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A B S T R A C T   

Coronavirus Disease 2019 (COVID-19) is extremely infectious and rapidly spreading around the globe. As a 
result, rapid and precise identification of COVID-19 patients is critical. Deep Learning has shown promising 
performance in a variety of domains and emerged as a key technology in Artificial Intelligence. Recent advances 
in visual recognition are based on image classification and artefacts detection within these images. The purpose 
of this study is to classify chest X-ray images of COVID-19 artefacts in changed real-world situations. A novel 
Bayesian optimization-based convolutional neural network (CNN) model is proposed for the recognition of chest 
X-ray images. The proposed model has two main components. The first one utilizes CNN to extract and learn deep 
features. The second component is a Bayesian-based optimizer that is used to tune the CNN hyperparameters 
according to an objective function. The used large-scale and balanced dataset comprises 10,848 images (i.e., 
3616 COVID-19, 3616 normal cases, and 3616 Pneumonia). In the first ablation investigation, we compared 
Bayesian optimization to three distinct ablation scenarios. We used convergence charts and accuracy to compare 
the three scenarios. We noticed that the Bayesian search-derived optimal architecture achieved 96% accuracy. To 
assist qualitative researchers, address their research questions in a methodologically sound manner, a compar-
ison of research method and theme analysis methods was provided. The suggested model is shown to be more 
trustworthy and accurate in real world.   

1. Introduction 

COVID-19, a novel form of Coronavirus, has wreaked havoc on the 
global health system, claiming thousands of lives and wreaking havoc on 
millions more [1,2]. Coronavirus (SARS-COV-2) invaded the human 
body for the first time in December 2019, and it spreads mostly via 
droplets created by infected individuals when they talk or cough. Due to 
the droplets’ inability to travel long distances, they cannot transmit from 
human to human without coming into close touch [3,4]. COVID-19 has 
been identified as the organ of the community of coronaviruses [5,6]. 
COVID-19 infection is spreading every day owing to a lack of rapid 
diagnosis technologies. This illness will claim a staggering number of 
lives worldwide. The respiratory system and lungs are the primary 

routes of transmission for the virus. People have already been afflicted 
by a variety of other ailments because of global climate change, and the 
consequence of COVID-19 is incalculable. Almost every country on 
Earth has been infected with the virus at this point. On May 30, 2021, 
the WHO revealed that the virus has confirmed over 170 million in-
fections and killed over 3.5 million people [7]. 

By 2020, COVID-19’s exponential spread would have driven the 
World Health Organization (WHO) into declaring a global pandemic. 
COVID-19’s flu virus may be spread in a variety of ways including in 
dirty and congested places [8–10]. Governments have enacted new 
regulations to address overpopulation and regional overpopulation. 
Governments and healthcare organizations have done so by imple-
menting infection control systems in this manner [11–13]. Several 
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nations are currently developing vaccinations against COVID-19. 
Among these, vaccines Pfizer, Moderna, Sputnik V, Sinovac, and 
AstraZeneca have been approved and are being used in many nations 
[14–16]. According to clinical data, it has been said that the widely used 
vaccinations have attained effectiveness and are safe to use without 
causing major adverse effects. Nonetheless, a vast industrial scale is 
necessary to make the vaccine in sufficient quantity to cover the whole 
world’s population. Additional study is needed to determine the dura-
tion of protection and the vaccines’ efficacy, especially against newly 
discovered viral types. Additional studies are needed to develop an 
effective screening procedure for diagnosing and isolating viral cases. 
Numerous countries’ health professionals and scientists are seeking to 
strengthen their treatment plans and testing capability by introducing 
multifunctional testing in order to halt the spread of the virus and to 
protect people from the fatal infection [17]. 

Mostly, all projected models will need chest X-ray or CT data from 
patients as the primary input parameter, which can be obtained exclu-
sively from diagnostic centers [18,19]. Thus, each patient must make an 
in-person visit to the diagnostic center to confirm the presence of 
COVID-19 in his or her body. Most households in underdeveloped na-
tions lack access to private transport. Additionally, individuals living in 
rural regions must drive a considerable distance to access a diagnostic 
center. As a result, individuals must use public transportation to the 
diagnostic center for COVID-19 testing. This will increase susceptibility 
to the propagation of COVID-19, among other things [20]. 

Artificial Intelligence (AI) approaches have been used intensively in 
medical domain to diagnose diseases based on the chest scans, e.g. 
Pneumonia [21–25]. Recognition techniques used range from Bayesian 
to Deep Learning (DL). Recently, DL has been shown to be beneficial and 
successful for classifying images to detect COVID-19. DL techniques are 
composed of multi-layer neural networks that are very competent of 
identifying image’s deep patterns without requiring the images to be 
preprocessed in any way. Various advancements in Convolutional 
Neural Network (CNN) during the subsequent years greatly reduced the 
error rate in image categorization competitions [26–29]. 

The primary goal of this study is to characterize the COVID-19 
feature detected in chest X-ray images based on Bayesian optimized 
deep learning model. The following are the primary contributions of this 
study:  

1) A novel DL model for recognizing COVID-19 based on the chest X-ray 
images is proposed.  

2) Bayesian optimization is a technique used in place of sweeping 
hyperparameters throughout an experiment.  

3) By identifying suitable network hyperparameters and training 
choices for CNN, the proposed approach improves recognition 
efficiency.  

4) The proposed model has been trained, optimized, and tested using a 
real dataset. This dataset is large compared to the literature and 
balanced which support the results to be trusted by domain expert.  

5) Load the optimal DL network discovered during optimization and its 
accuracy of validation. 

The following sections are utilized throughout the remainder of this 
work. The second portion deals with comparable studies beforehand. 
Section 3 describes the key characteristics of the dataset. Section 4 
shows in a methodological approach of the proposed DL model. Section 
5 discusses the testing results, and Section 6 presents the conclusion and 
future work. 

2. Related works 

This section will review the most recent literature on chest x-ray 
scans used to diagnose COVID-19 and compiles information on the 
application of machine learning and deep learning to picture categori-
zation. The classification step of an image is separated into three stages: 

pre-processing, extraction, and recognition. Recently, researchers used 
deep learning algorithms to explore and evaluate chest X-ray images to 
discover COVID-19. Using deep learning algorithms, images are pre- 
processed using the CNN network to extract higher-quality and deep 
features that are then fed into a classifier (e.g., SoftMax) for image 
categorization. In [30], Authors used a hybrid chest X-ray radiography 
(CXR) images model to utilize a decision-tree (DT) classifier based on DL 
to detect COVID-19. This classifier tested a set of three binary DTs made 
using the Torch library by making comparisons. For the third DT, the 
decision tree managed to accurately classify whether an X-ray image 
was healthy or unhealthy, with 95% accuracy. 

Wang et al. [31] created a transfer learning (TL) approach based on 
DL models to diagnose COVID-19. A chest X-ray dataset of 565 
COVID-19 and 537 healthy is used in the proposed model. The suggested 
DL technique had a diagnosis accuracy of 96.7%. Additionally, they used 
deep features and machine learning classification to establish an effec-
tive diagnostic approach for enhancing the DL model’s accuracy. The 
authors concluded that their suggested strategy improved the COV-
ID-19’s classification accuracy and diagnostic performance. However, 
the authors made no attempt to compare their findings to those of pre-
vious comparable investigations. 

Chowdhury et al. [32] used chest X-ray images to construct new 
framework based on CNN. The study utilized a chest X-ray dataset of 219 
COVID-19, 1345 pneumonia, and 1341 healthy patients. The authors 
employed a convolution in the parallel stack to collect and extend the 
essential features to achieve a detection accuracy of 96.6% in their 
suggested dilated technique. In [33], three deep TL models including 
AlexNet, GoogleNet, and ResNet were used on a dataset of X-ray scans 
with four distinct class types. The chest X-ray dataset include 79 healthy, 
69 COVID-19, and 79 + 79 bacterial/viral pneumonia patients. The 
study was spread out into three different situations to minimize memory 
usage and overall execution time. DL can assess the 100% of the data 
correctness using the newest TL model. 

In [34], authors devised and successfully validated a deep CNN, 
known as DeTraC, for identifying COVID-19 patients from their chest 
X-ray scans. The dataset for chest X-rays contains the following 
numbers: 11 SARs, 105 COVID-19, and 80 healthy patients. They sug-
gested a decomposition approach to inspect for detect anomalies in the 
dataset by identifying class borders and using that information to ac-
quire for high accuracy of 93%. The authors of [35] proposed a DL 
model that had the three layers of patient layer, cloud layer, and hospital 
layer. The study used a chest X-rays dataset of 250 COVID-19 and 500 
healthy patients. A patient data collection was obtained from the patient 
layer with the use of wearable devices and a phone app. A neural 
network-based DL algorithm was used to find COVID-19 utilizing the 
patient X-ray scans. The suggested model obtained a high-level accuracy 
of 97.9%. 

Authors in [36] developed a DL-based approach to identify 
COVID-19 from chest X-ray scans, based on four different TL models. 
Their dataset contains 184 COVID-19 and 5000 healthy patients. The 
approach used image augmentation to construct a new version of the 
COVID-19 images, which resulted in an increased number of samples 
and was eventually able to reach a higher accuracy. ResNet-101 and 
ResNet-151 were used [37] to construct a model with fusion effects, and 
the weight ratio of the produced model was dynamically enhanced. The 
chest X-ray dataset consists of 8851 healthy, 140 COVID-19, and 9576 
pneumonia patients. To organize and standardize the chest X-ray im-
ages, their recognition was based on three distinct recognitions 
including normal, COVID-19, and pneumonia. The study achieved 96% 
accuracy. 

In [38], Khan and Aslam used pre-trained DL models (i.e. VGGNet, 
ResNet, and DenseNet) to expand the diagnostic capabilities of their 
imaging systems and built a whole new image processing architecture 
based on normal utilizing TL models. The used chest X-rays dataset had 
195 COVID-19 and 862 healthy patients. In this suggested model, there 
were two steps like preprocessing and data augmentation followed by 
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transfer learning. The results demonstrated a perfect level of 99% ac-
curacy. CNN and machine learning classifiers [39] were used in order to 
build a model where many tests were done using CNN in order to 
identify the COVID-19 from chest X-ray pictures. The best accuracy of 
the proposed DL model was above 98% compare to the machine learning 
algorithms. The chest X-ray dataset contained 4292 pneumonia, 225 
COVID-19, and 1583 healthy patients. The system achieved a remark-
able level of accuracy with 98.5% of accuracy. They ultimately deter-
mined that the proposed CNN system could identify COVID-19 patients 
from a small number of cases, without any preprocessing and with the 
least possible number of layers. 

A deep learning algorithm based on the ResNet CNN model was used 
to identify COVID-19 [40]. In their proposed technique, thousands of 
images were used in the pre-trained phase to distinguish significant 
items, and a different number of images in the retrained phase were 
utilized to search for abnormalities in chest X-ray data. The COVID-19 
chest X-ray dataset has 154 COVID-19 and 5828 healthy patients. The 
study achieved an accuracy of 72%. 

As shown in Table 1, most published research for COVID-19 diag-
nosis has employed chest X-ray data to diagnose COVID-19 which 
highlighted the critical role of chest X-ray image analysis as an indis-
pensable tool for physicians and radiographers. However, these studies 
used different and imbalance datasets, and they extracted insufficient 
features from images. As a result, the classification outcomes were not 
accurate nor intended [41,42]. The majority of the studies discussed 
before relied heavily on mathematical analysis and transfer learning to 
reliably diagnose COVID-19 infection. There is little research on using 
CNN with balanced data with optimization technique to identify 
COVID-19 in X-ray imaging. As a result, more research on deep learning 
with simplified efficiency criteria may be conducted. According to the 
literature evaluation conducted for this study, it is recommended that 
chest scans be used to balanced data to diagnose COVID-19. The new 
paradigms are generally more effective and efficient in combating the 
COVID-19 epidemic. 

3. Dataset 

COVID-19 patients are anticipated to undergo a variety of rigorous 
data gathering procedures. Not only the sample structure inside a 
collection, but also their distribution across classes, has a substantial 
impact on the model that will be created. Color, geometry, and pattern 
have a direct influence on the performance of intelligent computer-aided 
prototypes. Additionally, a consistent and robust model requires an 
equal number of samples that cover all conceivable situations or oc-
currences for each class. 

This paper conducted its experiments based on two publicly 

available X-ray datasets. The first dataset is COVID-19 Radiography 
dataset1 published by Rahman et al. [43,44]. The collection includes 
3616 COVID-19, 10,192 normal, 6012 lung opacity, and 1345 viral 
Pneumonia cases. The second public X-ray dataset is a Chest X-Ray 
Images.2 The collection [45] contains 5863 images of patients with 
Pneumonia/Normal lung function. 

By integrating the COVID-19 radiography dataset with chest X-ray 
dataset, we developed a new dataset. By eliminating low-quality and 
redundant images, the combined dataset comprises 10,848 (3616 
COVID-19, 3616 Normal cases, and 3616 Pneumonia) scans. The 
resulting dataset is balanced as illustrated in Fig. 1. We split our dataset 
to three sets, as shown in Fig. 2. To demonstrate the suggested model 
using a publicly available dataset, we created a model that does X-ray 
categorization. The diagnostic engine uses this X-ray classifier to 
determine whether an X-ray image is associated with COVID-19. To 
assess the classifier, we employ two datasets of COVID-19, normal, and 
Pneumonia. The new dataset is a massive archive including an unusually 
diverse population of COVID-19 patients. 

4. Proposed model 

Fig. 3 illustrates the proposed classification model for detecting 
COVID-19 patients. The train and validation set are utilized throughout 
training and tuning procedures. The proposed model consists of two 
main parts: initial CNN architecture and the Bayesian optimizer. The 
proposed Bayesian optimizer has three main steps: selection of hyper-
parameters, calculation of fitness function, and tuning of hyper-
parameters. The CNN architecture extracts deep features and followed 
by a classifier. Fig. 4 illustrates the suggested recognition model topol-
ogy. The testing data will be used to assess the optimized model. After 
tweaking the CNN hyperparameters using Bayesian optimizer, the 
optimizer picks the optimum hyperparameters to be used in the testing 
stage. 

The test procedure will be utilized to find the optimal of hyper-
parameters in CNN model. During the first iteration of the search, we 
train the CNN using the default hyperparameters. Then, we adjust our 
CNN model’s hyperparameters to approximate the objective function 
using the validation loss, which serves as our fitness function. Then, we 
get a fresh set of hyperparameters by using the projected improvement 
acquisition function. This Bayesian function specifies whether the next 
set of hyperparameters is created randomly or using the fitness model. 
We update the CNN architecture to match the hyperparameters once 
they are obtained. CNN is trained and used to calculate the validation 
loss using the training technique. After that, the Bayesian process is 
updated to provide a more precise estimate of the objective function. 
This method is done 30 times in total. The model with the lowest loss 
will be chosen after 30 iterations. This is the procedure technique of 
Bayesian-optimized CNN model of tuning hyperparameters. 

4.1. Choosing of hyperparameters in Bayesian optimizer 

It is required to decide which hyperparameters are optimized before 
commencing the optimization. The innovative concept here is to 
construct a neural network to assist the diagnosis of COVID-19 by 
chaining an extractive feature backbone CNN network. To acquire the 
best model, four hyperparameters were chosen for optimization in the 
Optimization stage of the hyperparameter:  

1) Initial learning rate (μ): rely on dataset size and network depth. To 
compute Stochastic Gradient Descent (SGD) with μ: ΔQi+1 = Qi +

μ ∗ E(Qi) where the hyperparameter Q which minimizes error rate 
E(Qi) with estimated step size μ. 

Table 1 
Most data of published studies were imbalanced COVID-19 datasets.  

References Dataset 

COVID-19 Pneumonia Normal 

Wang et al. [31] 565 – 537 
Chowdhury et al. [32] 219 1345 1341 
Loey et al. [33] 69 bacterial = 79 79 

virus = 79 
Abbas et al. [34] 105 SARS = 11 – 80 
El-Rashidy et al. [35] 250 – 500 
Minaee et al. [36] 184 – 5000 
Wang et al. [37] 140 9576 8851 
Khan and Aslam [38] 195 – 862 
Sekeroglu and Ozsahin [39] 225 4292 1583 
Che Azemin et al. [40] 154 – 5828  

1 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.  
2 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia. 
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2) SGD with momentum: Momentum adds inertia to hyperparameter 
changes by including a contribution proportionate to the prior iter-
ation’s change in the current update. This leads in more consistent 
parameter updates and a decrease in the noise associated with sto-
chastic gradient descent. The momentum term rises for dimensions 
with identical gradients and decreases for dimensions with varying 
gradients. To compute SGD with momentum: ΔQi+1 = ΩQi +

μ ∗ E(Qi) where the momentum term Ω is usually set to 0.8–1.  
3) Depth of the network stage: This option checks the network depth. The 

network comprises three sections with the same convolution layers 
each with depth D. The total number of convolutionary layers is 3* D. 
Later on, in the script, the goal function takes the number of 
convolution filters in each layer to 1/

̅̅̅̅
D

√
. As a consequence, the 

number of parameters and the calculation quantity needed for each 
iteration are almost same for varied section depths.  

4) L2 regularization: By include a regularization β term for the weights in 
the loss function, overfitting is minimized, i.e., Er = E+ β Ω(Q), 
where Q is the weight vector, β is the regularization coefficient, and 
the regularization function is Ω(Q) = 1

2  Q
tQ. 

4.2. Tuning of hyperparameters in Bayesian optimizer 

In the broadest sense, optimization is the process of identifying a 
position that decreases a real-valued function known as the fitness 
function. Bayesian optimization is a term that refers to one of these 
processes. Bayesian optimization utilizes an internal Gaussian process 
model of the goal function and trains the model using optimal solution 
evaluations. One novel feature of Bayesian optimization is the method’s 
use of an acquisition function to select the next point to assess. The 
acquisition function may be used to strike a compromise between 
sampling at sites with low-modeled goal functions and investigating 

Fig. 1. The proposed dataset structures.  

Fig. 2. The proposed COVID-19 dataset split.  
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regions that have not yet been well modeled. 
One of the most challenging aspects of any Deep Learning project is 

determining the optimal combination of hyperparameters that decreases 
or increases the fitness function, given the variety of neural network 
topologies available today. When considering the high number of 
criteria, creating a static search space might be a big difficulty. The goal 
of this study was based on constructed with a fitness function and a 
search space comprising the hyperparameters such as the depth of 
network layer, and the learning rate. Thus, we were able to find the 
optimal hyperparameter design, taking the goal function stated above 
and the hyperparameters of interest into account. 

The Bayes theorem is at the heart of Bayesian optimization. Ac-
cording to Bayes’s theorem P(H|F) = P(H) x P(F|H), H is the hypothesis 
in this case. Hypothesis is independent features. F is the proof or 

evidence. proof is the target variable. The probability of the hypothesis 
H given the evidence F. H and F must be different events. The prior 
probability is denoted by P(H). P(F|H) denotes the probability. The 
posterior probability is denoted by P(H|F). The objective function is the 
real or true function that we are attempting to estimate via Bayesian 
optimization. By sampling points from the hyperparameter. space, 
Bayesian optimization optimizes this function without knowing its 
gradient. It attempts to estimate the objective function using the results 
of evaluating the function at these sample locations. The surrogate 
function is this estimate of the objective function. Keep in mind that the 
classification error is being utilized as an objective function. The 
following method is described in Bayesian terms: 1) Fit the objective 
function to a Gaussian probability model. The objective function of this 
investigation is classification error. 2) Identify the optimal 

Fig. 3. The proposed COVID-19 X-ray classification model for training.  

Fig. 4. The proposed COVID-19 X-ray classification model for testing.  
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hyperparameters parameters for the Gaussian process. 3) Transform the 
objective function using these hyper-parameters. 4) Apply the new 
findings to the Gaussian model. Finally, Repeat Steps 2–4 until the 
maximum number of iterations has been achieved. 

To optimize CNN model and to evaluate various hyperparameter in 
CNN configurations based on Bayesian techniques. Bayesian statistics is 
a critical methodology in statistics that is especially useful when 
analyzing a series of data dynamically. Rapid, efficient, urgent, and 
adaptive Deep Learning trials. Table 2 shows the four (Initial learning 
rate, SGD with momentum, depth of the network, and L2 regularization) 
tuning hyperparameter used in DL training generated by the Bayesian 
tuning algorithm. 

4.3. Proposed CNN Architecture 

As seen in Fig. 5, proposed CNN architecture consists of two stages: 
feature extraction and learning classifier or classification. The objective 
of feature extraction stage is to extract significant characteristics from 
the data. Convolutional layers perform feature extraction in CNN. A 
learning predictor stage is used to train the system to categories data 
based on the characteristics extracted by the feature extraction layer. 
The classifier for learning is composed of one or more fully connected 
layers. Each layer has a certain number of nodes. Each layer employs a 
variety of non-linear activation functions to learn complicated function 
mappings from source to destination. 

Assume layer c is convolutional, we have a set of s x s square neuron 
nodes followed by a convolutional layer. If we employ a f x f filter, the 
outcome of the convolutional layer will be (s − f + 1) (s − f + 1), 
which results in k-feature maps. The convolutional layer functions as a 
feature vector, capturing characteristics from the inputs. Convolution 
retrieves picture features such as edges, lines, and corners. To calculate 
the output of convolution function in equation (2): 

Gc
i =Bc

i +
∑s

x=1

∑s

y=1
Wi Qc− 1

(i+x)(j+y) (2)  

where Bb
i is a bias and Wi is the mask of volume f × f .), the input of 

layer c − 1 The convolution operation then applies its activation func-
tion as specified in formula (3): 

Out=Ω
(
Gc

i

)
(3)  

where Ω(.) is referred to as non-linearity, and the function used to 
generate non-linearity in DTL comes in a variety of flavors, including 
tanh, sigmoid, and Rectified Linear Units (ReLU). In our technique, we 
use ReLU as the activation function in equation (4) to facilitate the 
training phase.: 

Re(d)=max(0, d) (4) 

Bayesian optimization uses historical data to choose the optimal 
hyperparameters for assessment. In machine learning models and sim-
ulations, Bayesian optimization has been applied [46,47]. It assists in 
devising the time-consuming job of optimizing a large number of pa-
rameters. It has been used in several trials to determine the optimal set of 
gait characteristics. Our paper presents a unique CNN model that is 
trained entirely from scratch, rather than using the TL technique. 

5. Results 

We trained our deep learning model on a GPU using TensorFlow and 
MATLAB (2021a) based on Nvidia. We implement the proposed CNN 
model using the recommended training configuration (batch norm 
decay = 0.2, weight decay = 0.001, and dropout = 0.6). To avoid the 
overfitting concerns associated with deep nets, we use the dropout 
strategy [48]. The early-stopping is permitted if no decrease in cor-
rectness is observed. The starting learning rate is set from the domain 
[0.001–1] with a batch size of 64 and the learning rate is automatically 
reduced. This resulted in a shorter preparation time without sacrificing 
efficiency. They observed that model output increased as more samples 
were used in 10-fold cross-validation [49]. SGDM [50] has been selected 
as our optimizer strategy for enhancing CNN detection performance. 
Validation accuracy is a categorization score used to evaluate the 
effectiveness of the learning approach throughout the procedure. It 
makes it possible to identify overfitting as a possible cause. If evaluation 
and training are inaccurate, overfitting has already occurred. The pro-
posed CNN model update training configuration parameters. To achieve 
the highest degree of model efficiency, an efficient balance between 
classes must be found. 

The dataset was divided into three scenarios. 1) Scenario 1: the data 
are split to 60% for training, 10% for validation, and 30% for testing; 2) 
Scenario 2: the data are split into 70% for training, 10% for validation, 
and 20% for testing); 3) Scenario 3: the data are split into 80% for 
training, 10% for validation, and 10% for testing. Our dataset is 
balanced, so it is sufficient to measure the model accuracy, i.e., accuracy 
= (CTP +CTN)/((CTP +CFP)+(CTN +CFN)), where CTP is the quantity of 
properly labelled, CFN is the number of incorrectly labelled, CTN is the 
number of instances of the remaining categories that are properly 
named, and CFP is the total number of incorrectly labelled classes in the 
remaining classes. The confusion matrices for three groups of labels 
(COVID-19, Normal, and Pneumonia) have also been reported. 

Scenario 1. Table 3 shows the results of optimizing CNN hyper-
parameters (depth of the network, initial learning rate, SGD with mo-
mentum, and L2 regularization) based on the Bayesian technique. The 
maximum number of objective function evaluations is 30 iterations. The 
best estimated CNN hyperparameters are: depth of the network = 2, 
initial learning rate = 0.010518, SGD with momentum = 0.83379, and 
L2 regularization = 1.606e-05 in all layers). Fig. 6(a) shows an overall 
accuracy of 95.1% of the best CNN model to detect COVID-19 patients. 
Fig. 6(b) shows a graph between the function evaluation and minimum 
objective. The goal, shown on the x-axis as min objective against the 
total number of function evaluations on the y-axis. 

Scenario 2. Table 4 shows the result of optimizing CNN hyper-
parameters: depth of the network, initial learning rate, SGD with mo-
mentum, and L2 regularization based on Bayesian technique. The 
maximum objective function evaluations are 30 iterations. Best esti-
mated CNN hyperparameters model is (depth of the network = 1, initial 
learning rate = 0.042721, SGD with momentum = 0.84845, and L2 
regularization = 5.3403e-07). Fig. 7(a) shows an overall accuracy of 
95.2% of the best CNN model to classify COVID-19 patients. Fig. 7(b) 
shows a graph between the function evaluation and minimum objective. 
The goal, shown on the x-axis as min objective against the total number 
of function evaluations on the y-axis. 

Scenario 3. Table 5 shows the result of optimizing CNN hyper-
parameters (Depth of the network, Initial learning rate, SGD with mo-
mentum, L2 regularization) based on Bayesian technique. The maximum 
objective function evaluations are 30 iterations. Best estimated CNN 
hyperparameters model is (Depth of the network = 2, Initial learning 
rate = 0.0104, SGD with momentum = 0.80281, L2 regularization =
1.7329e-08). Fig. 8(a) shows the overall accuracy = 96.0% of the best 
CNN model to classify COVID-19 dataset. Fig. 8(b) shows a graph be-
tween the function evaluation and minimum objective. The goal, shown 

Table 2 
The proposed hyperparameters from the Bayesian optimization for DL training.  

Hyperparameter Range Function Data type 

Initial learning rate [0.001 1] Logarithmic Real number 
SGD with momentum [0.8 1] None Real number 
Depth of the network [15] none Integer number 
L2 regularization [10− 10 0.001] Logarithmic Real number  
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Fig. 5. Proposed custom CNN architecture for COVID-19 classification.  
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on the x-axis as min objective against the total number of function 
evaluations on the y-axis. 

6. Discussion 

The comparative assessments of related work are given in Table 6. It 
is quite obvious that the suggested methodology achieved a decent 

Table 3 
The outcomes of Bayesian-based tuned CNN model for scenario 1.  

Iter Objective depth Learn rate Momentum L2Regularize Iter Objective depth Learn rate Momentum L2Regularize 

1 0.26593 5 0.56005 0.89236 2.5293e-08 16 0.077562 2 0.010068 0.813 8.9211e-10 
2 0.12835 2 0.45045 0.9174 2.0423e-10 17 0.21422 1 0.88155 0.80601 9.464e-07 
3 0.1819 5 0.045905 0.86003 0.0030503 18 0.31671 1 0.95217 0.97863 0.00024883 
4 0.12558 2 0.22518 0.85151 5.6765e-05 19 0.12281 1 0.010019 0.83885 6.3628e-08 
5 0.076639 2 0.013965 0.87512 7.0055e-10 20 0.099723 2 0.040626 0.83333 2.1794e-10 
6 0.094183 1 0.04873 0.88431 1.491e-10 21 0.067405 2 0.01063 0.84146 0.001894 
7 0.091413 1 0.010025 0.88907 7.0909e-09 22 0.20314 5 0.011115 0.97862 7.4731e-05 
8 0.061865 3 0.010232 0.91538 1.2663e-10 23 0.09603 1 0.012718 0.97888 4.3264e-09 
9 0.1542 3 0.010113 0.97821 2.7617e-10 24 0.083102 3 0.011089 0.80001 2.0768e-08 
10 0.092336 2 0.010307 0.91339 3.3622e-06 25 0.19852 3 0.99239 0.81422 3.1124e-10 
11 0.10619 3 0.010329 0.89705 2.5414e-10 26 0.11357 2 0.016571 0.81267 0.008776 
12 0.069252 2 0.010099 0.83021 1.0997e-08 27 0.085873 2 0.010446 0.81777 1.2133e-10 
13 0.083102 2 0.010003 0.80689 9.7536e-07 28 0.36011 1 0.073301 0.97775 0.0050097 
14 0.075716 1 0.010273 0.80193 7.0922e-05 29 0.070175 3 0.010102 0.83679 3.7223e-05 
15 0.038781 2 0.010104 0.83095 7.9384e-06 30 0.066482 2 0.010518 0.83379 1.606e-05  

Fig. 6. (a) Confusion matrix of Scenario-1. (b) plot of the number of function evaluations vs min objective.  

Table 4 
The outcomes of Bayesian-based tuned CNN in scenario 2.  

Iter Objective depth Learn rate Momentum L2Regularize Iter Objective depth Learn rate Momentum L2Regularize 

1 0.17359 5 0.56005 0.89236 2.5293e-08 16 0.39151 1 0.85309 0.80126 0.0047163 
2 0.086796 2 0.45045 0.9174 2.0423e-10 17 0.097876 1 0.048194 0.81467 1.1155e-10 
3 0.19668 5 0.045905 0.86003 0.0030503 18 0.065559 1 0.015893 0.92199 3.0676e-07 
4 0.09603 2 0.22518 0.85151 5.6765e-05 19 0.089566 1 0.20578 0.83616 1.0967e-10 
5 0.66759 2 0.96209 0.97666 1.0098e-10 20 0.057248 1 0.055434 0.81781 6.2685e-06 
6 0.0988 2 0.69253 0.82806 2.3652e-08 21 0.057248 2 0.010601 0.90455 4.7382e-06 
7 0.051708 1 0.045746 0.89761 1.5974e-08 22 0.047091 1 0.060467 0.91755 2.3564e-10 
8 0.064635 1 0.027362 0.80004 0.000474 23 0.090489 1 0.043747 0.8017 5.659e-07 
9 0.051708 1 0.017239 0.90674 0.00070454 24 0.064635 1 0.029504 0.91162 1.0623e-06 
10 0.17452 1 0.91842 0.87403 1.1245e-10 25 0.065559 1 0.010295 0.83171 0.0034166 
11 0.11634 5 0.010243 0.80031 0.0015368 26 0.075716 1 0.010218 0.81136 0.00069518 
12 0.045245 1 0.1452 0.90559 5.8502e-10 27 0.038781 1 0.042721 0.84845 5.3403e-07 
13 0.073869 1 0.53902 0.8108 1.3185e-10 28 0.043398 1 0.010106 0.87598 0.00042163 
14 0.057248 1 0.019588 0.90257 2.3604e-10 29 0.15605 4 0.25799 0.81222 1.2145e-10 
15 0.3518 1 0.55331 0.90567 0.0022727 30 0.056325 1 0.065363 0.83903 1.1961e-05  
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classification accuracy in identifying COVID-19 compared to the other 
strategies presented in the literature. However, the research by revealed 
a greater accuracy than this research. This could be owing to a much 
lower number of photos and unbalanced data utilized in their dataset for 
assessing the framework efficiency. The difficulty in comparing COVID- 
related research is that the majority of studies employed various datasets 
and the split of the dataset into train, validation, and test sets is not 
publicly accessible. The proposed CNN model is the best model to 
classify our COVID-19 dataset with small number of network size and 
the best hyperparameter selected. Most of previous work used transfer 
learning models like VGGNet, GoogleNet, and ResNet, those models 
have high deep CNN depth with large number of parameters. Three 
ablation experiments were conducted to determine the effect of 
Bayesian optimization on our CNN model as illustrated in Table 7. In the 
first ablation investigation, we compared Bayesian optimization against 
three scenarios. We employed convergence plots, accuracy to compare 
the three scenarios. We discovered that the best architecture achieved by 
Bayesian search had a 96% accuracy. 

The issue with comparing COVID-related research is that most 
studies employed distinct datasets and the split of the dataset into train, 
validation, and test sets is not publicly accessible. As a consequence, we 
trained and evaluated other researchers’ techniques on our dataset in 

order to compare them to ours. Although the datasets were comparable 
in type, the distribution of data and the assessment process were distinct 
in each instance. Several studies use cross-validation, while others 
divided the whole dataset into a train, validation, and test set. Three 
kinds of X-rays were included in the datasets: normal, pneumonia, and 
COVID-19 [32,34,37,39]. Normal and COVID-19 X-rays were included 
in the datasets having two classes [31,35,36,38,40]. Notably, the sug-
gested model is assessed using the COVID-19 Radiology Database scale. 
Given the global prevalence of positive COVID-19 cases, one may argue 
that the database is insufficiently big. However, we believe that this is a 
non-issue. Because the performance of CNN networks increases as the 
number of samples utilized in the development process increases, in this 
scenario, just computation time and physical hardware need to be 
considered. Another critical point to remember is that by the time pos-
itive COVID-19 cases are found using X-ray pictures, the infection may 
have progressed dramatically. In other words, whereas X-ray pictures 
are a valuable tool for confirming positive COVID-19 instances, they 
may not be clinically meaningful for early diagnosis. In this regard, our 
paper presents a unique CNN model that was trained entirely from 
scratch, rather than using a transfer learning technique. Additionally, 
rather of employing pre-trained CNNs, the suggested architecture’s 
completely linked layers were investigated, analyzed, and employed for 

Fig. 7. (a) Confusion matrix of Scenario-2. (b) plot of the number of function evaluations vs min objective.  

Table 5 
The outcomes of Bayesian-based tuned CNN in scenario-3.  

Iter Objective Depth Learn rate Momentum L2 Regularize Iter Objective Depth Learn rate Momentum L2 Regularize 

1 0.073869 5 0.56005 0.89236 2.5293e-08 16 0.031394 1 0.3408 0.80021 2.085e-08 
2 0.084026 2 0.45045 0.9174 2.0423e-10 17 0.061865 1 0.14746 0.80107 1.7148e-09 
3 0.14681 5 0.045905 0.86003 0.0030503 18 0.1265 2 0.20049 0.97991 6.7533e-09 
4 0.079409 2 0.22518 0.85151 5.6765e-05 19 0.34441 5 0.71311 0.97992 2.8196e-09 
5 0.10249 4 0.57092 0.80002 5.0694e-05 20 0.065559 1 0.36462 0.80086 4.6695e-08 
6 0.17359 5 0.60652 0.88909 2.5798e-08 21 0.13758 3 0.93362 0.84857 5.843e-09 
7 0.078486 2 0.27832 0.87092 2.719e-07 22 0.056325 1 0.010313 0.84758 3.5044e-07 
8 0.084026 2 0.64306 0.81325 5.4379e-09 23 0.054478 1 0.056957 0.92869 4.5579e-09 
9 0.064635 3 0.020184 0.90189 1.1136e-10 24 0.048015 1 0.086999 0.81024 1.8238e-06 
10 0.073869 1 0.99879 0.85691 3.9481e-10 25 0.056325 1 0.066059 0.97703 1.1357e-10 
11 0.087719 3 0.082862 0.97899 1.7582e-07 26 0.028624 1 0.0104 0.80281 1.7329e-08 
12 0.1145 1 0.30907 0.96899 4.8241e-09 27 0.058172 1 0.010883 0.80102 8.7027e-09 
13 0.068329 3 0.022298 0.80173 1.6709e-08 28 0.037858 1 0.010189 0.88753 1.5256e-06 
14 0.033241 3 0.016754 0.80022 2.0167e-06 29 0.2096 5 0.92303 0.80051 2.6785e-07 
15 0.63343 4 0.39236 0.97969 4.2755e-06 30 0.058172 1 0.011612 0.97707 1.0257e-07  
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the COVID-19 infection detection job. Our research incorporates novel 
elements in this regard. Additionally, the suggested model is based on 
the end-to-end learning approach and does not use a bespoke feature 
extraction engine. Therefore, a model that is efficient, quick, and 
dependable was constructed, and encouraging results were obtained. 

7. Conclusion 

In this study, we offer a new classifier for chest X-ray images using 
convolutional neural network models (CNNs) based on Bayesian opti-
mization. The suggested model is composed of two distinct components. 
The first one used CNN to extract features and do classification. The 
second component is a Bayesian optimizer that is used to modify CNN 
hyperparameters in accordance with the goal function. The proposed 
COVID-19 dataset contains 10,848 images (3616 COVID-19, 3616 

Normal cases, and 3616 Pneumonia). We compared Bayesian optimi-
zation to three different ablation situations in the first ablation research. 
We compared the three situations using convergence charts and accu-
racy. We observed that the optimum architecture obtained by Bayesian 
search was 96% accurate. The findings indicated that the best CNN 
model is the most successful in identifying balanced COVID-19 pictures 
when compared to other models assessed on a smaller dataset. This 
research was compared to previous research using COVID-19 x-ray im-
ages. The model outperformed all existing classifiers in terms of pre-
dictive power and significance. X-ray analysis is sufficiently promising 
to permit extrapolation and generalization. In the future, we want to 
contribute our findings to other machine learning and deep learning 
projects. Despite its high accuracy rates, the suggested study should be 
replicated on a larger scale since it has the potential to be used in other 
medical applications. 

Fig. 8. (a) Confusion matrix of Scenario-3. (b) plot of the number of function evaluations vs min objective.  

Table 6 
Comparison of the performance of several approaches in terms of accuracy.  

References Method Class Dataset Accuracy  

COVID-19 Pneumonia Normal 

Wang et al. [31] TL 2 565 – 537 96.7% 
Chowdhury et al. [32] CNN 3 219 1345 1341 96.5% 
Loey et al. [33] TL 4 69 bacterial = 79 79 100% 

virus = 79 
Abbas et al. [34] DeTraC 3 105 SARS = 11 – 80 93.1% 
El-Rashidy et al. [35] DL 2 250 – 500 97.9% 
Minaee et al. [36] TL 2 184 – 5000 98% 
Wang et al. [37] ResNet 3 140 9576 8851 96.1% 
Khan and Aslam [38] TL 2 195 – 862 99.3% 
Sekeroglu and Ozsahin [39] CNN 3 225 4292 1583 98.5% 
Che Azemin et al. [40] ResNet 2 154 – 5828 71.9% 
Proposed Method  3 3616 3616 3616 96%  

Table 7 
Comparison of the performance of several scenarios in terms of accuracy.  

Scenarios Depth of network Learning rate Momentum L2Regularization Accuracy 

Scenario-1 2 0.010518 0.83379 1.606e-05 95.1% 
Scenario-2 1 0.042721 0.84845 5.3403e-07 95.2% 
Scenario-3 1 0.0104 0.80281 1.7329e-08 96%  

M. Loey et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 142 (2022) 105213

11

Funding 

This research received no external funding 

Ethical approval 

This article does not contain any studies with human participants or 
animals performed by any of the authors. 

Declaration of competing interest 

On behalf of all authors, the corresponding author states that there is 
no conflict of interest. 

References 

[1] F. Wu, et al., A new coronavirus associated with human respiratory disease in 
China, Nature 579 (7798) (Mar. 2020), https://doi.org/10.1038/s41586-020- 
2008-3. Art. no. 7798. 

[2] N. Chen, et al., Epidemiological and clinical characteristics of 99 cases of 2019 
novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet 395 
(10223) (Feb. 2020) 507–513, https://doi.org/10.1016/S0140-6736(20)30211-7. 

[3] N. Zhu, et al., A novel coronavirus from patients with pneumonia in China, 2019, 
N. Engl. J. Med. 382 (8) (Feb. 2020) 727–733, https://doi.org/10.1056/ 
NEJMoa2001017. 

[4] Q. Li, et al., Early transmission dynamics in wuhan, China, of novel 
coronavirus–infected pneumonia, N. Engl. J. Med. 382 (13) (Mar. 2020) 
1199–1207, https://doi.org/10.1056/NEJMoa2001316. 

[5] M. Gavriatopoulou, et al., Organ-specific manifestations of COVID-19 infection, 
Clin. Exp. Med. 20 (4) (Nov. 2020) 493–506, https://doi.org/10.1007/s10238- 
020-00648-x. 

[6] V. Chamola, V. Hassija, V. Gupta, M. Guizani, A comprehensive review of the 
COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in 
managing its impact, IEEE Access 8 (2020) 90225–90265, https://doi.org/ 
10.1109/ACCESS.2020.2992341. 

[7] “ WHO Coronavirus, COVID-19) dashboard. https://covid19.who.int. (Accessed 31 
May 2021). 

[8] M. Loey, G. Manogaran, M.H.N. Taha, N.E.M. Khalifa, A hybrid deep transfer 
learning model with machine learning methods for face mask detection in the era 
of the COVID-19 pandemic, Measurement 167 (Jan. 2021) 108288, https://doi. 
org/10.1016/j.measurement.2020.108288. 

[9] B. Seyfallah, T. Benkedjouh, “Artificial Intelligence Facing COVID-19 Pandemic for 
Decision Support in Algeria,” in 2020 4th International Symposium on Informatics 
and its Applications (ISIA), Dec. 2020, pp. 1–6, https://doi.org/10.1109/ 
ISIA51297.2020.9416545. 

[10] M. Ndiaye, S.S. Oyewobi, A.M. Abu-Mahfouz, G.P. Hancke, A.M. Kurien, 
K. Djouani, IoT in the wake of COVID-19: a survey on contributions, challenges and 
evolution, IEEE Access 8 (2020) 186821–186839, https://doi.org/10.1109/ 
ACCESS.2020.3030090. 

[11] M. Loey, G. Manogaran, M.H.N. Taha, N.E.M. Khalifa, Fighting against COVID-19: 
a novel deep learning model based on YOLO-v2 with ResNet-50 for medical face 
mask detection, Sustain. Cities Soc. 65 (Feb. 2021) 102600, https://doi.org/ 
10.1016/j.scs.2020.102600. 

[12] N. Haug, et al., Ranking the effectiveness of worldwide COVID-19 government 
interventions, Nat. Hum. Behav. 4 (12) (Dec. 2020), https://doi.org/10.1038/ 
s41562-020-01009-0. Art. no. 12. 

[13] H. Maulanza, T.F. Abidin, Z. Mubarak, A. Abdullah, “Model and Simulation to 
Reduce Covid-19 New Infectious Cases: A Survey,” in 2020 International Conference 
on Electrical Engineering and Informatics (ICELTICs), Oct. 2020, pp. 1–6, https://doi. 
org/10.1109/ICELTICs50595.2020.9315493. 

[14] D.A. Nurdeni, I. Budi, A.B. Santoso, Sentiment analysis on Covid19 vaccines in 
Indonesia: from the perspective of sinovac and pfizer,” in 2021, 3rd East Indones. 
Conf. Comp. Inform. Technol.(EIConCIT) (Apr. 2021) 122–127, https://doi.org/ 
10.1109/EIConCIT50028.2021.9431852. 

[15] S. Mallapaty, E. Callaway, What scientists do and don’t know about the 
Oxford–AstraZeneca COVID vaccine, Nature 592 (7852) (Mar. 2021), https://doi. 
org/10.1038/d41586-021-00785-7. Art. no. 7852. 

[16] S. Mallapaty, China COVID vaccine reports mixed results — what does that mean 
for the pandemic? Nat. Jan. (2021) https://doi.org/10.1038/d41586-021-00094-z. 

[17] A.L. Marca, M. Capuzzo, T. Paglia, L. Roli, T. Trenti, S.M. Nelson, Testing for SARS- 
CoV-2 (COVID-19): a systematic review and clinical guide to molecular and 
serological in-vitro diagnostic assays, Reprod. Biomed. Online 41 (3) (Sep. 2020) 
483–499, https://doi.org/10.1016/j.rbmo.2020.06.001. 

[18] X. Qi, L.G. Brown, D.J. Foran, J. Nosher, I. Hacihaliloglu, Chest X-ray image phase 
features for improved diagnosis of COVID-19 using convolutional neural network, 
Int. J. CARS 16 (2) (Feb. 2021) 197–206, https://doi.org/10.1007/s11548-020- 
02305-w. 

[19] R. Jain, M. Gupta, S. Taneja, and D. J. Hemanth, “Deep learning based detection 
and analysis of COVID-19 on chest X-ray images,” Appl. Intell., vol. 51, no. 3, pp. 
1690–1700, Mar. 2021, doi: 10.1007/s10489-020-01902-1. 

[20] Md A. Awal, M. Masud, Md S. Hossain, A.A.-M. Bulbul, S.M.H. Mahmud, A. 
K. Bairagi, A novel bayesian optimization-based machine learning framework for 
COVID-19 detection from inpatient facility data, IEEE Access 9 (2021) 
10263–10281, https://doi.org/10.1109/ACCESS.2021.3050852. 

[21] A.U. Ibrahim, M. Ozsoz, S. Serte, F. Al-Turjman, P.S. Yakoi, Pneumonia 
classification using deep learning from chest X-ray images during COVID-19, Cogn. 
Comput. (Jan. 2021), https://doi.org/10.1007/s12559-020-09787-5. 

[22] M. Loey, G. Manogaran, N.E.M. Khalifa, A deep transfer learning model with 
classical data augmentation and CGAN to detect COVID-19 from chest CT 
radiography digital images, Neural Comput. Appl. (Oct. 2020), https://doi.org/ 
10.1007/s00521-020-05437-x. 

[23] R.G. Babukarthik, V.A.K. Adiga, G. Sambasivam, D. Chandramohan, J. Amudhavel, 
Prediction of COVID-19 using genetic deep learning convolutional neural network 
(GDCNN), IEEE Access 8 (2020) 177647–177666, https://doi.org/10.1109/ 
ACCESS.2020.3025164. 

[24] T. Rajasenbagam, S. Jeyanthi, J.A. Pandian, Detection of pneumonia infection in 
lungs from chest X-ray images using deep convolutional neural network and 
content-based image retrieval techniques, J. Amb. Intell. Human Comput. Mar. 
(2021), https://doi.org/10.1007/s12652-021-03075-2. 

[25] Z. Yue, L. Ma, R. Zhang, Comparison and validation of deep learning models for the 
diagnosis of pneumonia, Comput. Intell. Neurosci. 2020 (Sep. 2020) e8876798, 
https://doi.org/10.1155/2020/8876798. 

[26] A. %J A. in neural information processing systems Krizhevsky, I. Sutskever, G. 
E. Hinton, A. %J A. in neural information processing systems Krizhevsky, 
“Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. 
Process. Syst. (2012) 1097–1105. 

[27] S. Liu, W. Deng, Very deep convolutional neural network based image 
classification using small training sample size, in: 2015 3rd IAPR Asian Conference 
on Pattern Recognition (ACPR), 2015, pp. 730–734, https://doi.org/10.1109/ 
ACPR.2015.7486599. 

[28] C. Szegedy, et al., Going deeper with convolutions, in: 2015 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR),, 2015, pp. 1–9, https://doi.org/ 
10.1109/CVPR.2015.7298594. 

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 
pp. 770–778, https://doi.org/10.1109/CVPR.2016.90. 

[30] S. H. Yoo et al., “Deep learning-based decision-tree classifier for COVID-19 
diagnosis from chest X-ray imaging,” Front. Med., vol. 7, 2020, doi: 10.3389/ 
fmed.2020.00427. 

[31] D. Wang, J. Mo, G. Zhou, L. Xu, Y. Liu, An efficient mixture of deep and machine 
learning models for COVID-19 diagnosis in chest X-ray images, PLoS One 15 (11) 
(Nov. 2020), e0242535, https://doi.org/10.1371/journal.pone.0242535. 

[32] N.K. Chowdhury, Md M. Rahman, M.A. Kabir, PDCOVIDNet: a parallel-dilated 
convolutional neural network architecture for detecting COVID-19 from chest X- 
ray images, Health Inf. Sci. Syst. 8 (1) (Sep. 2020) 27, https://doi.org/10.1007/ 
s13755-020-00119-3. 

[33] M. Loey, F. Smarandache, N.E.M. Khalifa, Within the lack of chest COVID-19 X-ray 
dataset: a novel detection model based on gan and deep transfer learning, 
Symmetry 12 (4) (Apr. 2020), https://doi.org/10.3390/sym12040651. Art. no. 4. 

[34] A. Abbas, M.M. Abdelsamea, M.M. Gaber, Classification of COVID-19 in chest X-ray 
images using DeTraC deep convolutional neural network, Appl. Intell. 51 (2) (Feb. 
2021) 854–864, https://doi.org/10.1007/s10489-020-01829-7. 

[35] N. El-Rashidy, S. El-Sappagh, S.M.R. Islam, H.M. El-Bakry, S. Abdelrazek, End-to- 
end deep learning framework for coronavirus (COVID-19) detection and 
monitoring, Electronics 9 (9) (Sep. 2020), https://doi.org/10.3390/ 
electronics9091439. Art. no. 9. 

[36] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, G. Jamalipour Soufi, “Deep-COVID, 
Predicting COVID-19 from chest X-ray images using deep transfer learning, Med. 
Image Anal. 65 (Oct. 2020) 101794, https://doi.org/10.1016/j. 
media.2020.101794. 

[37] N. Wang, H. Liu, C. Xu, Deep learning for the detection of COVID-19 using transfer 
learning and model integration, in: 2020 IEEE 10th International Conference on 
Electronics Information and Emergency Communication (ICEIEC), Jul. 2020, 
pp. 281–284, https://doi.org/10.1109/ICEIEC49280.2020.9152329. 

[38] I.U. Khan, N. Aslam, A deep-learning-based framework for automated diagnosis of 
COVID-19 using X-ray images, Information 11 (9) (Sep. 2020), https://doi.org/ 
10.3390/info11090419. Art. no. 9. 

[39] B. Sekeroglu, I. Ozsahin, Detection of COVID-19 from chest X-ray images using 
convolutional neural networks, SLAS Technol.: Transl. Life Sci. Innov. 25 (6) (Dec. 
2020) 553–565, https://doi.org/10.1177/2472630320958376. 

[40] M.Z. Che Azemin, R. Hassan, M.I. Mohd Tamrin, M.A. Md Ali, COVID-19 deep 
learning prediction model using publicly available radiologist-adjudicated chest X- 
ray images as training data: preliminary findings, Int. J. Biomed. Imag. 2020 (Aug. 
2020), e8828855, https://doi.org/10.1155/2020/8828855. 

[41] J.M. Johnson, T.M. Khoshgoftaar, Survey on deep learning with class imbalance, 
J. Big Data 6 (1) (Mar. 2019) 27, https://doi.org/10.1186/s40537-019-0192-5. 

[42] B. Krawczyk, Learning from imbalanced data: open challenges and future 
directions, Prog. Artif. Intell. 5 (4) (Nov. 2016) 221–232, https://doi.org/10.1007/ 
s13748-016-0094-0. 

[43] T. Rahman, et al., Exploring the effect of image enhancement techniques on 
COVID-19 detection using chest X-ray images, Comput. Biol. Med. 132 (May 2021) 
104319, https://doi.org/10.1016/j.compbiomed.2021.104319. 

[44] M.E.H. Chowdhury, et al., Can AI help in screening viral and COVID-19 
pneumonia? IEEE Access 8 (2020) 132665–132676, https://doi.org/10.1109/ 
ACCESS.2020.3010287. 

M. Loey et al.                                                                                                                                                                                                                                    

https://doi.org/10.1038/s41586-020-2008-3
https://doi.org/10.1038/s41586-020-2008-3
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1007/s10238-020-00648-x
https://doi.org/10.1007/s10238-020-00648-x
https://doi.org/10.1109/ACCESS.2020.2992341
https://doi.org/10.1109/ACCESS.2020.2992341
https://covid19.who.int
https://doi.org/10.1016/j.measurement.2020.108288
https://doi.org/10.1016/j.measurement.2020.108288
https://doi.org/10.1109/ISIA51297.2020.9416545
https://doi.org/10.1109/ISIA51297.2020.9416545
https://doi.org/10.1109/ACCESS.2020.3030090
https://doi.org/10.1109/ACCESS.2020.3030090
https://doi.org/10.1016/j.scs.2020.102600
https://doi.org/10.1016/j.scs.2020.102600
https://doi.org/10.1038/s41562-020-01009-0
https://doi.org/10.1038/s41562-020-01009-0
https://doi.org/10.1109/ICELTICs50595.2020.9315493
https://doi.org/10.1109/ICELTICs50595.2020.9315493
https://doi.org/10.1109/EIConCIT50028.2021.9431852
https://doi.org/10.1109/EIConCIT50028.2021.9431852
https://doi.org/10.1038/d41586-021-00785-7
https://doi.org/10.1038/d41586-021-00785-7
https://doi.org/10.1038/d41586-021-00094-z
https://doi.org/10.1016/j.rbmo.2020.06.001
https://doi.org/10.1007/s11548-020-02305-w
https://doi.org/10.1007/s11548-020-02305-w
https://doi.org/10.1109/ACCESS.2021.3050852
https://doi.org/10.1007/s12559-020-09787-5
https://doi.org/10.1007/s00521-020-05437-x
https://doi.org/10.1007/s00521-020-05437-x
https://doi.org/10.1109/ACCESS.2020.3025164
https://doi.org/10.1109/ACCESS.2020.3025164
https://doi.org/10.1007/s12652-021-03075-2
https://doi.org/10.1155/2020/8876798
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref26
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref26
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref26
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref26
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1371/journal.pone.0242535
https://doi.org/10.1007/s13755-020-00119-3
https://doi.org/10.1007/s13755-020-00119-3
https://doi.org/10.3390/sym12040651
https://doi.org/10.1007/s10489-020-01829-7
https://doi.org/10.3390/electronics9091439
https://doi.org/10.3390/electronics9091439
https://doi.org/10.1016/j.media.2020.101794
https://doi.org/10.1016/j.media.2020.101794
https://doi.org/10.1109/ICEIEC49280.2020.9152329
https://doi.org/10.3390/info11090419
https://doi.org/10.3390/info11090419
https://doi.org/10.1177/2472630320958376
https://doi.org/10.1155/2020/8828855
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1016/j.compbiomed.2021.104319
https://doi.org/10.1109/ACCESS.2020.3010287
https://doi.org/10.1109/ACCESS.2020.3010287


Computers in Biology and Medicine 142 (2022) 105213

12

[45] D.S. Kermany, et al., Identifying medical diagnoses and treatable diseases by 
image-based deep learning, Cell 172 (5) (Feb. 2018) 1122–1131, https://doi.org/ 
10.1016/j.cell.2018.02.010, e9. 

[46] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, S.-H. Deng, Hyperparameter 
optimization for machine learning models based on bayesian optimizationb, 
Journal of Electronic Science and Technology 17 (1) (Mar. 2019) 26–40, https:// 
doi.org/10.11989/JEST.1674-862X.80904120. 

[47] A.H. Victoria, G. Maragatham, Automatic tuning of hyperparameters using 
Bayesian optimization, Evol. Sys. 12 (1) (Mar. 2021) 217–223, https://doi.org/ 
10.1007/s12530-020-09345-2. 

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a 
simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 
(56) (2014) 1929–1958. 

[49] Y. Xu, R. Goodacre, On splitting training and validation set: a comparative study of 
cross-validation, bootstrap and systematic sampling for estimating the 
generalization performance of supervised learning, J. Anal. Test. 2 (3) (Jul. 2018) 
249–262, https://doi.org/10.1007/s41664-018-0068-2. 

[50] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and 
momentum in deep learning, Proceed. 30th Intern. Conf. Intern. Conf. Mach. Learn. 
28 (2013) III-1139–III–1147. Atlanta, GA, USA. 

M. Loey et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/10.1007/s12530-020-09345-2
https://doi.org/10.1007/s12530-020-09345-2
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref48
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref48
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref48
https://doi.org/10.1007/s41664-018-0068-2
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref50
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref50
http://refhub.elsevier.com/S0010-4825(22)00005-1/sref50

