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del Mar, campus Huatulco, México.
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Abstract

We study the time to the most recent common ancestor of a sample
of finite size in a wide class of genealogical models for populations with
variable size. This is made possible by recently developed results on
inhomogeneous phase-type random variables, allowing us to obtain the
density and the moments of the TMRCA of time-dependent coalescent
processes in terms of matrix formulas. We also provide matrix sim-
plifications permitting a more straightforward calculation. With these
results, the TMRCA provides an explicative variable to distinguish
different evolutionary scenarios.

Keywords: Coalescent theory, Phase-type theory, Variable size population.

1 Introduction

The general theory of coalescent processes aims to provide a rigorous mathematical
framework that can be used to model natural phenomena where a collection of par-
ticles fuse together as the system evolves over time. It has a variety of applications
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in distinct disciplines, such as physics and biology. In biology, particularly in the
field of population genetics, it is used to model the parental relationships of a given
sample or population as we trace the ancestry of individuals backwards in time,
thus constructing a genealogical tree. In this setting, the coalescence of particles
occurs at the time when a group of individuals has a common ancestor in the past.
Once we have a suitable coalescent model for the genealogy of a population, we can
employ mathematical tools to tackle biological questions, such as determining the
time needed to reach the most recent common ancestor of the sample or popula-
tion (TMRCA), the expected genetic diversity for neutral positions of the genome,
or whether natural selection has played an important role in the evolution of the
population.

In mathematical population genetics, the study of coalescent processes focuses
on two main questions. On the one hand, a lot of effort is made to establish a
parity between coalescent processes and population models with varying biological
assumptions, such as constant or varying population size, the presence of mutation,
the strength of natural selection, the effect of genetic drift, spatial constraints, as
well as dormancy/latency mechanisms as in virus populations. The motivation be-
hind this effort is that once a coalescent model is inferred for the genealogy of a
population from genetic data, this parity may allow for the inference of the evolu-
tionary forces that significantly influenced the dynamics of the population. One of
the first coalescent models, Kingman’s coalescent, was established as the null model
for the genealogies of populations evolving at equilibrium, i.e., of constant size,
evolving under neutrality, and with low variance reproductive laws [31]. In more
recent years, the Bolthausen-Sznitman coalescent has emerged as an alternative null
model for the genealogy of constant-size populations that nonetheless are subject
to the effect of natural selection [12, 38, 13, 39]. The genealogies of populations
with stochastically varying population size, or evolving in a random environment,
have also been addressed; for example, neutral populations undergoing recurrent
(i.e. i.i.d. across generations) bottlenecks were studied in [29, 21, 20, 42] for both
high and low-variance reproductive laws. Also, neutral populations evolving under
deterministically-varying population size and with low-variance reproductive laws
were studied in the seminal work of [24]; the coalescent that describes the genealo-
gies of these populations is a time-inhomogeneous coalescent process that can be
expressed as a deterministically-time-changed Kingman’s coalescent.

On the other hand, the theoretical characterization of different functionals on
coalescent processes such as the tree height, the total tree length, and/or the
size of external and internal branches, provides inference tools for distinct aspects
of the evolutionary past of a population, such as the forces at play throughout
its history, the presence of bottlenecks, the TMRCA, etc. In this work, we are
interested in the study of the density and moments of the TMRCA for time-
inhomogeneous coalescent processes describing the genealogies of populations evolv-
ing under deterministically-varying population size. This functional, apart from
being interesting as a mathematical object in its own right, is very useful as a
step-variable in applications such as the inference of demographic history (see e.g.
[28, 44]) or in the computation of the expected SFS [43]. This variable was previ-
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ously analyzed for particular examples such as Kingman’s coalescent with general
time-change in [24] (first moment), but also in [46] (second moment), and in [15]
(any moment). For general coalescent models with piecewise constant time-change,
the first moment was established in [43]. All these methods are hard to generalize
due to analytical difficulties caused by the time dependence and combinatorial is-
sues when trying to consider more general models, higher moments, or their density
function. Here, we provide a new technique based on inhomogeneous phase-type
theory, developed in [2], to efficiently obtain any moment and the density of the
TMRCA for general markovian genealogical models, under any sufficiently smooth
time change.

2 The model

Time-changed coalescents. We consider the general class of deterministically time-
changed Ξ-coalescents characterized by a finite measure Ξ on the simplex {(pi)i>1 :∑∞

i=1 pi ≤ 1}, and a deterministic time change function ζ : R+ → R+. For a
given n > 0, these are pure-jump non-homogeneous Markov processes with state
space the set of partitions of [n] := {1, . . . , n}. States represent configurations of
ancestral lineages, starting with the partition into singletons {{1}, . . . , {n}}, and
being absorbed in the state {{1, . . . , n}}, where one single lineage is ancestral to all
particles. Specifically, at time t ≥ 0 a jump directed by p = (pi)i≥1 occurs at rate
1

ζ(t)
Ξ(dp)∑∞
i=1 p2

i
; at such an event, each active lineage (i.e. block of the current partition)

is independently and uniformly placed in the interval [0, 1], which is divided into
subintervals of lengths (pi)i≥1. The new state of the system (a coarser partition
of [n]) is constructed by merging (coalescing) all the lineages that fall into the
same subinterval. Note that the lineages falling outside of any subinterval do not
participate in any coagulation (this is Kingman’s paintbox construction, see e.g.
[4]). When the measure Ξ is supported on the set {(pi)i≥1 : p1 ∈ (0, 1], and pi =
0 ∀i ≥ 2} the corresponding coalescent is called a multiple merger coalescent; in
this case we denote by Λ the push-forward measure of Ξ on [0, 1] after projecting
into the p1 coordinate. Finally, our results also apply to coalescent processes with
Kingman’s dynamics, in which every pair of blocks independently coalesce at an
additional rate of c

ζ(t) for some c > 0.

Established coalescence measures/processes and their associated population dy-
namics are:

� Kingman’s coalescent (c > 0 and Ξ = 0): For populations evolving at equi-
librium.

� Beta coalescents (Λ ∼ Beta(2 − α, α), 1 ≤ α < 2): For populations with
skewed offspring distribution [40] or selection; this class includes as limit
cases the Kingman coalescent (α → 2, neutral evolution) and the Bolthausen-
Sznitman coalescent (α = 1, strong selection).
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� Psi coalescent: For populations with skewed offspring distribution or selec-
tion [14].

� Beta-Ξ coalescent: Modelling diploid reproduction [6].

� Symmetric or General Dirichlet coalescent: For populations with recurrent
drastic bottlenecks [21, 20].

� Ξβ coalescent: Modelling seed bank effects [23].

The time changes arise from distinct assumptions on the dynamics on the total
population size, originally in the work of Griffiths and Tavaré [24] (Theoretical
Biology) or of Möhle [36], Kaj and Krone [29] (Probability). The population size
can increase or decrease, for more details, see also [18]. Common examples of
time-changes functions ζ are

� Exponential growth [25]: ζ(t) = e−ρt.

� Frequent bottlenecks [15]: ζ(t) = 1 + ε sin(ωt).

� Piecewise constant function ζ [33, 43].

� Piecewise exponential function ζ [5].

We can also consider variations of coalescent processes representing genealogies
of populations with more complex evolutionary scenarios such as recombination
graphs with a finite number of loci [41], seed bank coalescents [22], or multispecies
coalescents [8, 9, 32]. Our method can be applied in any scenario where the process
describing the number of lineages is a continuous time Markov chain in a finite
state space.

3 Methods

Our approach will make use of phase-type distributions, which define a class of
random variables including sums and mixtures of exponentials. They are commonly
defined as the time to absorption of a continuous-time Markov chain. Methods
based on phase-type distributions have been used in biology and medicine [1, 34,
16] and, more recently, in population genetics [27, 26], in particular, to examine
balancing selection [45], or seed bank dynamics [10, 22].

Basics on phase-type theory. As shown in [27] for time-homogeneous Markovian
genealogies, some of the most important statistics on coalescent processes such as
the TMRCA and the total branch length can be cast into the phase-type framework,
leading to explicit expressions for their density and their moments in terms of a
suitable chosen rate matrix of a Markov process with absorption. In this work
we extend these results to the non-time-homogeneous setting, and provide simple
formulas for the density and the moments whenever possible.
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Formally, consider a Markov chain with n states and time-inhomogeneous tran-
sition matrix of size n× n given by

Q(t) =

(
S(t) s(t)
0 0

)
. (1)

The last row of zeros in this matrix corresponds to an absorbing state. The column
vector s(t) of size n − 1 gives the infinitesimal jump rates of the process at time
t from any non-absorbing state to the absorbing state. The matrix S(t) of size
(n − 1) × (n − 1) gives the infinitesimal jump rates of the process at time t from
any non-absorbing state to another non-absorbing state, and the negative value of
the total jump rates from non-absorbing states on the diagonal. The whole matrix
Q(t) can thus be recovered from S(t).

With these definitions, the absorption time τ of the Markov process is inho-
mogeneous phase-type distributed with parameter S(t). The starting point plays in
general an important role, but in our setting we will always consider that the chain
starts almost surely at the first state, corresponding to the first row of the matrix
Q(t), and omit it from the notation. Thus we will simply write τ ∼ IPH(S(t))
for the absorption time of the processes starting at the first state. The density, the
Laplace transform and the moments of τ can be computed in terms of the matrix
S(t) and the vector s(t). Note that in the time-homogeneous case, the distribution
of τ corresponds to a sum of a random number of exponential random variables.

4 Results

In all time-changed coalescent models considered in this paper, the TMRCA corre-
sponds to the time that the coalescent process reaches its absorbing state, the state
where only a single lineage is left that is ancestral to all particles. The TMRCA
thus has an inhomogeneous phase-type distribution associated with a transition
matrix of the form

QT (t) =
1

ζ(t)

(
S s
0 0

)
, (2)

where ζ is the time-change function. This special case is simpler than the general
case and is treated in Theorems 2.8 and 2.9 of [2], which lead to the following.

Theorem 4.1. The TMRCA is equal to g(X) where X ∼ PH(S) (homogeneous)
and the inverse of g is

g−1(x) =

∫ x

0

du

ζ(u)
. (3)

In particular, its density function is given by

f(t) =
1

ζ(t)
α exp

(
S

∫ t

0

du

ζ(u)

)
s, (4)
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where α = (1, 0, . . . ). Also, the k-th moment of the TMRCA is given by

mk = αLgk(−S)s = α

(∫ ∞

0

gk(x)eSxdx

)
s (5)

where Lgk denotes the Laplace transform of gk, parametrized by the matrix −S.

The Laplace transform applied to a matrix in equation (5) is difficult to imple-
ment. In Theorem 4.2 we provide a modification of (5) involving the Laplace trans-
form applied to each eigenvalue, which significantly eases the computation. This
works when the genealogical model considered is given by any time-inhomogeneous
Ξ-coalescent (see also Remark 1).

Theorem 4.2. For any Ξ-coalescent starting with n particles there exists a matrix
P ≡ PΞ,n and a vector sn ≡ sΞ,n such that for any deterministic time-change
function ζ(t) with g(t) as in (3) we have, for the density f of the TMRCA,

f(t) =
1

ζ(t)
αP−1


exp{−qn

∫ t

0
du
ζ(u)} 0

. . .

0 exp{−q2
∫ t

0
du
ζ(u)}

Psn, (6)

where qj is the total jump rate of the Ξ-coalescent when there are j particles. Sim-
ilarly, for the k-th moment of the TMRCA,

mk = αP−1

Lgk(qn) 0
. . .

0 Lgk(q2)

Psn. (7)

Proof. Consider the Markov chain rate matrix Q where Qi,j is the rate at which
the (homogeneous) block-counting process jumps from n− i+1 to n− j+1, where
1 ≤ i < j ≤ n. Note that the corresponding matrix S defined in equation (2) is
upper triangular and diagonalizable. In particular,

S = P−1DP, (8)

where the rows of P are the (left) eigenvectors of S and Di,i = Si,i for 1 ≤ i < n,
since the eigenvalues of S are {S1,1, . . . ,Sn−1,n−1}. Then, since α = (1, 0, . . . , 0),

mk = αP−1

(∫ ∞

0

gk(x)eDxdx

)
Ps

= αP−1

Lgk(−D1,1) 0
. . .

0 Lgk(−Dn−1,n−1)

Ps

=
(
P−1

1,1Lgk(−D1,1), . . . ,P
−1
1,n−1Lgk(−Dn−1,n−1)

)
Ps,
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and, similarly,

f(t) =
1

ζ(t)

(
P−1

1,1e
D1,1g

−1(t), . . . ,P−1
1,n−1e

Dn−1,n−1g
−1(t)

)
Ps.

The statement of the theorem follows from the observation that Di,i = Si,i =
−qn−i+1.

Remark 1. The above proof rests solely on the (left) eigen-value decomposition of S
as in (8). Thus, equations (6) and (7) remain valid for any inhomogeneous phase-
type distribution with transition matrix of the form (2) satisfying (8), as long as the
corresponding eigenvectors P and eigenvalues (which will replace (−q1, · · · ,−qn) in
(6) and (7)) are used.

The following lemma aims at easing the computation of the vector αP−1
Ξ,n.

Lemma 4.3. Let PΞ,n be as in Theorem 4.2.

1) The matrix PΞ,n can be obtained by removing the first row and the first
column of PΞ,n+1.

2) The (1, i)-th entry of P−1 ≡ P−1
Ξ,n is given by

P−1
1,i = (−1)1+i det

(
P{1,...,i−1},{2,··· ,i}

)∏i
j=1 Pj,j

(9)

where, for I, J ⊂ [n − 1], we have used the notation PI,J to denote the matrix
(Pi,j)i∈I,j∈J .

Proof. Item 1) follows from the fact that S ≡ Sn is upper triangular for every n
and that Sn can be obtained from Sn+1 by removing its first row and column.

To prove item 2), note that if x(i) = (x
(i)
1 , · · · , x(i)

n−1)
T is the solution to

Px(i) = ei,

where ei is the i-th unit vector, then, by Cramer’s rule,

P−1
1,i = x

(i)
1 =

det(P(i))

det(P)

where P(i) is constructed from P by replacing the first column by the vector ei.
Computing the determinant of P(i) along the first column using the Laplace ex-
pansion then gives

det(P(i)) = (−1)1+i det
(
P[n−1]\{i},[n−1]\{1}

)
, (10)

since all elements of the first column are zero, except the i-th entry, which is equal
to one.
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Since S is upper-triangular, the matrix P of its left eigenvectors is upper-
triangular, and so is P{i+1,··· ,n−1},{i+1,··· ,n−1}. This block structure for the de-
terminant on the right-hand side of (10) implies

det(P(i)) = (−1)1+i

 n−1∏
j=i+1

Pj,j

det
(
P{1,...,i−1},{2,··· ,i}

)
and

P−1
1,i = (−1)1+i det

(
P{1,...,i−1},{2,··· ,i}

)∏i
j=1 Pj,j

.

Equation (9) can be evaluated for all 1 ≤ i ≤ n− 1 efficiently using a dynamic
program that reuses computations for i− 1 in the computations for i. To this end,
define

G(i) := det
(
P{1,...,i},{2,··· ,i+1}

)
(11)

and
H(i, j) := det

(
P{1,...,i},{2,··· ,i}∪{j}

)
(12)

for 1 ≤ i < n− 1 and i+1 < j ≤ n− 1. Now note that for all i and j, the matrices
in the definitions (11) and (12) only have two non-zero entries in the last row,
specifically, in the last two columns. We can thus compute the determinants along
the last row using the Laplace expansion to show that the recurrence relations

G(i) = det
(
P{1,...,i},{2,··· ,i+1}

)
= (−1)i+i−1Pi,i det

(
P{1,...,i−1},{2,··· ,i−1}∪{i+1}

)
+ (−1)i+iPi,i+1 det

(
P{1,...,i−1},{2,··· ,i}

)
= −Pi,iH(i− 1, i+ 1) +Pi,i+1G(i− 1)

(13)

and

H(i, j) = det
(
P{1,...,i},{2,··· ,i}∪{j}

)
= (−1)i+i−1Pi,i det

(
P{1,...,i−1},{2,··· ,i−1}∪{j}

)
+ (−1)i+iPi,j det

(
P{1,...,i−1},{2,··· ,i}

)
= −Pi,iH(i− 1, j) +Pi,jG(i− 1)

(14)

hold. The functions G(i) and H(i, j) for all j can then be computed iteratively,
starting with i = 1 and incrementing i by 1 until i = n−2, reusing the values of G(·)
and H(·, ·) from the previous step. Once G(i) is computed for all i, equation (9)
can be readily evaluated for all i. Note that we did observe improved numerically
stability when absorbing all but the highest factor of the product in the denominator
of equation (9) into P in the numerator by dividing each row i with the respective
value Pi,i on the diagonal.
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Example (Populations with recurrent bottlenecks): In Figure 1 we compare two
models for populations undergoing recurrent bottlenecks, one homogeneous and
one inhomogeneous. The first one consists of the symmetric coalescent introduced
in [21]. The latter is a special case of Ξ-coalescents that arise from Wright-Fisher
models that suffer from drastic decays of the population size for one generation;
these decays occur at a constant rate. The symmetric coalescent is characterized by
a function F on Z such that F (0) < ∞ and

∑
k≥1 F (k)/k < ∞; for convenience we

also introduce a scalar parameter A > 0 modulating the overall coagulation rate.
The dynamics are described as follows: when there are b blocks in the coalescent,
at rate AF (k), we distribute the b blocks into k boxes uniformly at random, and
blocks falling in the same box merge. See also [42] for more general models of this
type.

The second model for the genealogies of populations undergoing recurrent bot-
tlenecks is the Kingman’s coalescent with sinusoidal time change introduced in [15].
This model corresponds in our framework to setting ζ(t) = B(1 + ε sin(ωt)) where
the parameter B > 0 gives the rate at which pair-wise merges occur, and ε and ω
relate to the size and frequency of the bottleneck events.

In Figure 1 we compare the density of the TMRCA of the above two models. For
the symmetric coalescent we set F to be the density of a Poisson r.v. of parameter
λ which we set to λ = nε where n is the initial number of blocks; whereas A is set to
A = 1/ω. For the sinusoidal Kingman coalescent we fix two distinct combinations
of ε and ω, and then choose B so that the expectation E[TMRCA] is equal to
that of the corresponding symmetric model (here, all the expectations E[TMRCA]
are computed using (5) and they are matched numerically). The top of Figure 1
corresponds to the choice ε = 0.8 and ω = 0.5, whereas the bottom corresponds to
ε = 0.5 and ω = 1. It is interesting to note that, depending on the choice of the
parameters ε and ω, the density of the TMRCA of the corresponding sinusoidal
Kingman’s coalescent can be made to be multimodal, resembling the density of
a discrete random variable. On the other hand, the density corresponding to the
symmetric coalescent remains unimodal and appears as a continuous approximation
of that of the sinusoidal Kingman’s case.

Example (Multiple merger coalescents with exponential growth): For the special
case of exponential growth, the time-scale function is given by ζ(t) = e−ρt, and we
obtain g−1(x) = ρ−1(eρx − 1) and g(x) = ρ−1 log(1 + ρx). Thus

Lgk(s) =

∫ ∞

0

(
ρ−1 log(1 + ρx)

)k
e−sxdx

and, for any Ξ-coalescent,

f(t) = eρtαP−1
Ξ,n


exp{−qn

eρt−1
ρ } 0

. . .

0 exp{−q2
eρt−1

ρ }

PΞ,nsΞ,n

follows. In Figure 2, we show the density of the TMRCA for Kingman’s coalescent
and the Bolthausen-Sznitman coalescent with n = 30 for different values of ρ. In the
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Figure 1: The density of the TMRCA for the two models with recurrent
bottlenecks described in the main text, the sinusoidal Kingman’s coalescent
(KCS) and the symmetric coalescent (Sym) with n = 30. Upper panel:
ε = 0.8, ω = 0.5; lower panel: ε = 0.5, ω = 1.

same scenarios, Figure 3 depicts the respective moments mk for different values of
k. To validate our analytic formulas for the densities, we compared them to values
estimated from 40,000 simulated replicates of the underlying process. The results
are shown in Figure 4 and we observe that the analytic formulas and simulations
match well.

Example (Dormancy in a population with exponential growth): An example
of a Markovian genealogical model that does not belong to the class of multiple
merger coalescents is the seed bank coalescent. It models the limit genealogies of
populations undergoing strong dormancy phenomena, i.e. individuals can remain
inactive for a large amount of generations. The seed bank coalescent is a Kingman
coalescent with lineages being active or inactive. Every pair of active lineages
merges at rate 1. Moreover, each of its active lineages gets deactivated at rate
c1 > 0 and inactive lineages activate at rate c2 > 0. This model has been introduced
in [11] and studied for population genetics applications in [22]. It is known from
the literature that its TMRCA behaves like log log(n), which is also the limiting
behavior under the Bolthausen-Sznitman coalescent. Since the latter is used to
model genealogies of rapidly evolving populations, we examine in more detail if the
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Figure 2: The density of the TMRCA for different choices of ρ in the ex-
ponential growth model, for Kingman’s (KC) and the Bolthausen-Sznitman
coalescent (BSC) with n = 30.

TMRCA can provide a statistic to discriminate dormancy versus rapid evolution,
when the population size also varies.

Recently in [17], it was shown that the TMRCA of the seed bank coalescent for
large sample size n behaves as

TMRCA ≈ log log(n)

c2
+

log(2c1)

c2
+G (15)

where G is a standard Gumbel random variable. On the other hand, it behaves in
the Bolthausen-Sznitman case as

TMRCA ≈ log log(n)− log(E)

where E is a standard exponential r.v. [19, 37, 30]. Figure 5 shows the differences
between the densities in both models with exponential growth (in the case c1 =
c2 = 1) computed using our approach. Here we can see that the difference between
both densities is mainly explained by the choice of the parameters, the constant
log(2c1)/c2 appearing in (15) and the limit distributions. This is still the case in the
exponential growth regime, though the growth rate seems to reduce the differences
between densities tails.
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Figure 3: Moments of the TMRCA for different choices of order k ∈ [1, 10]
and exponential growth parameter ρ, for Kingman’s (KC) and Bolthausen-
Sznitman coalescent (BSC) with n = 30.

5 Discussion

In this manuscript, we exhibited a connection between general genealogical models
of varying-sized populations and the inhomogeneous phase-type theory described
in [2]. We enriched this theory with interesting applications in population ge-
netics, where the IPH theory provides explicit formulas for the TMRCA. In par-
ticular, we obtained expressions for its density and moments in a wide class of
time-inhomogeneous coalescent processes, improving previous results in the liter-
ature and also generalizing them to a much wider spectrum of models, including
those that involve coalescents with simultaneous multiple mergers. This method
is notably robust and can be applied to any Markovian genealogy starting with
finitely many individuals. It also significantly eases the computational load present
in inference applications by separating the effects of the time-inhomogeneity (the
time change ζ) and the coalescent dynamics (i.e., the coagulation rates).

Unfortunately, this straightforward method does not readily generalize to other
summary statistics, such as the total branch length or the site frequency spectrum
(SFS). On the one hand, it can be easily shown that the total branch length is
also IPH distributed; nonetheless, in this case, the corresponding transition matrix
is not easily factorized into a time-inhomogeneity and a coalescent component.
Indeed, its density and moments can be expressed as a product integral of a time-
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Figure 4: The density of the TMRCA for different choices of the exponential
growth parameter ρ, for both Kingman’s (KC) and the Bolthausen-Sznitman
coalescent (BSC) with n = 30. We compare the values obtained from our
analytical formulas against values estimated from 40,000 simulated replicates
(indicated by plus signs).

dependent matrix for which computational methods must be developed. We note,
for example, that the computation of this product integral can be recast in terms
of PDE’s by adapting techniques of [35] or [7, Ch. 8.1.3]; however, the complexity
and the substantially different nature of this approach make it fall out of the scope
of this article.

On the other hand, the study of the SFS motivates the development of a mul-
tivariate IPH theory. In addition, this could also provide interesting insights into
the covariance of the TMRCA and/or the total branch length. For now, this mul-
tivariate setting can only be established when the respective IPH random variables
are of the form (2) (see [3]). These advances could also be essential in studying
multivariate genealogical models such as recombination trees.
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