-
tions in a protein. However, this type of experiment is carried out in model organisms, tissue 
culture, or in vitro; typically addresses only a single biochemical function of a protein; and is 
generally performed under a single condition. The current challenge lies in using these func-
tional data to generate useful models for the phenotypic consequences of genetic variation 
in humans.

Genome sequences are available for many individual humans, but 
these constitute only one level of data. The blueprints for cellular 
structure and behavior are not stored solely in the linear sequence 
of the genome, but embedded within the network of interacting 
molecular components. Via current sequencing technologies, we 
have become accomplished in determining genotype. One conse-
quence is that, at the protein level, we can readily establish the dif-
ferences in protein sequences present in any person or during any 
disease process. Such a difference may lead to a molecular pheno-
type, whereby a protein is changed in its activity, stability, localiza-
tion, or other property. This molecular change can lead, in turn, to a 
cellular phenotype, whereby the cell may alter how it divides, re-
sponds to signals, repairs its DNA, or carries out some other pro-
cess. Finally, the cellular change can lead to an organismal pheno-
type, such as cancer. However, the complex hierarchical network of 

interacting components makes it exceedingly difficult to predict 
with confidence the effect of a mutation on an organism’s pheno-
type, even though a small change in the genome can have profound 
effects on development, morphology, behavior, and disease.

The many attempts to computationally predict phenotype from 
genotype have led to remarkable improvements but have not 
achieved sufficient accuracy for use in a clinical setting. “Prediction” 
here is meant to include both the ability to accurately label individ-
ual variants as either deleterious or benign and the ability to com-
bine individual variant effects into larger models of phenotypic ef-
fect, though most efforts to date have focused on the former type of 
prediction. These approaches use evolutionary conservation-based 
metrics (Grantham, 1974; Ng and Henikoff, 2001) or apply methods 
such as machine learning to combine diverse features of a variant, 
including conservation, amino acid chemical similarity, and sur-
rounding sequence features into statistical models of variant effect 
(Adzhubei et al., 2010). These models do not predict risk for a spe-
cific disease but instead are trained to label variants as either delete-
rious or benign by using data either from large databases of indi-
vidually annotated disease genes (e.g., ClinVar; Landrum et al., 
2014), which are expected to be deleterious, or from lists of com-
mon variants or lists of fixed but recently derived human alleles, 
which both are expected to be benign (Kircher et al., 2014). The 
models are therefore limited by the quality and quantity of the 
labeled variants used during training and will perform poorly for 
diseases or for types of detrimental variants that are not well repre-
sented in the training data (Li et al., 2014). Most of these models 
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ant’s phenotypic effect size and its effect on reproductive fitness 
(Henn et al., 2015). When a disease strongly affects reproductive 
success, rare, large-effect variants are more likely to be the major 
cause of the disease (Agarwala et al., 2013).

Even among variants identified by their association with disease, 
our understanding is poor. The Human Gene Mutation Database, 
which contains only such variants, is rapidly increasing beyond its 
current 140,000 mutations, and the vast majority have not been 
functionally characterized (Stenson et al., 2014). Determining the 
phenotypic consequences of all these variants one at a time using 
site-directed mutagenesis is obviously infeasible. However, there is a 
strong incentive to functionally characterize variants that are inacces-
sible to association studies, as many of them likely affect disease risk.

The direct functional characterization of genetic variation is 
achieved through mutagenesis, but mutagenesis experiments have 
typically been low throughput, sometimes analyzing only a few mu-
tations. These studies seek to uncover more about a protein’s func-
tion or to characterize mutations observed in the context of human 
disease. However, for both of these goals, the utility of mutagenesis 
has been limited by its throughput. It is often unknown which substi-
tutions will be most informative, and there are too many potential 
mutations in every gene and regulatory element to perform another 
experiment each time a new mutation is observed in humans. Deep 
mutational scanning (reviewed in Fowler and Fields, 2014) increases 
the throughput of mutagenesis studies such that tens of thousands 
of genotype–phenotype associations can be assayed in a single 
experiment. For most proteins, this approach can analyze all single–
amino acid substitutions and a large number of double substitutions 
at once. Similar strategies have been developed for DNA regulatory 
elements and for RNA (Patwardhan et al., 2009)

A deep mutational scan begins with the synthesis of a pool of 
mutants. The mutations can be introduced by “doped” oligonucle-
otides, in which random mutations are introduced during gene syn-
thesis, by error-prone PCR, or by synthesis of designed oligonucle-
otide primers that introduce defined mutations (Fowler and Fields, 
2014). The pool of mutations must be introduced into an expression 
system in which each mutant gene and its encoded protein are 
physically linked. Both cellular and phage-based expression can 
meet this requirement. Finally, a selective pressure is applied, unique 
to the protein function being assayed, such that the activity of the 
mutant proteins can be differentiated. For example, cells expressing 
the protein can be dependent on it for normal growth. Cells harbor-
ing detrimental mutants thus grow more slowly. This difference in 
growth rate can be measured by high-throughput sequencing.

The steps involved include first sequencing the pool of mutants 
at some initial time point and determining the frequency of each 
mutant in the pool (number of reads for mutant X/total number of 
reads). Second, the pool of mutants is sequenced after a period of 
selective growth, with the frequency of each mutant again deter-
mined by sequencing. Third, the change in frequency of each mu-
tant from the initial to the final time point is calculated. Mutants with 
higher growth rates will increase in frequency, and those with lower 
growth rates will decrease in frequency. The data can be analyzed 
statistically by programs like Enrich (Fowler et al., 2011).

Other methods for differentiating between mutants in the pool 
include linking protein function to the expression of an essential 
gene or to a fluorescent readout, in which case flow cytometry can be 
used to separate functional and nonfunctional mutants. Regardless 
of the details of the selective pressure, the approach leverages the 
ability of high-throughput sequencing to provide the frequency of 
each mutant in a large pool, thus greatly increasing the throughput 
of mutagenesis studies.

also rely heavily on measures of evolutionary constraint that might 
not be constant at a genetic locus across the related sequences 
used in the alignment. For example, sites that have only recently in 
evolutionary history either become important or lost their impor-
tance for organismal function will lead to false negatives and false 
positives, respectively, when using distantly related species or se-
quences to estimate evolutionary constraint. In addition, the rela-
tionship between phenotypic effect and evolutionary constraint is 
complex, as many phenotypes, including some common diseases, 
might not have a large effect on reproductive success if they cause 
morbidity and mortality only later in life. Partly for these reasons, 
false-positive and false-negative rates are too high to use these pre-
dictions in the context of human disease (Dong et al., 2015).

Even though the high standard of clinical utility has not been 
met, these models still perform well, hinting that a more accurate 
prediction of phenotype from genotype might be possible. To 
achieve this goal, we will need to experimentally measure the phe-
notypic effects of genetic variation in a diversity of cellular and envi-
ronmental contexts. The resulting large data sets of functional mea-
surements will serve as both input variables and as more dense sets 
of output variables in the training of statistical models, allowing us 
to predict more accurately the effect of genetic variation on a wide 
range of both molecular and organismal phenotypes. The accuracy 
of genotype-based predictions will always be constrained by the 
heritability of the predicted trait—the amount of phenotypic varia-
tion that is attributable to genotypic variation. For this reason, func-
tional data on genetic variation will be most informative for highly 
heritable traits, and these are the traits that we should focus on first.

CONSTRUCTING A GENOTYPE–PHENOTYPE MAP BY 
DEEP MUTATIONAL SCANNING
Genotype–phenotype maps were classically derived from forward 
genetic screens, in which random mutations introduced into a ge-
nome yielded interesting phenotypes. The mutations were localized 
within the genome, and then the corresponding genes were identi-
fied, a process that could take months to years. Reverse genetics, in 
which defined genes are first mutated and the effects of the muta-
tions are then tested, sped up the process of mapping genotype to 
phenotype. However, we now know that that there are hundreds to 
thousands of variants in each gene in humans alive today, with more 
than 97 million single-nucleotide variants catalogued to date 
(dbSNP build 144, www.ncbi.nlm.nih.gov/news/06-09-2015-dbsnp 
-build-144). There is no indication yet of a plateau in the discovery of 
new variants. Most human variation arose recently and is rare, with 
99% of variants present in <1% of individuals (Exome Aggregation 
Consortium, 2015; Fu et al., 2013). Each person has, on average, 
around 40–90 de novo mutations (Kong et al., 2012; Besenbacher 
et al., 2015); thus every possible point mutation in the genome—or 
at least those compatible with life—may have occurred among the 
seven billion humans on the planet.

Establishing the contribution of rare variation to disease is diffi-
cult with most existing methodologies. An examination of the power 
of whole-genome resequencing-association studies to identify rare 
variants of modest effect (1% of phenotypic variance explained) 
showed that both gene-based and single variant–based methods 
are significantly underpowered even with tens of thousands of indi-
viduals (Moutsianas et al., 2015). Worse, purifying selection keeps 
frequencies of most detrimental variants low, so these rare variants 
may be enriched for detrimental effects (Gibson, 2012; Tennessen 
et al., 2012). Whether rare, large-effect variants or common, moder-
ate-effect variants are more likely to explain the heritability of com-
mon diseases depends strongly on the relationship between a vari-
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effect prediction algorithms. Thus useful, gene-specific information 
from assaying variants directly is not captured by models based 
largely on evolutionary data. Many potential variants have the capac-
ity to be damaging in the context of cancer, as the model predicts 
that roughly 20% of the assayed mutations in the RING domain 
would show impaired HDR activity.

As more of the variants seen in large-scale cancer sequencing 
projects are subjected to direct functional assessment, models that 
integrate these results should provide better predictions and high-
light areas of incomplete understanding. Statistical models could be 
used to integrate these direct measurements with other evolution-
ary and functional data to predict deleteriousness. Alternatively, for 
molecular phenotypes that have strong correlations with disease, 
such as protein instability, functional scores from these assays could 
be used as the target of prediction. The validated disease variants 
currently used to train some variant effect prediction models are 
spread sparsely throughout the genome, and their collection is sub-
ject to ascertainment biases, resulting in models that are not likely 
generalizable. Direct functional measurements would serve as much 
more dense gold standards for training.

The eventual objective is to advance beyond predicting only 
the molecular effects of single variants and to attempt to predict 
individuals’ phenotypes from their genome sequences. To this 
end, direct functional measurements could be used alongside 
data from genotype–phenotype association studies to predict dis-
ease risk, prognosis, or treatment effectiveness. Several groups 
have recently used mixed linear models on genotype–phenotype 
association data from large association studies to estimate the to-
tal contribution of genetic variation across a large set of genetic 
variants to phenotypic variation (Yang et al., 2011). The resulting 
model, which takes into account the marginal effects of all variants 
simultaneously, explains more of the heritability of complex traits 
than the much smaller set of individually significantly associated 
variants and can be used to predict phenotype from the identity of 
genotyped single-nucleotide polymorphisms (SNPs). However, 
the prediction accuracy is still low, and the phenotypic variance 
that is accounted for is still much lower than the actual heritability, 
as there is sampling error when estimating the effect of each SNP, 
and this problem will likely require large increases in sample size 
to reduce, especially when many contributing variants are rare 
(Chatterjee et al., 2013).

Deep mutational scanning data could potentially improve SNP-
based prediction models by providing information as to how each 
SNP marginally adds to phenotypic variation. An additional set of 
parameters, one for each assay, could be added, with each param-
eter representing the contribution of the functional score to the 
phenotypic variation. These parameters would replace the corre-
sponding parameters for the variance explained by SNP presence. 
In cancer-resequencing studies, the resulting model could make use 
of the presence of rare SNPs that would otherwise not contribute to 
the prediction. Other types of models, like random forests and neu-
ral networks, which can implicitly take into account interactions be-
tween the molecular function results, might yield even better pre-
dictions, providing that the prediction target population is sufficiently 
similar to the training population (Quang et al., 2015; Stephan et al., 
2015). A major challenge in collecting the data will be the choice of 
phenotypes to assay. It will be essential to determine the types of 
data (e.g., stability-based, enzymatic, or expression-based) that are 
most predictive, so as to prioritize experimental efforts and avoid 
overfitting by adding unhelpful data. This goal could be facilitated 
by using methods that rank model inputs by their contribution to the 
model’s accuracy (Saeys et al., 2007).

GENOTYPE–PHENOTYPE MAPS IN DISEASE
A compelling reason to create genotype–phenotype maps is that 
these data will be valuable in diagnosing, treating, and understand-
ing disease. These maps seem especially critical in cancer, a disease 
characterized by the accumulation of novel changes in genotype. 
Large projects have coordinated the extensive sequencing and tran-
scriptional analysis of thousands of samples from many of the most 
common and deadly types of cancer (McLendon et al., 2008; Cancer 
Genome Atlas Research Network, 2013). The rationale for these 
studies, which require the coordinated efforts of clinicians, patholo-
gists, sequencing centers, and bioinformaticians, is threefold. First, 
finding genes frequently mutated in cancers sheds light on the 
mechanisms of tumorigenesis, with frequently mutated genes often 
clustering in a small number of pathways (Vogelstein et al., 2013). 
Second, the molecular profiling of many samples from one type of 
cancer, previously typed solely by histology, may reveal multiple 
subtypes with different clinical properties. For example, gene ex-
pression profiles are predictive of prognosis in breast cancer (Millar 
et al., 2009). Finally, molecular characterization may lead to the dis-
covery of predictive biomarkers that can help guide treatment deci-
sions. For example, cancers that express certain proteins respond 
better to treatment with drugs that inhibit these proteins (Weigel 
and Dowsett, 2010). In addition, mutations in drug targets may pre-
dict response to the drug (Traina et al., 2014).

Despite these few successes, the search for new prognostic and 
predictive biomarkers, especially those personalized for individual 
patients, is complicated by the numbers of rare mutations in cancer 
and the difficulties in interpreting their effects. All cancers are het-
erogeneous mixes of clones, each with up to hundreds of de novo 
nonsynonymous mutations (Vogelstein et al., 2013). We currently try 
to assign causative mutations by finding genes or networks of genes 
associated with cancer progression or risk and using predictive tools 
to stratify mutations occurring in those genes. This approach can 
miss rare variants of large effect as well as variants that are patho-
genic only when combined. Even a recurrent mutation may not be 
clinically important. For example, large numbers of mutations in a 
panel of genes recurrently mutated in skin cancers were found in 
histologically normal skin tissue, suggesting that a cancer-inducing 
environment or some combination of these mutations is necessary 
for complete transformation (Martincorena et al., 2015). Estimates 
that it may take more than a decade for tumor expansion to occur 
after the initiating driver mutation indicate that the multiple changes 
required for malignancy accumulate slowly (Yachida et al., 2010). 
However, tumor expansion likely occurs in a quick, punctuated man-
ner without obvious intermediates between normal and bulk tumor 
cells (Navin et al., 2011), complicating efforts to determine which 
variants contribute to the tumor phenotype. It would clearly be use-
ful in prioritizing drug targets and assessing risk to know the mar-
ginal fitness advantage conferred to a cancer by each genomic 
change.

In this vein, deep mutational scanning experiments have advan-
tages over association tests. First and foremost, the functional effect 
of all single-nucleotide variants can be assayed directly without re-
gard to their frequency in the population. An analysis of the breast 
cancer susceptibility gene, BRCA1, measured the effect of thousands 
of mutations in the BRCA1 RING domain on two biochemical func-
tions: binding to the BARD1 protein and E3 ubiquitin ligase activity 
(Starita et al., 2015). These functional scores were used as the inputs 
to model a third function, homology-directed DNA repair (HDR), 
which is difficult to measure in bulk but correlates best with cancer 
susceptibility. The model captures roughly 70% of the variation in 
HDR scores and greatly outperforms commonly used biological 
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Finally, changes in cell type, temperature, nutrients, chemical 
messengers, and drug treatments, as well as the presence of other 
organisms, can also mask or unmask a phenotypic change caused 
by a mutation. Deep mutational scanning experiments performed 
under more than one condition have shown that these gene-by-en-
vironment interactions are common (Guy et al., 2014; Stiffler et al., 
2015).

It is still unclear how much gene-by-gene and gene-by-environ-
ment interactions contribute to phenotype. For some phenotypes, 
like the probability that a given splicing event occurs, epistasis be-
tween sequence features and cell type dependence are both impor-
tant enough that accuracy suffers greatly when these interactions 
are not included in phenotype predictions (Xiong et al., 2015). In 
other cases, for example, in single-step enzymatic processes, we 
might expect less dependence on cellular context and less inter-
genic epistasis, though intragenic epistasis might still be significant. 
Deep mutational scanning experiments can functionally character-
ize all single mutants of a given target but only a subset of double 
and triple mutants, so errors in predictive models due to epistasis 
will likely not be overcome by brute force. However, it remains to be 
seen whether the effects of genetic and environmental interactions 
will have an appreciable impact on accuracy.

CONCLUSIONS
The genomic diversity of humanity is staggering, and the genomic 
diversity within cancers greater still. Although only a small fraction of 
this variation may be relevant to any given disease phenotype, iden-
tifying these relevant variants will require functional data for all rare 
variations. High-throughput phenotyping experiments can score 
many thousands of genetic variants for their effects on a diversity of 
molecular properties, but it is unclear which of these properties and 
targets will be most informative when going from molecular to or-
ganismal phenotype. Perhaps the most daunting obstacle is the po-
tential contribution of environmental and genetic interaction terms, 
especially higher-order interaction terms, to phenotype. By combin-
ing diverse types of functional data for genetic variants within a 
structured mathematical model, we can probe the contribution of 
molecular phenotypes to disease phenotypes directly, for both rare 
and common variants. Obtaining high-quality, reproducible func-
tional measurements throughout the genome will require a large, 
coordinated effort across many laboratories, but the effort will be 
well placed if the result is a more interpretable genome.

CONTEXT DEPENDENCE
Mutations do not exist in a vacuum, making the prediction of phe-
notype from genotype even more difficult. Mutations interact with 
other mutations, and they interact with features of the environment, 
such that their effects often depend on context. Consider two muta-
tions in the same gene. If the gene is implicated in a phenotype 
such as growth rate, then we might expect that the combined effect 
of the two mutations on growth rate could be found by adding their 
individual effects. When the actual growth rate differs from this ex-
pectation, then the two mutations display epistasis, described quan-
titatively as how much the double mutant’s growth rate differs from 
the expectation. Several deep mutational scanning experiments 
have demonstrated such intragenic epistasis, both positive and 
negative (Araya et al., 2012; McLaughlin et al., 2012). However, 
these same experiments have shown that the general rule for most 
mutations in a protein is that they do not exhibit epistasis, with the 
additive model providing a good estimate of log-transformed dou-
ble-mutant function.

Epistasis can also occur between two separate genes that both 
affect the same phenotype; for example, the encoded proteins may 
interact with each other or take part in the same cellular process. 
Gene-by-gene epistasis is usually studied through gene deletion, as 
in synthetic lethality screens, but has not been systematically mea-
sured at the level of individual single-nucleotide variants. However, 
a huge number of such interacting variants might exist, given that a 
screen of 75% of yeast gene pairs found 170,000 genetic interac-
tions affecting cell growth (Costanzo et al., 2010). There remain sub-
stantial technical hurdles to analyzing gene-by-gene interactions by 
deep mutational scanning, but these types of interactions have 
been probed via short hairpin RNA screens and have proven to be 
useful for predicting survival and drug response in cancer patients 
based on the genetic architecture of their tumors (Jerby-Arnon 
et al., 2014). This result supports the idea that the specific genetic 
variants unique to a given tumor might render it vulnerable to inhibi-
tion of other genes that interact with those variants, providing a first 
glimpse of the potential utility of predictive models that make use of 
a mix of functional and association data.

Epistasis is not limited to deviations from the expected interac-
tions of just two genetic changes. Higher-order epistasis can occur 
after taking into account epistasis at lower levels (Weinreich et al., 
2013). The fitness of a triple mutant may deviate from expectation 
even if all pairwise epistasis scores are considered, and higher-order 
epistasis coefficients are in many cases as large or larger than pair-
wise epistatic coefficients (Weinreich et al., 2013). Instances of 
higher-order intergenic (as opposed to intragenic) epistasis have 
also been identified (Taylor and Ehrenreich, 2014). With more inter-
acting components, such as those involved in common disease pro-
cesses, there will be an intractable number of even third-order epis-
tasis terms that contribute significantly to phenotype. In Drosophila, 
whole genetic interaction networks can change substantially based 
on genetic background (Chari and Dworkin, 2013). This complexity 
might seem discouraging, but it is unknown to what extent higher-
order interactions play a role in observed human phenotypes. The 
extent to which epistasis affects phenotypic variation among hu-
mans or within tumors depends on the relative frequencies of the 
interacting sites, and there is some evidence that the contribution of 
epistasis, while significant when assayed directly, may play a smaller 
role in human phenotypic variation in complex disease (Hill et al., 
2008). One estimate from the analysis of expression quantitative 
trait loci is that pairwise epistasis explains approximately one-tenth 
the amount of phenotypic variance that additive effects do (Hemani 
et al., 2014).
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