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Abstract: With the rapid development of urbanization and industrialization in China, environmental
issues have become an urgent problem, especially issues related to air, water, and solid-waste
pollution. These pollutants pose threats to the health of the population and to that of communities
and have a vicious influence on the healthcare system. Additionally, pollution also exhibits spill-
over effects, which means that pollution in the local region could affect the healthcare services in
a neighboring region. Therefore, it is necessary to explore the relationship between pollution and
healthcare. A spatial autocorrelation analysis was conducted and spatial panel econometric models
were constructed to explore the characteristics of pollution and healthcare services in China and
the relationship between them using data on all 31 provinces over 12 consecutive years (2006–2017).
The results showed that the utilization of healthcare services and environmental pollution were not
randomly distributed; unsurprisingly, air pollution and solid-waste pollution were mainly found
in parts of northern China, while water pollution was highest in southern and coastal China. In
addition, environmental pollution exhibited spill-over effects on healthcare services. For example, a
1% increase in solid waste in one specific geographical unit was estimated to increase the inpatient
visits per capita in adjacent counties by 0.559%. Specifically, pollution showed different degrees of
influence on healthcare services, which means that the impact of environmental pollution on the
number of outpatient visits is greater than on the number of inpatient visits. Our results provide the
government with evidence for effectively formulating and promulgating policies, especially policies
aimed at tackling spill-over effects among different regions.

Keywords: spatial effects; environmental pollution; healthcare services

1. Introduction

The reform and opening-up policy in China, in place for 40 years, has changed the
lives of individuals from all walks of life, as well as the health status of citizens and the
quality of healthcare services [1]. However, environmental pollution along with economic
development contributes to the burden of disease and the shortage of healthcare services.
The Global Burden of Diseases (GBD) study summarizes the influence of pollution-related
factors, such as unsafe water resources, air pollution, and other environmental risks, on
health [2]. For example, air pollution is ranked as the fourth greatest risk factor in DALYs
and deaths; specifically, it contributed to 213 million DALYs and 6.67 million deaths in
2019 according to the Global Burden of Disease analysis conducted by the Institute for
Health Metrics and Evaluation (IHME). According to 2017 data from the World Health
Organization (WHO), almost one-quarter of the world’s population does not have proper
access to safe drinking water or to the most basic sanitation. Sixty percent of the world’s
pollution is due to a shortage of “safely managed” sanitation [3–5]. Sewage disposal
influences people’s immediate environments and leads to water-related illnesses such
as diarrhea, which kills 525,000 children under five each year. In regard to solid waste,
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the amount of garbage is 75% more than the combined weight of each person in the
world today.

Environmental pollution also has a serious impact on daily life. Consider air pollution
in China: the Chinese government has made major progress in improving air quality in
recent years. However, the majority of cities still do not meet the air quality standards of
the WHO. In 2019, 48 cities in mainland China were among the 100 most polluted cities in
the world. Of the 400 cities in mainland China, only 2% have an average annual PM2.5
concentration lower than the World Health Organization’s guideline value (10 µg/m3),
and 53% of the cities have an average annual PM2.5 concentration that meets China’s air
quality Grade II standard (35 µg/m3) [6]. It is estimated that in 2017 in China, air pollution
shortened the average life expectancy by 23 months, of which outdoor and indoor air
pollution reduced the average life expectancy by 15 months and 8 months, respectively [7].
Among noncommunicable diseases, the contribution of air pollution to the incidence of
lung cancer is 26%, and its contributions to cardiovascular disease and to stroke are 17%
and 12%, respectively [8,9].

Pollution-related diseases have soared since the rapid development of urbanization
and industrialization in China. This has affected healthcare services profoundly. Outpatient
and inpatient services are the main ways to access healthcare [10]. According to the China
Health Statistics Yearbook, it is estimated that compared with 2010, in 2020, the number of
outpatient visits will rise by 11.4 billion, and the number of inpatient visits will increase by
279 million, with average annual growth rates of 6.9% and 7.0%, respectively. Among all
healthcare services, treatment for pollution-related diseases such as cardiovascular diseases,
respiratory diseases, digestive tract and intestinal diseases, and cancer generate serious
disease burdens in China.

Previous researchers have conducted various studies to explore the relationship be-
tween environmental pollution and health or healthcare services in China. The relationship
with air, water, and solid pollution has been discussed extensively. Song conducted re-
search to estimate the health burden attributable to ambient PM2.5 across China by using
the exposure-response model [11]. Zeng applied spatial autocorrelation analysis, hot spot
analysis, and spatial empirical analysis to explore the spatial distribution of PM2.5 and
described its relationship with healthcare services [12]. Wang revealed that water pollu-
tion was negatively associated with health outcomes by using a random-effects model, a
random-effects logit model, and a mediator model [13]. Yang explored and assessed the
impact of heavy metal soil pollution induced by industrial and agricultural activities in
China [14]. Pollution can cause several diseases, such as respiratory diseases [15,16], car-
diovascular diseases [9,17], gastrointestinal diseases [18,19], reproductive diseases [20,21],
and cancer [22,23]. Pollution in China also changed the healthcare situation by increasing
the disease burden. For example, Yang estimated the effect of air pollution exposure on
household healthcare expenditure by using the China Urban Household Survey (UHS)
Database [24]. Taj researched the relationship between primary healthcare (PHC) visits,
inpatient admissions, emergency room visits, and air pollution concentrations [25]. Zhe
and Hong analyzed the relationship between air pollution and outpatient visits [26,27].

Although there have been comprehensive and systematic studies about environmental
pollution and health or healthcare in previous studies, some research fields can still be
explored. On the one hand, the spatial properties of pollution have still not been widely
investigated. Air pollution could spread over adjacent provinces with no regard for political
boundaries [28]; water pollution upstream could cause destructive effects on downstream
regions [29]; solid waste can contaminate soil without being limited by space [30]. To an
extent, some studies have analyzed the spill-over effects of air pollution [12]; however,
these spill-over effects have still not been fully considered, such as spill-overs due to
water pollution and solid-waste pollution. Apart from that, specifically, there has been no
detailed discussion about the relationship between outpatient services, inpatient services,
and environmental pollution. Healthcare services aim to address different kinds of diseases,
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disease severities, and groups of people. Therefore, the main contributions of this paper
are listed as follows:

(1) This study aims to explore the spatial characteristics and distributions of different
pollutants and of the utilization of healthcare services in China to provide proper
guidance on spatial policies for the government.

(2) Spatial econometric models were applied in this study to assess the spill-over effects
of different pollutants on healthcare service utilization, that is, to identify the rela-
tionship between pollution in the local region and healthcare service utilization in
geographically or economically adjacent provinces.

(3) Inpatient and outpatient services are two different services used by different groups
of people. In this study, we explored the direction and magnitude of the effects of
environmental pollution on inpatient and outpatient services.

2. Materials and Methods
2.1. Data Source

This study applied province-level data on outpatient services, inpatient services,
environmental pollution, and other socioeconomic characteristics from 2006–2017 in China.
Table S1 shows detailed information on all analyzed data. The outpatient and inpatient data
were obtained from the China Health Statistics Yearbook (CHSY) (http://www.nhc.gov.cn/
zwgk/tjnj1/ejlist_3.shtml (accessed on 11 February 2021)) and China Health and Family
Planning Statistical Yearbook (CHFPSY) (http://www.nhc.gov.cn/zwgkzt/tjnj/list.shtml
(accessed on 11 February 2021)), issued and published by the National Health Commission
of China, while the environmental pollution and socioeconomic data were obtained from
the China Statistical Yearbook (CSY) (http://www.stats.gov.cn/enGliSH/Statisticaldata/
AnnualData/ (accessed on 11 February 2021)) published by the National Bureau of Statistics
of China. Table 1 shows detailed information on the variables and data sources.

Table 1. Variables and data sources.

Variables Research Subjects Years Data Resources

Outpatient visits 31 provinces 2006–2017 CHSY, CHFPSY
Inpatient visits 31 provinces 2006–2017 CHSY, CHFPSY
Water pollution 31 provinces 2006–2017 CSY

Air pollution 31 provinces 2006–2017 CSY
solid wastes 31 provinces 2006–2017 CSY

PM2.5 concentrations 31 provinces 2006–2017 CSY
Domestic waste disposal 31 provinces 2006–2017 CSY

Per capita GDP 31 provinces 2006–2017 CSY
Urban population 31 provinces 2006–2017 CSY

Population aged 0–14 31 provinces 2006–2017 CSY
Population aged above 65 31 provinces 2006–2017 CSY

Education level 31 provinces 2006–2017 CSY

2.2. Variables
2.2.1. Dependent Variables: Outpatient and Inpatient Care Services

Outpatient and inpatient care services reflect health status to an extent. Outpatient care
services normally admit patients with mild symptoms. Doctors can make a preliminary
diagnosis after a series of auxiliary examinations or medical judgements. A regular exam
with a primary care physician and an appointment with a psychologist are both examples
of outpatient care. In addition, emergent cases are also regarded as outpatient care [31–33].
There is a distinct difference between inpatient and outpatient care: an inpatient is someone
admitted to the hospital to stay overnight. Naturally, the diseases experienced by these
patients are serious and sometimes fatal. In summary, outpatient and inpatient services
are core indicators of the health burden and for medical services. In this study, outpatient
visits and the number of hospitalizations were chosen to represent healthcare services as
the dependent variables.

http://www.nhc.gov.cn/zwgk/tjnj1/ejlist_3.shtml
http://www.nhc.gov.cn/zwgk/tjnj1/ejlist_3.shtml
http://www.nhc.gov.cn/zwgkzt/tjnj/list.shtml
http://www.stats.gov.cn/enGliSH/Statisticaldata/AnnualData/
http://www.stats.gov.cn/enGliSH/Statisticaldata/AnnualData/
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2.2.2. Independent Variables: Environmental Pollution

Environmental pollution can affect people’s health. There are many kinds of pollu-
tion, while only air pollution, water pollution, solid waste, and domestic garbage were
specifically included in this study. The main air pollutants are smoke and dust, particulate
matter (PM2.5), sulphur dioxide (SO2), and nitrogen dioxide (NO2) [34,35]. Water pollu-
tion includes chemical oxygen demand (COD), ammonia nitrogen, nitrogen, phosphorus,
petroleum, volatile phenol, plumbum, mercury, hexavalent chromium, chromium, and
arsenic [36]. There are different types of solid wastes, such as metallurgical solid waste
residue [37]. In this study, the industrial and residential water discharge amounts were
chosen to capture water pollution; air pollution is represented by the amount of gas emis-
sions from industry and car exhaust. PM2.5 is used as an independent variable due to its
importance; solid wastes are denoted by the amount of discharge from industrial pollutant
emissions and household waste disposal.

2.2.3. Control Variables

According to the determinants of health summarized by the World Health Organiza-
tion (WHO), the social and economic environment, the physical environment, individual
characteristics, and individual behaviors are four main factors influencing health. Out-
patient visits and inpatient visits are affected not only by environmental factors but also
by many other determinants of health. In line with previous studies, this study included
the following control variables: per capita gross domestic product, the ratio of the urban
population to the total population, the ratio of the population aged 0–14 and the ratio of
the population aged above 65 to the total population, and the ratio of the population with
an associate’s degree or higher.

The variable measurements, codes, and descriptions are shown in Table 2.

2.3. Methods
2.3.1. Spatial Autocorrelation Test

Moran’s I was proposed by Australian statistician Patrick Alfred Pierce Moran in
1950 [38]. It is regarded as the best method for testing for spatial autocorrelation. There are
two different types of Moran’s I that each have different functions. The global Moran’s I is
used to determine whether the variables are spatially clustered, while the purpose of the
local Moran’s I is to identify the specific clusters into which those variables are grouped.
There are four types of cluster: high-high (HH) clusters, low-low (LL) clusters, high-low
(HL) clusters, and low-high (LH) clusters. The identification of clusters is based on the
coefficients on the indicators [39–43]. The specific calculation formulas are as follows:

Global Moran′ s I =
n ∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 wij(xi − x)2 (1)

Local Moran′ s I=
(xi − x)

m0
∑j Wij

(
xj − x

)
; m0 = ∑i(xi − x)2/n (2)

where n represents the number of observations, xi denotes the total outpatient and in-
patient visits per capita in province i, xj is the total outpatient and inpatient visits per
capita in province j, x indicates the mean value of the variable x, and wij symbolizes the
spatial weight matrix for i relative to j. In this study, the spatial weight matrix aggregates
31 geographical units and captures the spatial effects between the adjacent provinces i
and j. Whether there are spatial influences depends on the geographical and economic
relationship between the provinces. Therefore, the value of wij is determined by the bound-
aries between provinces, the distances between different provinces, and the economic
relationships between the provinces.
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Table 2. Variables and data sources.

Variable Type Variable Name Measurement Code Description

Dependent
variable

Medical care

Outpatient visits
per capita OV Number of the outpatient visits divided by

the population

Inpatient visits
per capital IV Number of the inpatient visits divided by

the population

Independent
variables

Environmental
pollution

Effluent discharge ED Amount of effluent discharge divided by
the population

Waste gas emission GE Amount of gas emission divided by
the population

Solid discharge SD Amount of solid discharge divided by
the population

Average PM2.5
concentration PM2.5 The average values of PM2.5 concentrations

in the form of the natural logarithm

Household waste
disposal (%) HWD The ratio of household waste disposal

Control
variables

Socioeconomic
conditions

Gross domestic product
per capita GDP Real gross domestic product divided by

the population

Demographic
conditions

Total population TP The total population of all counties

The proportion of the
urban population (%) PUP A total population divided by

urban population

The proportion of the
population aged 0–14 0–14 A total population divided by population

aged 0–14

The proportion of the
population aged above 65 Above 65 A total population divided by population

aged above 65

The proportion of the
population with a higher

education level
HD A total population divided by population

with an associate degree or higher

The range of Moran’s I is [–1,1]. If the value of the index is approximately −1, there is
no spatial similarity between adjacent provinces. Specifically, this indicates that a province
with a high number of outpatient visits or a high level of pollution borders other provinces
with a low number of those visits or a low level of pollution. When the value is near 1,
there are spatial similarities, namely, a region with a high number of outpatient visits or a
high level of pollution is adjacent to another region with similarly high values for those
variables. When the value is approximately 0, there is no spatial autocorrelation in the
research area, and all the variables are randomly distributed among the provinces. In this
study, the Moran’s I for pollution in China from 2006–2017 is calculated.

In regard to spatial autocorrelation, spatial matrices should be introduced into the
analysis to describe the relationships between the provinces. There are three kinds of
matrices used in this study, namely, the spatial contiguity matrix M1, the spatial distance
matrix M2, and the spatial economic matrix M3 [44,45].

In deriving the spatial contiguity matrix, the spatial weight matrix is mainly deter-
mined according to adjacency relationships. When region i is adjacent to region j, Wij = 1;
otherwise, Wij = 0. For the lattice of spatial adjacency relationships, the adjacent provinces
can have a common boundary or a common vertex, and the Rook matrix, Bishop matrix,
and Queen matrix can be defined accordingly [46,47], as shown in Figure 1.
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In Figure 1a, the units adjacent to A are those units B that have a common boundary
with A, called Rook adjacency; in Figure 1b, the units adjacent to A are those units B that
have a common vertex with A, called Bishop adjacency; in Figure 1c, the units adjacent
to A are those units B that have a common boundary or a common vertex, and this is
called Queen adjacency. Queen adjacency is the superposition of Rook adjacency and
Bishop adjacency.

In addition to the adjacency relationships that can describe the relationships between
spatial units, distance is also an important indicator of spatial patterns. Tobler’s first law of
geography tells us that everything is related to other things, but similar things are more
closely related. Therefore, the shorter the distance between two provinces is, the closer their
relationship and the greater the weight Wij. However, in spatial econometrics, distance
is not only a narrowly defined distance but also a generalized distance. The narrowly
defined distance usually refers to the physical distance, which is only measured from a
geographical perspective, for example, the distance between the centroids of two regions
or between the administrative centers. The generalized distance includes various forms
of virtual distances, such as economic distance, social distance, or temporal distance. The
reason for investigating this kind of virtual distance is that in spatial econometrics, we
often pay attention to the economic significance of variables and their regional relevance in
economic development and the social culture. This level of significance goes beyond the
simple geographic distance. In many cases, two regions with very close physical distances
do not necessarily produce an agglomeration of a certain economic phenomenon. For
example, Anhui Province is adjacent to Zhejiang Province and Jiangsu Province, but the
strength of economic development in Jiangsu Province and Zhejiang Province is obvious.
Their relationships with Anhui Province are weaker, so we have reason to believe that the
“economic distance” between Jiangsu Province and Zhejiang Province is shorter, and the
“economic distance” between Anhui Province and Jiangsu and Zhejiang is farther. The
spatial weight coefficient of the former is compared with that of the latter. The larger one
is, the stronger the spatial correlation. Based on this idea, this study includes each of these
three matrices.

2.3.2. Spatial Econometric Model

This study applied a spatial econometric model to explore the empirical relationship
between healthcare services and environmental pollution in China using yearly panel data
from 2006 to 2017. The direct and spill-over effects were revealed in this study. Three
widely used spatial econometric models were introduced to identify all effects: the spatial
lag panel model (SLPM) (Formula (3)), the spatial error panel model (SEPM) (Formula (4)),
and the spatial Durbin panel model (SDPM) (Formula (5)). The models can be expressed
as [48]:
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yit = ρWijyit + X′itβ + α + µi + γt + εit
i = 1, 2, 3 . . . 31 t = 2006, 2007 . . . 2017

(3)

yit = X′itβ + α + µi + γt + εit εit = λ∑n
j=i Wijεit + τit

i = 1, 2, 3 . . . 31 t = 2006, 2007 . . . 2017
(4)

yit = ρWijyit + X′itβ + Wijyitθ + α + µi + γt + εit
i = 1, 2, 3 . . . 31 t = 2006, 2007 . . . 2017

(5)

In the SLPM equation above, the regression coefficient is represented by β. Similar
to the definition in a normal ordinary least squares regression analysis, it reveals the
effects of environmental pollution on healthcare services. Wij is the spatially weighted
31 × 31 matrix for the provinces of China. The estimation of coefficient ρ provides the
slope of the function, which reflects the level of influence of surrounding provinces on the
distribution of healthcare services; µi and γt represent spatial fixed effects and time fixed
effects, respectively. Apart from the existing parameters in the SLPM, in the formula for the
SEPM, the spatial dependence of all the variables was measured by the parameter λ, which
represents the magnitude and direction of the effect of one variable in a surrounding region
on the same variable in a given region. ε denotes the spatial autoregressive error term. In
the SDPM formula, θ represents the influence of the dependent variables in adjacent areas
on the independent variables in a given area.

The spatial lag model indicates that the spatial correlations occur over time, which
means that the spatial weight matrix appears to be related to the previous variables. It
mainly explores whether each variable has a spill-over effect in a region, that is, whether
the variables of specific provinces are affected by those in their adjacent areas. The spatial
error model indicates that the spatial effect is in the error term, that is, the spatial weight
matrix is placed in an unobservable error term, which reflects that the dependent variables
of one specific province are associated with the independent variables of that province as
well as the error term. The SDPM model is used to address the circumstance where the
dependent variables could be explained by the independent variables of both a specific
area and its surrounding provinces.

2.4. Software

The spatial weight matrix was generated using GeoDa (Version 1.8.61, the University
of Chicago, and Chicago, IL, USA), and STATA 15.0 (Version 15.0, StataCorp., College
Station, TX, USA) was employed to estimate the spatial panel models.

3. Spatial Distribution and Spatial Autocorrelation Analysis
3.1. Descriptive Analysis

Table 3 presents the descriptive statistics for the sampled Chinese provinces. Let us
take OV as an example: the average number of outpatient visits per capita was 7.76 visits
with a standard deviation of 11.68. Compared with IV, OV showed a high degree of
dispersion. The maximum value of OV was more than 500 times larger than its lowest
value, indicating a distinct difference in access to healthcare across China. In summary,
detailed information on the two dependent variables, five independent variables, and six
control variables is shown.

Figure 2 displays the spatial distribution of the main dependent and independent vari-
ables: outpatient visits, number of hospitalizations, effluent discharge, waste gas emissions,
solid-waste discharge, household waste disposal, and average PM2.5 concentration.
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average PM2.5 concentration; HWD: household waste disposal.
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Table 3. Descriptive statistics of the variables.

Variable Obs 1 Mean Std. Dev. 2 Min. 3 Max. 4 Units

OV 5 372 7.76 11.68 0.17 87.06 Times/population
IV 372 0.19 0.27 0.19 14.733 Times/population
ED 372 83.32 128.21 1.16 1078.45 Amount/population
GE 372 0.06 0.10 0.00 0.89 Amount/population

PM2.5 372 3.58 0.51 1.94 4.44 µg/m3

SD 372 4.04 7.35 0.02 68.79 Amount/population
HWD 372 0.80 0.20 0.10 1.00 %
GDP 372 10.42 0.60 8.66 11.77 Yuan
TP 372 17.22 1.35 12.61 21.24 Person

PUP 372 0.53 0.14 0.23 0.90 %
0–14 372 0.17 0.04 0.07 0.27 %

65 372 0.09 0.02 0.04 0.14 %
HD 372 0.12 0.07 0.00 0.47 %

1 Obs = observations. 2 Std. Dev. = standard deviation. 3 Min. = minimum. 4 Max. = maximum. 5 OV: outpatient visits per capita; IV:
inpatient visits per capital; ED: effluent discharge; GE: gas emission; SD: solid discharge; PM2.5: average PM2.5 concentration; HWD:
household waste disposal; GDP: gross domestic product per capita; TP: total population; PUP: the proportion of the urban population;
0–14: the proportion of the population aged 0–14; 65: the proportion of the population aged above 65; HD: the proportion of the population
with a higher education level.

A longitudinal (temporal) comparison of the data from 2006 with that from 2017
shows that there was a slight increase in outpatient visits and hospitalizations by 2017
in various provinces. From the perspective of horizontal (spatial) comparisons, in 2006,
western areas such as Xizang, Qinghai, Xinjiang, and Ningxia had the highest number of
outpatient visits per capita, indicating that outpatient services were satisfying the needs
of patients. Over time, several medical resources flowed to more developed regions such
as Shanghai, Beijing, and Zhejiang. The number of hospitalizations indicate a different
situation: there was almost no change throughout the whole research period. Specifically,
inpatient services in Xizang were insufficient compared with those in other provinces,
while Xinjiang, Hubei, Hunan, Sichuan, Chongqing, and Guizhou had the highest number
of hospitalizations from 2006 to 2017.

Regarding the independent variables, the air pollution results highlighted an inter-
esting difference between the northern and southern regions. High pollution areas were
mainly concentrated in northern provinces such as Neimenggu, Shanxi, and Ningxia,
while low pollution regions were distributed in southern provinces such as Hainan and
Guangdong. Regarding the PM2.5 concentration, the same situation was found, but in the
north, the highest levels were discovered in the Huabei Plain (Hebei, Shandong, Henan,
Jiangsu, and Anhui). This distribution is related to provincial economic structures and
meteorological factors. For example, Neimenggu and Shanxi are famous for their coal
industry in China, while Hainan and Guangdong are well known for tourism. From a
meteorological perspective, northern China is drier than the southern region.

The situation with water pollution was relatively different from that with air pollution.
The regions with heavy pollution were mainly distributed along the south-eastern coastal
provinces. Shanghai, Jiangsu, Fujian, Guangdong, and Zhejiang were found to be high-
pollution regions. In coastal regions, it is easier to discharging sewage into the ocean. Apart
from that, the southeastern provinces are the richest places in China. Regarding solid
waste, the highest amount of solid discharge was found in some of the northern regions.
This could be attributed to provincial economic structures. Household waste disposal is
associated with economic development levels. Developed region were found to have a
high rate of waste disposal.
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3.2. Spatial Autocorrelation Analysis

The global Moran’s I for effluent discharge, waste gas emissions, solid discharge,
PM2.5 concentrations, and household waste disposal are shown in Table 4.

Table 4. Global Moran’s I based on Matrix 1.

Year Effluent Discharge Waste Gas Emission Solid Discharge PM2.5 Concentration Household
Waste Disposal

2006 0.198 0.235 *,1,2 0.277 ** 0.499 *** 0.110
2007 0.196 0.237 * 0.264 * 0.504 *** 0.277 **
2008 0.201 * 0.215 * 0.277 ** 0.456 *** 0.365 ***
2009 0.208 * 0.205 * 0.288 ** 0.453 *** 0.316 **
2010 0.245 * 0.171 0.244 * 0.425 *** 0.206 *
2011 0.236 * 0.240 * 0.236 * 0.498 *** 0.080
2012 0.252 * 0.221 * 0.226 * 0.446 *** 0.188
2013 0.270 * 0.168 0.218 * 0.498 *** 0.216 *
2014 0.246 * 0.242 * 0.261 ** 0.416 *** 0.271 **
2015 0.234 * 0.269 * 0.281 * 0.492 *** 0.264 **
2016 0.257 * 0.148 0.247 * 0.507 *** 0.208 *
2017 0.269 * 0.088 0.281 ** 0.452 *** 0.279 **

1 *** p < 0.01, ** p < 0.05, * p < 0.1. 2 bold numbers represent significant coefficients.

This indicates that almost all the coefficients on the environmental variables are
positive and reach the 5% significance level. Specifically, the distribution of all variables
could be described as clusters of high values or clusters of low values. Spatial correlations
should be considered when analyzing the relationship between healthcare services and
environmental pollution. (M1)

To describe the local agglomeration characteristics among all provinces in China,
scatter plots were drawn and hot spot analyses were conducted. Figure 3 displays the
scatter plots of the local Moran’s I for all main independent and dependent variables using
matrix M1 for all provinces from 2006 to 2017. Specifically, the two coordinate axes represent
the value of variable in a certain province and in its adjacent regions. The scatter plot
was divided into four quadrants. Based on quadrant theory, the first quadrant represents
high-high (HH) clusters, which means that the specific region and its surrounding area
both had high values for certain variables. Next, the second quadrant represents low-high
(LH) clusters, in which the provinces with a low observed value are surrounded by regions
with high values. The third quadrant represents low-low (LL) clusters, and the fourth
quadrant represents high-low (HL) clusters, which are analogous to the LH clusters.

As shown in Figure 3, from 2006 to 2017, the majority of the provinces were located in
the HH and LL clusters, revealing that most regions were positively spatially correlated.
This means that the distributions of healthcare services and pollution in China from 2006
to 2017 were not random but exhibited positive spatial autocorrelation. Taking OV as an
example, seven provinces were located in HH cluster areas, 16 provinces were found in the
LL clusters, and only eight provinces were discovered in the LH or HL cluster regions.

Figure 4 displays the results for all independent and dependent variables for all
provinces from 2006 to 2017 from the hot spot analysis (namely, the Getis-Ord Gi* method).
This tool is meant to identify statistically significant hot spot or cold spot spatial clusters.
The z-score, p-value, and confidence level are the main explanatory parameters. The z-
scores and p-values reveal statistical significance. A high z-score and a small p-value for
a feature indicate spatial clustering of high values. A low negative z-score and a small
p-value indicate spatial clustering of low values. The higher (or lower) the z-score is, the
more intense the clustering. A z-score near zero indicates no apparent spatial clustering. In
this study, all p-values representing different significance levels are displayed. As shown
in Figure 4, for OV in 2006, cold spots were found in the southeastern region, namely, in
Anhui and Jiangxi Provinces, while hot spots were discovered in provinces in western
China, including Xizang, Qinghai, and Gansu. In 2011, there were some changes in the
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distribution of cold and hot spots. Specifically, Heilongjiang Province developed into a cold
spot. In contrast, a cluster of hot spots was found in eastern China, containing Shandong,
Henan, Hunan, Anhui, Jiangsu, Zhejiang, Fujian, and Shanghai. There is a dramatic change
from 2006 to 2017, but there was little change in 2017 relative to 2011. The situation for the
other variables can be seen in Figure 4.
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4. Empirical Analysis and Discussion

After a series of tests for the selection of a spatial panel model, a SPDM was used
in our study. The Moran’s I and LM tests were applied to examine the level of spatial
autocorrelation, followed by the Wald test and LR test, which can identify the most ap-
propriate model among the SLPM, SEPM, or SPDM. After that, the Hausman test was
used to determine the specific kind of SPDM to use, namely, a fixed-effects model or a
random-effects model. If a fixed-effects model is chosen, then the last step is to decide
among individual fixed effects, spatial fixed effects or both. Therefore, on the basis of
the Hausman test, the SPDM with random effects was chosen to analyze the correlation
between pollution and healthcare.

4.1. Empirical Results of Spatial Panel Models

The empirical results of the spatial panel model based on three different spatial weight
matrices are presented in Table 5. Columns (1), (2), and (3) show the results of different
pollutants and control variables on outpatient services based on the spatial contiguity
matrix M1, spatial distance matrix M2, and spatial economic matrix M3, respectively, while
columns (4), (5), and (6) show the findings for the effects of all independent variables on
inpatient services.

The coefficients on gas emissions for outpatient visits based on the spatial contiguity
matrix M1 and spatial economic matrix M3 were positively related to outpatient visits,
which indicates that an increase in air pollution leads to an increase in outpatient visits. The
reason behind this is that air pollution could place people at serious risk of cardiovascular
and respiratory disease. Therefore, outpatient visits soared in contaminated regions.
However, there was no relationship between PM2.5 and outpatient visits, which is different
from the findings of previous research [49,50]. The possible reason for this may be related to
the roughness of the monthly PM2.5 data at the provincial level. In summary, air pollution
influenced the usage of outpatient services.

In consideration of the influence of effluent discharge on outpatient visits, all coeffi-
cients were significantly positive at the 5% level. This shows that water pollution could
contribute to the growth in outpatient visits. Additionally, when the spatial distance matrix
was used in the analysis, the coefficients on effluent discharge were significant. Comparing
this finding with the results from using M1 and M2 indicates that outpatient visits were
not only affected by water pollution in the local region but also by the pollution in nearby
regions, while there was no impact on outpatient visits from variables in adjacent regions
or in economically related regions.

When estimated using the spatial contiguity matrix M1 and spatial distance matrix M2,
solid waste was found to be positively associated with outpatient visits. To an extent, this
suggests that an increase in solid waste in geographically close regions or adjacent areas
causes an increase in outpatient visits. However, in regard to household waste disposal, all
relevant coefficients were positive regardless of which matrix was used. The interpretation
for this is that high levels of household waste disposal abnormally increase outpatient
visits, which is different from the findings of other studies [51]. A possible reason for this
is that rich regions with high numbers of outpatient visits tend to be capable of recycling
solid waste. This leads to a spurious correlation between household waste disposal and
outpatient visits.
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Table 5. Empirical results of the spatial panel model.

Variable
Ln (OV) 2 Ln (IV)

Matrix One Matrix Two Matrix Three Matrix One Matrix Two Matrix Three

Ln (GE) 0.195 * 1,3

(2.14)
0.137
(1.71)

0.350 ***
(3.93)

0.017
(0.61)

0.041
(1.39)

−0.041
(−1.52)

Ln (ED) 0.575 ***
(5.12)

0.775 ***
(9.87)

0.373 **
(2.63)

0.114 **
(2.90)

0.036
(0.77)

0.027
(0.62)

Ln (SD) 0.126 *
(2.13)

0.132 **
(2.33)

−0.013
(−0.21)

−0.007
(−0.34)

−0.020
(−1.01)

0.013
(0.70)

Ln (PM2.5) −0.004
(0.330)

−0.002
(−0.73)

−0.001
(−0.15)

0.003
(1.50)

−0.002
(−1.03)

−0.001
(−0.64)

HWD 0.005 **
(2.75)

0.003 *
(1.90)

0.005 *
(2.50)

0.001 **
(2.61)

0.002 ***
(3.78)

0.001 *
(2.13)

Ln (TP) 0.652 ***
(5.21)

0.257 ***
(3.44)

0.788 ***
(4.72)

0.868 ***
(14.08)

−0.004
(−0.14)

1.017 ***
(17.89)

PUP 2.007 **
(2.80)

1.614 **
(2.34)

3.862 ***
(3.51)

0.891 **
(2.75)

1.176 ***
(3.36)

0.851 **
(2.71)

0–14 3.160 *
(1.99)

3.436 *
(2.18)

4.505 *
(2.46)

1.023 *
(1.97)

0.588
(1.01)

1.021
(1.76)

Above 65 0.103
(0.04)

4.766 *
(2.08)

4.646
(1.82)

3.154 ***
(4.04)

1.408
(1.81)

3.263 ***
(4.31)

Ln (GDP) −0.202
(−1.20)

0.452 **
(3.02)

0.091
(−1.55)

0.263 ***
(3.82)

0.559 ***
(9.44)

0.448 ***
(6.55)

HD −1.047
(−1.21)

−0.868
(−1.06)

1.683
(−1.55)

0.048
(0.16)

0.524
(1.57)

−0.179
(−0.54)

W × Ln (GE) 0.251
(1.79)

−0.051
(−0.30)

0.146
(0.98)

−0.057
(−1.49)

−0.115 *
(−2.21)

−0.042
(−0.93)

W × Ln (ED) 0.229
(1.64)

0.888 ***
(4.16)

0.207
(0.69)

0.037
(0.60)

0.085
(0.53)

−0.029
(−0.29)

W × Ln (SD) 0.050
(0.49)

−0.223
(−0.88)

0.005
(0.03)

−0.024
(−0.76)

0.053
(0.61)

0.136 **
(2.72)

W × (PM2.5) 0.006
(0.99)

0.014
(1.68)

−0.005
(−0.66)

0.006 *
(2.25)

0.003
(1.14)

0.000
(0.08)

W × HWD −0.005
(−1.25)

−0.013 *
(−1.92)

−0.031 ***
(−5.21)

−0.000
(−0.22)

−0.005 *
(−1.99)

−0.001
(−0.76)

W × Ln (TP) −0.684 ***
(−5.37)

−0.226 **
(−2.82)

−0.795 ***
(−4.74)

−0.870 ***
(−14.11)

0.008
(0.31)

−1.013
(−0.76)

W × PUP −3.570 **
(−2.77)

−0.190
(−0.07)

−14.007 ***
(−5.80)

−1.939 ***
(−3.70)

−0.254
(−0.20)

−2.230 **
(−2.75)

W × 0–14 2.324
(0.94)

2.131
(0.46)

−7.500
(−1.89)

−2.371 **
(−2.65)

−4.752
(−1.80)

−0.802
(−0.56)

W × Above 65 −0.892
(−0.23)

−24.475 ***
(−3.54)

−8.522
(−1.52)

−1.686
(−1.35)

−1.901
(−0.81)

−0.922
(−0.54)

W × Ln (GDP) 0.890 ***
(3.59)

1.735 ***
(5.16)

2.179 ***
(6.32)

0.082
(0.84)

−0.315
(−1.49)

−0.044
(−0.39)

W × HD 1.976
(1.21)

−1.109
(−0.32)

7.338 **
(2.66)

−1.047 *
(−2.11)

−2.098
(−1.85)

−1.613 *
(−1.98)

ρ 0.5356 *** 0.699 *** 0.4977 *** 0.7454 *** 0.8215 *** 0.7493 ***

LLR −171.8192 −139.5325 −166.9149 291.9434 247.1688 270.2405

R2 0.8225 0.8380 0.7712 0.9390 0.2128 0.9386

Obs 372 372 372 372 372 372
1 *** p < 0.01, ** p < 0.05, * p < 0.1. 2 OV: outpatient visits per capita; IV: inpatient visits per capital; ED: effluent discharge; GE: gas emission;
SD: solid discharge; PM2.5: average PM2.5 concentration; HWD: household waste disposal; GDP: gross domestic product per capita; TP:
total population; PUP: the proportion of the urban population; 0–14: the proportion of the population aged 0–14; 65: the proportion of
the population aged above 65; HD: the proportion of the population with a higher education level. 3 bold numbers represent significant
coefficients.
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Last, for the control variables, almost all demographic variables were positively related
to outpatient visits. The higher the total population and the higher the share of the urban
population, population aged 0–14, and population aged above 65, the higher the number
of outpatient visits. Urban citizens are able to access healthcare services more easily. In
addition, children and elderly individuals are more susceptible to diseases. Interestingly,
outpatient visits in some regions were negatively associated with those of geographically
and economically adjacent provinces. The reason behind this is that the healthcare services
in a given region not only satisfy the basic needs of local people but also attract patients
from other places. Part of the population in some regions may be more easily attracted to
other regions when local healthcare services cannot solve their issues. This phenomenon
is quite common in western China. Regarding the economic variables, GDP per capita is
positively associated with outpatient visits. Rich regions tend to have developed healthcare
services with advanced technology and a reasonable amount of health resources. The
majority of the population would be drawn to richer areas to receive better services. There
were no significant results concerning the education variable.

From the perspective of inpatient visits, almost all coefficients related to pollution
were insignificant apart from that on effluent discharge when using the spatial contiguity
matrix M1. There was a distinct difference between outpatient and inpatient services. This
situation can be explained by the difference between long-term and short-term effects.
Outpatient services normally are related to diseases with mild symptoms and that can
be more easily affected by environmental pollution. Therefore, the relationships between
outpatient services and the environmental variables were more evident than those between
inpatient services and the environmental variables. In contrast, patients with serious
diseases must accept standard treatments in inpatient institutes. There was little evidence
of a distinct linkage between environmental factors and inpatient services. In addition,
concerning spatial relationships, solid waste was positively related to inpatient services,
which means that solid pollution in surrounding regions could lead to an increase in
inpatient visits in specific provinces, while solid pollution from geographically close
regions and economically close regions was not related to outpatient visits.

Considering the other control variables, the demographic variables were positively
associated with inpatient visits, similar to their relationship with outpatient visits; naturally,
the larger the population and the greater the share of the urban population, population
aged 0–14, and population aged above 65, the more inpatient visits there were. At the same
time, other places with high levels of inpatient services could be attracting more people
from other areas.

The spill-over and direct effects estimated by the above spatial economic models can-
not be interpreted directly. The spill-over and direct effects of the environmental variables
and the control variables were determined, and the results are given in Tables 6 and 7.

4.2. Decomposition of Direct and Spill-Over Effects

Table 5 reports the direct effects of the independent variables on the different health
resources. For the effect of gas emissions on outpatient services, the coefficient based on
the economic matrix was significant at the 1% level, which suggests that for every 1%
increase in gas emissions, outpatient visits grow by 0.350%. All coefficients on effluent
discharge based on the three matrices were significant (0.583, 0.738, and 0.363). These can
be interpreted as follows: for every 1% increase in effluent discharge, outpatient visits
increase by 0.583%, 0.738%, and 0.363%, respectively. For solid waste, outpatient visits
increase by 0.127% and 0.161% when solid waste discharge increases by 1%.
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Table 6. Direct effects of the independent variables on healthcare.

Variable
Ln (OV) 2 Ln (IV)

Matrix One Matrix Two Matrix Three Matrix One Matrix Two Matrix Three

Ln (GE) 0.167
(1.82)

0.150
(1.77)

0.350 ***,1,3

(3.81)
0.004

(0.906)
0.028
(0.83)

−0.057
(−1.89)

Ln (ED) 0.583 ***
(5.40)

0.738 ***
(9.13)

0.363 **
(2.60)

0.151 **
(3.09)

0.051
(0.77)

0.021
(0.40)

Ln (SD) 0.127 *
(2.05)

0.161 *
(2.41)

−0.010
(−0.15)

−0.016
(−0.70)

−0.013
(−0.49)

0.048 *
(1.92)

Ln (PM2.5) −0.003
(−0.90)

−0.001
(−0.29)

−0.001
(−0.32)

0.001
(0.83)

−0.001
(−0.83)

−0.001
(−0.69)

HWD 0.005 *
(2.45)

0.002
(1.22)

0.002
(1.05)

0.002 *
(2.47)

0.001
(1.74)

0.001
(1.52)

Ln (TP) 0.595 ***
(5.38)

0.252 ***
(3.61)

0.751 ***
(4.88)

0.796 ***
(14.54)

−0.003
(−0.12)

0.963 ***
(18.23)

PUP 1.560 *
(2.06)

1.690 *
(2.10)

2.593 *
(2.38)

0.478
(1.29)

1.304 ***
(3.20)

0.489
(1.37)

0–14 3.858 *
(2.56)

3.929 *
(2.55)

3.885 *
(2.00)

0.502
(0.83)

−0.106
(−0.13)

1.005
(1.31)

Above 65 0.114
(0.05)

2.093
(1.32)

4.179
(1.69)

3.432 ***
(4.23)

1.305
(1.64)

3.682 ***
(4.43)

Ln (GDP) 0.067
(0.43)

0.313 *
(2.06)

0.328
(1.37)

0.352 ***
(5.49)

0.585 ***
(8.66)

0.515 ***
(6.47)

HD −0.781
(−0.84)

−1.013
(−1.11)

−1.020
(−0.95)

−0.283
(−0.78)

0.217
(0.52)

−0.591
(−1.51)

1 *** p < 0.01, ** p < 0.05, * p < 0.1. 2 OV: outpatient visits per capita; IV: inpatient visits per capital; ED: effluent discharge; GE: gas emission;
SD: solid discharge; PM2.5: average PM2.5 concentration; HWD: household waste disposal; GDP: gross domestic product per capita; TP:
total population; PUP: the proportion of the urban population; 0–14: the proportion of the population aged 0–14; 65: the proportion of
the population aged above 65; HD: the proportion of the population with a higher education level. 3 bold numbers represent significant
coefficients.

Table 7. Spill-over effects of the independent variables on healthcare.

Variable
Ln (OV) 2 Ln (IV)

Matrix One Matrix Two Matrix Three Matrix One Matrix Two Matrix Three

Ln (GE) 0.288
(1.17)

−0.516
(−0.93)

−0.064
(−0.24)

−0.162
(−1.36)

−0.460
(−1.46)

−0.279
(−1.76)

Ln (ED) 0.156
(0.70)

−1.100
(−1.48)

−0.060
(−0.11)

0.429
(1.85)

0.556
(0.54)

−0.059
(−0.14)

Ln (SD) −0.040
(−0.22)

−1.072
(−1.25)

0.002
(0.01)

−0.108
(−1.15)

0.193
(0.39)

0.559 **,1,3

(2.66)

Ln (PM2.5) 0.008
(−0.50)

0.040
(1.41)

−0.009
(−0.66)

−0.014
(−1.10)

0.010
(0.75)

−0.001
(−0.17)

HWD −0.004
(−0.50)

−0.037
(−1.48)

−0.053 ***
(−3.83)

0.003
(0.68)

−0.022
(−1.33)

−0.001
(−0.09)

Ln (TP) −0.663 ***
(−5.54)

−0.132
(−1.05)

−0.767 ***
(−4.83)

−0.801 ***
(−13.85)

0.036
(0.59)

−0.947 ***
(−15.97)

PUP −4.942
(−1.91)

3.227
(0.760)

−22.985 ***
(−5.23)

−4.592 **
(−2.56)

4.064
(0.55)

−6.076 *
(−2.13)

0–14 7.582
(1.54)

14.440
(0.82)

−10.111
(−1.31)

−6.135 *
(−1.90)

−22.906
(−1.54)

0.012
(0.00)

Above 65 −1.702
(−0.25)

−9.276 **
(−2.57)

−12.119
(−1.20)

2.408
(0.60)

−4.986
(−0.40)

5.717
(0.87)

Ln (GDP) 1.539 ***
(−5.54)

4.654 **
(3.15)

4.179 ***
(5.60)

1.002 ***
(3.96)

0.854
(0.70)

1.085 *
(2.48)

HD 2.784
(0.82)

−5.951
(−0.49)

12.582 *
(2.43)

−3.659
(−1.90)

−9.447
(−1.22)

−6.600 *
(−1.95)

1 *** p < 0.01, ** p < 0.05, * p < 0.1. 2 OV: outpatient visits per capita; IV: inpatient visits per capital; ED: effluent discharge; GE: gas emission;
SD: solid discharge; PM2.5: average PM2.5 concentration; HWD: household waste disposal; GDP: gross domestic product per capita; TP:
total population; PUP: the proportion of the urban population; 0–14: the proportion of the population aged 0–14; 65: the proportion of
the population aged above 65; HD: the proportion of the population with a higher education level. 3 bold numbers represent significant
coefficients.
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The direct effects of the control variables showed a positive relation between outpatient
visits and other socioeconomic factors when using all three matrices. Let us take the
coefficient of spatial contiguity matrix M1 as an example: when the total population
increases by 1%, outpatient visits grow by 0.595%. Similarly, outpatient visits grow by
1.560% after a 1% increase in the urban population share. Finally, 1% growth in the
percentage of the population aged 0–14 increases outpatient visits by 3.858%.

There was a distinct difference in the results for inpatient visits compared with those
for outpatient services. Gas emissions made no difference in the number of inpatient
services provided. Only the coefficients on effluence discharge using M1 and on solid waste
using M3 are significant, which suggests that with every 1% increase in effluence discharge
and solid waste, inpatient visits increase by 0.151% and 0.048%, respectively. At the same
time, the total population, urban population, and percentage of the population above 65
could also contribute to the growth in inpatient visits. However, there was one interesting
finding: the percentage of the population above 65 was closely related to inpatient services,
while the percentage of the population that is young was related to outpatient visits. This
may be caused by different preferences for healthcare services among people of different
age groups.

Table 6 reports the spill-over effects of the independent variables on different health-
care services in surrounding areas. As was the case for outpatient visits per capita and
inpatient visits per capita, the environmental factors had almost no impact on outpatient
services in the surrounding regions. In consideration of the demographic factors, the total
population, urban population, and population aged above 65 had spill-over effects on
outpatient visits in other areas. A 1% increase in the total population in the local region
was related to decreases of 0.663% and 0.767% in adjacent regions and economically close
regions, respectively. In regard to the urban population, a 1% increase in certain provinces
corresponded to a 22.985% drop in inpatient visits. For the population above 65, the co-
efficient is −9.276. Concerning the economic factors in the model, a 1% increase in GDP
per capita was related to an increase in inpatient visits (according to the three matrices, the
increase was 1.539%, 4.654%, and 4.179%, respectively.)

From the perspective of inpatient visits, it was estimated that with a 1% increase in
solid waste discharge in one specific province, the inpatient visits per capita in adjacent
counties would increase by 0.559%. Concerning the control variables, the total population,
urban population, and population aged 0–14 were all associated with increases in inpatient
visits in adjacent areas. Considering the coefficient estimated using the spatial contiguity
matrix M1 for instance, a 1% increase in the total population in the local province was
associated with a 0.801% decrease in inpatient visits in the adjacent region, a 1% increase
in the urban population in the local region leads to a 4.592% decrease in inpatient visits
in the surrounding regions, and a 1% increase in the percentage of the population aged
0–14 contributes to a 6.135% decrease in inpatient visits in the surrounding regions. In
regard to the economic determinants, the coefficients estimated using the spatial contiguity
matrix M1 and the spatial economic matrix M3 were positive. This suggests that a 1%
increase in GDP per capita in the local region is associated with a 1.002% increase and
1.085% increase in inpatient visits in the surrounding provinces or in economically related
regions. Interestingly, educational levels also play a role in the utilization of healthcare
services, and other studies have found similar results for specific diseases [52].

5. Conclusions

Using panel data on all provinces in China from 2006 to 2017, this research used
spatial autocorrelation analysis and a SDPM with random effects to explore the basic spatial
characteristics of healthcare services and their spatial relationships with environmental
variables based on three spatial weight matrices. The main findings of this study were
as follows:

(1) The utilization of healthcare services and environmental pollution were not randomly
distributed in China. There were distinct spatial cluster characteristics according
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to the global Moran’s I analysis. Healthcare services were affected not only by
environmental factors but also by the pollution of geographically and economically
related regions.

(2) Environmental pollution could pose a threat to the health of humans. Regardless
of whether the pollution is from the local region or another related province, the
empirical analysis indicates that the growth of pollutants could contribute to the
increase in outpatient and inpatient visits. For example, with every 1% increase in
gas emissions in the local region, outpatient visits grow 0.350% in that specific region.

(3) Environmental pollution exhibited spill-over effects on healthcare services. Local
pollution can cause an increase in healthcare services in the same region, while
pollution in other geographically or economically related regions could also affect
healthcare services in the local region. Naturally, some forms of pollution, such as air
pollution, can spread towards other places. Effluent discharge from upstream flows
downstream. Economically related regions normally develop industries at the same
pace, which may lead to similar contamination situations.

(4) Specifically, pollution showed different degrees of influence on healthcare services,
which means that the impact of environmental pollution on the number of outpatient
visits is greater than its impact on that of inpatient visits. Almost all relationships
between pollution and outpatient visits were significant, while there was no significant
relationship between pollution and inpatient visits. Normally, outpatient services are
for emergencies or diseases with mild symptoms, while inpatient services are aimed at
diseases with serious symptoms or those requiring surgery. Although environmental
pollution could cause diseases with either mild or severe symptoms, it is difficult to
distinguish these factors from other determinants of disease.

(5) This finding was related to the control variables. Different age groups were associated
with different healthcare services. Children aged 0–14 tended to receive outpatient
services, while elderly people were more likely to receive inpatient services. This may
be explained by the disease spectrum across different age groups. In addition, demo-
graphic factors showed distinct spill-over effects, and the high need for healthcare
services in some places could lead to a decrease in the provision of healthcare services
in geographically and economically close regions.

(6) The lasting finding was associated with economic development, in some extent, the
relationship between economic growth and health with environmental pollution
as mediator variable was still unclear. In this study, per capita GDP was included
in as independent variable, and the positive association was found towards this
variable. The reason behind this was the attraction of rich regions which owned
better medical services. However, economic development may cause environmen-
tal pollution and changes of healthcare services. This study was unable to state
that relationship. There were two main opinions about this relationship in research
world: “economic growth-heavy environmental pollution-bad health-heavy health-
care needs”, “economic growth- transformation of industries-better environment-less
healthcare needs”. The first change improves healthcare needs in local regions, while
the other changes that in other regions. To sum up, the relationship between eco-
nomic growth and health with environmental pollution as mediator variable was
complicated and this study failed to prove it.

According to the conclusions above, some policies can be proposed:

(1) At the governmental level, authorities from all levels should not only participate in the
formulation and implementation of basic environmental protection policies but also
enhance their cooperation with other authorities. On the one hand, the management
of health and environmental protection belong to different administrative divisions
in China, so authorities in all divisions should work together to address this problem.
On the other hand, environmental pollution showed spill-over effects, so regional
and national cooperation should be considered.
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(2) From the perspective of a company or industrial organization that may cause pol-
lution, apart from obeying the basic requirements issued by the government, the
relevant companies should pay more attention to the location of their spill-over ef-
fects. Most importantly, the location of factories should be distant from residential
areas and the community. In addition, all factories should obtain information on
their pollutants and the damage caused thereby, as well as on the areas affected by
that damage. This could help effective and fast measures be implemented when an
emergency occurs.

(3) From the perspective of communities and citizens, it is vital to learn and understand
the damage caused by environmental pollution and to take measures towards alleviat-
ing this problem. Specifically, it would be better for communities and citizens to have
access to information about surrounding factories and their possible pollutants in
order to take necessary precautions against those pollutants. In addition, citizens who
live in unpolluted areas should try to avoid staying in places with heavy pollution
for a long time, such as mining areas, waste incineration areas, and regions with
contaminated water.

Limitations and strengths:

(1) Limitations

To start with, this study failed to examine the relationships between other variables and
healthcare services with environmental pollution as mediator variable. These associations
were widely discussed in the academic world. Besides, the relationship between health
resources such as health workforce, bed numbers, equipment, and environmental pollution
was not researched.

(2) Strengths

To our knowledge, this was the first study using the effluent discharge, waste gas
emission, solid discharge, and household waste disposal as environmental pollution vari-
ables in discussion regarding its relationship with healthcare services. Second, this study
explored the change of environmental pollution and healthcare services in China from 2006
to 2017.
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