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Abstract
Global vaccination effort and better understanding of treatment strategies provided a ray of hope for improvement in COVID-
19 pandemic, however, in many countries, the disease continues to collect its death toll. The major pathogenic mechanism 
behind severe cases associated with high mortality is the burst of pro-inflammatory cytokines TNF, IL-6, IFNγ and others, 
resulting in multiple organ failure. Although the exact contribution of each cytokine is not clear, we provide an evidence 
that the central mediator of cytokine storm and its devastating consequences may be TNF. This cytokine is known to be 
involved in activated blood clotting, lung damage, insulin resistance, heart failure, and other conditions. A number of cur-
rently available pharmaceutical agents such as monoclonal antibodies and soluble TNF receptors can effectively prevent 
TNF from binding to its receptor(s). Other drugs are known to block NFkB, the major signal transducer molecule used in 
TNF signaling, or to block kinases involved in downstream activation cascades. Some of these medicines have already been 
selected for clinical trials, but more work is needed. A simple, rapid, and inexpensive method of directly monitoring TNF 
levels may be a valuable tool for a timely selection of COVID-19 patients for anti-TNF therapy.
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Introduction

Respiratory distress and activation of blood clotting in 
severe COVID-19 cases result in unusually high mortality 
rates, particularly among people of advanced age and those 
that have comorbidities—cardiovascular or pulmonary dis-
ease, obesity, and diabetes. Severe disease is associated with 
“cytokine storm”, a delayed onset burst of pro-inflammatory 
cytokines in circulation. The cytokines associated with fatal-
ities are TNF, IL-6, IL-8, IFNγ and possibly others [1]. It is 
difficult to identify the pivotal cytokine(s) in this process, 
but some facts argue in favor of TNF.

TNF is involved in pathogenesis 
of comorbidities linked to severe COVID‑19 
disease

Numerous pathologies are associated with elevated TNF 
levels, from autoimmune disorders to sepsis and cancer. In 
the respiratory system, TNF causes bronchial hyperreac-
tivity, narrowing of the airways, damage to the respiratory 
epithelium, stimulation of collagen synthesis and fibrosis 
[2, 3]. Chronic obstructive pulmonary disease (COPD) 
is a known risk factor for severe COVID-19 disease [4]. 
Circulating TNF levels are increased in COPD [5]. The 
role of TNF in this disease has been suggested, and TNF 
inhibition was shown effective in lowering the incidence of 
hospitalization in one study [6] but did not improve health 
status and lung function in the other [7]. However, TNF 
blockage in COVID-19 patients with COPD may be advo-
cated as a measure to reduce additive damage to already 
compromised lungs. In addition, pulmonary fibrosis is 
observed in a significant proportion of patients after acute 
COVID-19 pneumonia [8]. Although the role of TNF in 
this process is not established, there is evidence for TNF 
involvement in a closely related idiopathic pulmonary 
fibrosis [9]. Administration of anti-TNF drugs during the 
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acute phase of infection may subsequently alleviate devel-
opment of this complication.

The effects of TNF on the cardiovascular system are 
also well known. TNF significantly contributes to the 
development of heart failure by direct negative inotropic 
and pro-apoptotic effects on cardiomyocytes, and by other 
mechanisms [10]. TNF is also elevated in patients with 
hypertension [11]. Moreover, TNF levels are increased in 
obesity, and TNF is considered to play a role in insulin 
resistance [12, 13]. All these conditions are risk factors for 
development of severe COVID-19 disease and associated 
mortality or long-term complications.

The ability of TNF to activate tissue factor on endothe-
lial cells and monocytes and induce severe blood clotting 
during infection has been well documented [14–18]. TNF 
also inhibits fibrinolysis by increasing plasminogen acti-
vator inhibitor [19]. Reports on pro-coagulant activities 
induced by IL-6 are scarce [20, 21]. Increased blood clot-
ting observed in COVID-19 patients is a well- documented 
complication requiring anti-coagulant therapy.

Both TNF and IL-6 levels are elevated with age: this 
chronic inflammation termed inflammaging is suggested 
to serve as a biomarker of frailty and mortality in elderly 
population [22]. Age-related loss of muscle mass and 
strength is particularly attributed to the action of TNF 
[23], and exposure of human cells to TNF in vitro can 
induce cell senescence [24]. Strong association of TNF 
with ageing may explain, to some extent, higher incidence 
of severe COVID-19 disease in patients of advanced age. 
Interestingly, mTOR inhibitor has been suggested recently 
for treatment of severe disease based on its ability to alle-
viate cytokine storm [25]. The drug is also known to 
improve longevity and reverse age-related immunosenes-
cence in experimental animals, and its use in older adults 
may prevent age-associated complications of COVID-19 
by poorly understood “rejuvenating” mechanisms [26]. On 
the other hand, the effects of mTOR inhibition may be 
reduced to a direct inhibition of TNF synthesis or signal 
transduction [27, 28].

Pro-inflammatory cytokines TNF, IL-6 and others are 
elevated in major depressive disorder, which is strongly 
associated with COVID-19 infection [29, 30]. TNF block-
ade using adalimumab in patients with rheumatoid arthritis 
with depression reduced serotonin transporter in the brain 
and improved the depression score [31]. On the other hand, 
a number of reports demonstrate anti-inflammatory effect of 
various antidepressants [30, 32]. Of interest is a retrospec-
tive multicenter study reported by a French group demon-
strating that antidepressants reduce the risk of intubation 
and death in hospitalized patients with COVID-19 [33]. At 
least two clinical trials are currently underway to investigate 
the impact of this class of drugs on the disease outcomes 
(NCT04342663, NCT04377308).

Both TNF and IL-6 levels may serve as independent 
predictors of COVID-19 severity. However, only TNF but 
not IL-6 levels were higher in COVID patients with diabe-
tes, hypertension, chronic kidney disease and chronic heart 
failure, thus providing a strong argument of TNF being a 
central factor for severe disease in these individuals [34]. In 
addition, in contrast to TNF, systemically administered IL-6 
is fairly well tolerated [35], again suggesting that elevation 
of TNF rather than IL-6 is responsible for the pathology 
observed in complicated COVID-19 scenarios. Although 
some studies suggest that anti-IL-6 monoclonal antibody 
Tocilizumab is beneficial for the patients with severe 
COVID-19, other reports did not support that observation 
[36]. Similarly, clinical trials with Sarilumab, an IL-6 recep-
tor blocker, did not meet primary and secondary endpoints in 
hospitalized COVID-19 patients [37]. Future clinical studies 
are believed to shed more light on particular roles of these 
two cytokines in the disease.

Factors that activate TNF

Various factors activate production of TNF. Signals from 
toll-like receptors (TLRs), T cell and B cell receptors to 
antigens (TCR, BCR), receptors to Fc fragments of immu-
noglobulins (FcRs), cytokines (IL-1, IL-2, IFNγ, GM-CSF, 
TNF itself), mitogens, superantigens, radiation, osmotic 
stress, high glucose levels, microbes and their products 
induce TNF [38]. TNF production in response to a “dan-
ger signal” is very rapid. Activation of innate immunity 
through pattern recognition receptors, such as TLRs, results 
in a rapid release of TNF which is followed by IL-6, and 
blocking TNF attenuates IL-6 levels, again, suggesting that 
IL-6 is a secondary cytokine in the cytokine cascade [39]. 
Single-stranded RNA of SARS-CoV2 should be recognized 
by TLR7, TLR8, and TLR3. It is of a particular interest that 
SARS-CoV2 has RNA genome of 30,000 bp, the largest 
among RNA viruses (for comparison, Influenza A virus has 
a genome of only 13,500 bp) [40]. One can speculate that the 
size of RNA may contribute to an enhanced innate immune 
response to the virus resulting in the cytokine storm.

Blocking TNF upstream of TNF receptors

TNF blocking agents have been used for two decades to 
treat various inflammatory conditions and have a good 
safety record. The most well studied are monoclonal anti-
TNF neutralizing antibodies (mNAbs) and soluble TNF 
Receptor (TNFR)-Fc fusion protein. Both drugs have FDA 
approval for treatment of several autoimmune diseases, and 
both drugs prevent interaction of TNF with its receptors 
TNFR1 and TNFR2. Anti-TNF drugs have been suggested 
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for the treatment of SARS in 2004 [41], and accumulat-
ing evidence indicates that TNF blockade is beneficial for 
COVID-19 patients. First, a small study from Germany dem-
onstrated a significant therapeutic effect of anti-TNF mNAb 
on the outcomes in severe COVID-19 cases in hospitalized 
patients [42]: mortality rate was 14% in anti-TNF-treated 
group compared to 35% in control group. Then, preliminary 
data of 600 cases from 40 countries have been published 
and indicated that anti-TNF monotherapy for rheumatic 
diseases was associated with a reduced risk of hospitaliza-
tion of COVID-19 patients (odds ratio = 0.40) [43]. Later, 
a meta-analysis of more than 6000 cases revealed that TNF 
inhibitors administered to patients with immune-mediated 
inflammatory diseases alone were better protectors from 
severe COVID-19 associated hospitalizations and deaths 
than azathioprine/6-mercaptopurine or methotrexate [44]. 
Another study reported that TNF blockers administered to 
patients with rheumatoid arthritis and spondyloarthropa-
thies significantly (by > 80%) reduced the risk of COVID-
19 infection [45].

Moreover, based on the data from SECURE-IBD data-
base a beneficial effect of anti-TNF mNAbs was reported 
in COVID-19 patients with inflammatory bowel disease: 
namely, only 30 out of 198 (15%) patients with IBD receiv-
ing anti-TNF therapy required hospitalization for COVID-
19, and only 3% of them died, whereas 67% IBD patients on 
steroid therapy were hospitalized and 25% of them died [44]. 
Finally, Kridin et al. recently analyzed outcomes of COVID-
19 in patients with psoriasis treated with anti-TNF biologics 
and found that TNF blockade significantly decreased the 
risk of COVID-19 associated hospitalization. The authors 
did not see reduction in mortality, but mortality events were 
very low in this study [45]. These observations also suggest 
that immunosuppressive properties of TNF blockers do not 
exacerbate viral disease due to a weakened clearance of the 
pathogen.

Blocking TNF signals downstream of TNFRs

The major signal transduction pathway activated by TNF 
binding to its receptors involves nuclear factor kappa B 
(NFkB). Therefore, it is reasonable to suggest that many 
effects of TNF may be blocked at the level downstream of 
the receptors by NFkB inhibitors. In addition to mTOR 
inhibitor mentioned earlier, numerous known and potential 
drugs have been found to inhibit NFkB [46, 47]. Aspirin 
and sodium salicylate inhibit activation of NFkB by block-
ing IkB kinase [48]. Glucocorticoids suppress expression of 
inflammatory genes by binding glucocorticoid receptor with 
NFkB, and increasing expression of inhibitory protein of 
NFkB, IkBa. Sulfasalazine and gold compounds also inhibit 

NFkB activation and were suggested for treatment of rheu-
matoid arthritis [49].

Well known cardiac glycosides inhibit NFkB which in 
turn decreases production of inflammatory cytokines [50]. 
These drugs also demonstrate anti-viral activity to SARS-
CoV-2 by inhibiting membrane Na–K ATPase, used by RNA 
viruses for entering the cell, and by inhibiting translation, 
which makes them very attractive in COVID-19 patients 
with cardiac insufficiency [51–53].

Nifedipine, a blocker of calcium channels used as an 
antihypertensive also inhibits NFkB. In an experimental 
rat model of vascular lung leakage induced by high altitude 
hypoxia, a condition that has much in common with pul-
monary damage in COVID-19 patients, the drug inhibited 
vascular leakage, oxidative stress, and reduced inflammatory 
cytokine production [54].

Another class of antihypertensive drugs, ACE inhibitors, 
also suppress NFkB and inflammation, reduce blood pres-
sure, and limit viral entry [55, 56]. This is particularly inter-
esting since ACE2 is the major receptor for SARS-CoV-2 
Spike glycoprotein, and several studies demonstrated that the 
use of ACE inhibitors was associated with a reduced risk of 
severe COVID‐19 disease, morbidity, and mortality prob-
ably due to a direct inhibition of viral Spike protein binding 
to ACE2 [57, 58].

Bortezomib is a proteasome and NFkB inhibitor used for 
treatment of multiple myeloma [59]. It has been recently 
suggested that this class of drugs may also be used as a ther-
apy for COVID-19 because it interferes with SARS-CoV-2 
entry into eucaryotic cells, inhibits RNA and protein syn-
thesis and viral replication, induces endoplasmic reticulum 
stress, and alleviates cytokine production [60].

A large group of kinase inhibitors initially introduced for 
treatment of malignancies should also be considered. Tyros-
ine kinase inhibitor imatinib, for instance, has been shown 
to down regulate several inflammatory cytokines and NFkB 
levels [61, 62]. A successful case report on administration of 
imatinib for treatment of a progressing COVID-19 pneumo-
nia has been published recently: 3 days after administration 
of the drug at 400 mg once daily, the patient’s body tempera-
ture normalized, and oxygen treatment was discontinued. 
The patient was discharged on day 16 and remained asymp-
tomatic with a significant improvement on chest radiograph 
on day 20 after discharge [63].

Janus kinases (JAKs) participate in signal transduction 
following cytokine binding to their receptors, including 
pro-inflammatory cytokines [64]. JAK inhibitors have been 
shown to reduce serum IL-6, IFNγ, IL-1, IL-17 and TNF 
levels in a way similar to TNF blockers in patients with 
rheumatoid arthritis and ulcerative colitis [65–67]. In vitro, 
they inhibit TNF-induced NFkB activation in human mac-
rophages [68]. JAK inhibitors have also been suggested as a 
novel therapy for COVID-19 and have been used by several 
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groups based on their ability to reduce both viral entry and 
cytokine production [69]. Beneficial effects of JAK inhibi-
tors in human disease have been reported, including reduc-
tion of TNF and other cytokine levels [70, 71]. Baricitinib 
in combination with antiviral Remdesivir has been issued 
an emergency authorization by FDA as a treatment for hos-
pitalized patients [72–74]. Noteworthy, another JAK inhibi-
tor added to standard therapy has been reported effective in 
hospitalized COVID-19 patients with pneumonia in a mul-
ticenter randomized, placebo-controlled trial: the cumula-
tive incidence of death or respiratory failure through day 28 
was 18.1% in the JAK inhibitor group and 29.0% in the pla-
cebo group (risk ratio, 0.63; 95% confidence interval [CI], 
0.41–0.97; P = 0.04) [75].

Who should receive anti‑TNF therapy, 
and when?

The most optimal biomarker for use as a criterion to start 
anti-TNF/anti-NFkB/anti-kinase therapy is yet to be estab-
lished. Direct measurement and subsequent monitoring 
of circulating TNF levels using express tests, such as cur-
rently unavailable immunochromatography, seems to be the 
method of choice, since it can be used in an outpatient set-
ting. However, other biomarkers such as IL-6 may be used 
as long as they reflect the brewing of cytokine storm. The 
decision to initiate anti-TNF therapy should be made in 
COVID-19 patients admitted to the hospital [76] and consid-
ering each patient’s presentation of symptoms and complica-
tions. Clinical trials on TNF blockade have started in Oxford 
and Tufts Universities, but more studies could significantly 
advance our understanding of which of a variety of avail-
able drugs are most likely to improve outcomes [76–78]. 
Although TNF/NFkB inhibitors are considered relatively 
safe even when administered in a long term, a safety concern 
should always be kept in mind considering TNF inhibitors 
are immunosuppressive.

Concluding remarks

• TNF is involved in pathogenesis of severe COVID-19 and 
may play a central role in “cytokine storm”.

• TNF or its downstream mediators may be inhibited by 
administration of existing drugs: direct TNF binders, 
NFkB blockers, and kinase inhibitors.

• Clinical trials are urgently needed to test different TNF/
NFkB/kinase inhibitors for treatment or prevention of 
severe COVID-19 cases, and to establish indications and 
end-point criteria for such treatment.

• Rapid tests like lateral flow/immunochromatography for 
measurement of TNF or other biomarkers may be invalu-

able tools for timely assessment of patients and decision 
making in administration of TNF inhibitors.

• Although this paper may seem biased towards the ben-
efits of anti-TNF therapy, the bias is intentional, as the 
review aims to draw attention of the reader to a possible 
role of TNF in COVID-19. The limited space did not 
allow us to extensively discuss other aspects of COVID-
19 pathogenesis.

• In heterogeneous human population, TNF may be up-
regulated to a different degree, and its detrimental effects 
may be different due to different sensitivity of each indi-
vidual, comorbidities, and other factors. Currently, it is 
difficult to establish any threshold after which an indi-
vidual patient will inevitably deteriorate. Probably, the 
only way of learning that is a clinical trial, as mentioned 
earlier.
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