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Abstract: Prochloraz (Pro) controlled-release nanoparticles (NPs) based on bimodal mesoporous
silica (BMMs) with redox and pH dual responses were successfully prepared in this study. BMMs
was modified by a silane coupling agent containing a disulfide bond, and β-cyclodextrin (β-CD) was
grafted on the surface of the NPs through host–guest interaction. Pro was encapsulated into the pores
of nanoparticles by physical adsorption. NPs had a spherical structure, and their average diameter
was 546.4 ± 3.0 nm as measured by dynamic light scattering. The loading rate of Pro was 28.3%, and
it achieved excellent pH/redox dual-responsive release performance under acidic conditions. Foliage
adhesion tests on tomato leaves showed that the NPs had good adhesion properties compared to the
commercial formulation. Owing to the protection of the nanocarrier, NPs became more stable under
ultraviolet light and high temperature, which improves the efficient utilization of Pro. Biological
activity tests showed that the NPs exhibited effective antifungal activity, and the benign biosafety
of the nanocarrier was also observed through toxicology tests on cell viability and the growth of
Escherichia coli (E. coli). This work provides a promising approach to improving the efficient utilization
of pesticides and reducing environmental pollution.

Keywords: bimodal mesoporous silica; Prochloraz; pH/redox dual-responsive; controlled
release; biosafety

1. Introduction

Pesticides, which are widely used in modern agriculture, play an irreplaceable role
in crop disease control and enhancing grain yield [1,2]. However, the effective utilization
rate of traditionally formulated pesticides in field applications is low due to photolysis,
biodegradation, volatilization, and rain erosion, among other factors, which seriously
contaminate ecosystems [3,4]. Therefore, improving the utilization of pesticides has been a
crucial issue over the past decade. Recently, with the rapid development and application
of nanotechnology in the agricultural field, a series of environmental-stimulus-responsive
pesticide nanosystems [5–7], such as pH [8–10], temperature [11–14], enzyme [15–17],
redox [18–20], and light-responsive materials [21–23], were developed to improve the
utilization rate of pesticides and reduce environmental risk. However, to the best of our
knowledge, few reports on dual-responsive pesticide delivery nanosystems exist.

Glutathione (GSH), an important antioxidant, widely exists in various animals, plants,
fungi, and bacteria because of its high antioxidant performance [24,25]. The reducing
hydrogen provided by the sulfhydryl group (–SH–) in glutathione breaks the disulfide
bond (–S–S–), generates glutathione oxidized (GSSG) by itself, and reduces the disulfide
bond to a sulfhydryl group. The integration of –S–S– bonds can endow nanoparticles
(NPs) with redox-responsive release due to the breakage of –S–S– bonds in the presence of
glutathione [26,27]. β-Cyclodextrin (β-CD) is widely used because of its nontoxicity and
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unique molecular capsule structure [28]. β-CD contains a large number of hydroxyl groups
and a unique cavity structure, and so can recognize and interact with guest molecules
through hydrogen bonds and the van der Waals force to form host–guest inclusion com-
plexes. However, β-CD is not stable, and the connection between β-CD and guest molecules
is broken by H+, resulting in a “decapping” effect under acidic environments [29,30]. A
smart dual-responsive nanopesticide delivery system, however, can be designed to improve
the efficient utilization of pesticides based on the GSH contained in fungi and the acidifica-
tion of an environment by fungi during colonization [19,31]. Compared with traditional
mesoporous materials, BMMs is a kind of mesoporous silica material with a wormlike
pore (3 nm) and a spherical particle-stacking hole (10–30 nm) in the double-channel struc-
ture [32–34]. BMMs are widely used as nanocarriers due to their tunable structure, high
loading capacity, good stability, and environmental friendliness. In addition, the uptake
and translocation of nanocarriers in plants and fungus mycelia were observed owing to
the 20–50 nm size of BMMs. Rhizoctonia solani (R. solani), as a widespread soilborne plant
pathogenic fungus, infects many economically important agricultural and horticultural
crops, and results in a 20–40% global crop-yield loss. The main approach to control R.
solani depends on fungicide sprays [35–37]. Prochloraz (Pro) is a broad-spectrum imidazole
fungicide that is applied as protection against crop diseases caused by fungi, including R.
solani [15,38,39]. However, the utilization of Pro is limited due to its poor light instability
and short effective period. To resolve these issues, some smart delivery nanosystems, such
as organic polymers [40], mesoporous silica [17,39] and metal–organic frameworks [31],
were developed to improve the stability and utilization rate of Pro. These nanosystems are
effective in monitoring the influence of Pro on the environment.

In this study, we grafted a disulfide-modified silane coupling agent onto the surface
of BMMs, and Pro was loaded in NPs by physical adsorption. The pyridine ring (Py) on
the surface of the silane coupling agent was recognized by β-CD to form a host–guest
supramolecular valve, which was further wrapped on the BMMs carrier to form a pH and
redox dual-responsive pesticide release system (Pro@BMMs-SS-Py/β-CD). The fabrication
process is shown in Figure 1. The physicochemical properties, release behavior, stability,
adhesion, and bioactivity of the NPs were also investigated. This study provides a novel
strategy for managing fungal disease and reducing environmental pollution.
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2. Materials and Methods
2.1. Materials

Prochloraz technical (Pro TC, 97.5%) was obtained from Beijing Mindleader Agro-
science Co., Ltd. (Beijing, China). Methacrylic acid (MAA, AR) was purchased from Tianjin
Fuchen Chemical Reagent Co., Ltd. (Tianjin, China). Cetyl trimethyl ammonium bro-
mide (CTAB, 98%), tetraethyl orthosilicate (TEOS), acetic acid (99.8%), potassium bromide
(KBr), and other organic solvents were purchased from Sinopharm Chemical Reagent
Beijing Co., Ltd. (Beijing, China). N-hexane was purchased from the Beijing Chemical
Plant (Beijing, China). β-cyclodextrin (β-CD) was supplied by Sigma Aldrich (Saint Louis,
MO, USA). 2,2′-Dithiodipyridine (Aldrithiol, 98%) was purchased from Shanghai Macklin
Biochemical Technology Co., Ltd. (Shanghai, China). 3-Mercaptopropyltrimethoxysilane
(MPTES, 97%) was obtained from Beijing Bailingwei Technology Co., Ltd. (Beijing, China).
Dialysis membrane (molecular weight cut-off 3500 Da) was purchased from Beijing Ke-
biquan Biotechnology Co., Ltd. (Beijing, China). Deionized water (18 MΩ cm−1) was
prepared using a Milli-Q water purification system (Millipore, Milford, MA, USA). Rhi-
zoctonia solani (R. solani, bio-53510) was provided by the Institute of Chinese Academy of
Agricultural Sciences.

2.2. Preparation of BMMs

BMMs nanoparticles were synthesized with the sol–gel method. A total of 1.0448 g of
CTAB was dissolved in 41.6 mL of deionized water and stirred continuously. Afterwards,
3.2 mL of TEOS was added dropwise, and 0.96 mL of ammonium hydroxide was added
quickly until the solution changed into white gel. The white gel was filtered and washed,
followed by drying for 6 h at 120 ◦C to obtain raw nanomaterial powder. The powder was
heated to 550 ◦C at a rate of 5 ◦C min−1 for 5 h to remove CTAB and yield BMMs.

2.3. Preparation of BMMs-SS-Py NPs

First, 1 g of MPTES was dissolved in 5 mL of dichloromethane at 25 ◦C, and the
solution was added dropwise to a solution of 2,2’-dithiopyridine (3.36 g) for 2 h. The
solution was stirred continuously for 1 h and then extracted with petroleum ether. After
removing the solvent in vacuum, product [MPTES-SS-Py, (CH3O)3Si-(CH2)3-SS-C5H5N]
was obtained.

BMMs (100 mg) was activated for 2 h at 120 ◦C and dispersed in 20 mL of toluene. We
added 50 µL of MPTES-SS-Py into the solution, stirred continuously at 80 ◦C in a nitrogen
environment for 4 h, washed with toluene three times, centrifuged at 6500 rpm for 6 min,
and then dried at 50 ◦C for 8 h.

2.4. Preparation of Pro@BMMs-SS-Py NPs

BMMs-SS-Py (100 mg) and Prochloraz (200 mg, in 40 mL of N-hexane) were added to
a flask, and the solution was stirred at 25 ◦C for 24 h, centrifuged at 6500 rpm, washed with
N-hexane three times, and dried at 45 ◦C for 8 h. The obtained product was denoted as
Pro@BMMs-SS-Py.

2.5. Preparation of Pro@BMMs-SS-Py/β-CD NPs

Pro@BMMs-SS-Py (100 mg) was dispersed in phosphate buffered saline (PBS, pH = 7.4),
followed by the addition of 50 mg of β-CD. The mixture was stirred for 24 h. Next, the
solution was rinsed with PBS three times, centrifuged for 8 min at 6500 rpm, and dried at
45 ◦C for 8 h to obtain Pro@BMMs-SS-Py/β-CD NPs.

2.6. Characterization of Pro@BMMs-SS-Py/β-CD NPs

The morphologies of the obtained NPs were observed by scanning electron microscopy
(SEM) (Zeiss, Crossbeam 350/550, Oberkochen, Germany). Synthesized NPs were sus-
pended in deionized water at pH 7.0 ± 0.05. Structural and interaction analyses of
products were carried out using X-ray powder diffraction (XRPD, D8 ADV ANCE X,
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Bruker/AXS, Inc., Karlsruhe, Germany) and Fourier transform infrared spectroscopy (FTIR,
Nicolet Nexus 470, Nicolet Instrument Corp., Concord, CA, USA). Binding affinity among
BMMs, MPTES-SS-Py, and β-CD was measured using an ultraviolet–visible-light (UV–
vis) spectrophotometer (UV-2600, Shimadzu Co., Ltd., Tokyo, Japan) at a wavelength of
220–380 nm. The particle size, polymer dispersity index (PDI), and zeta potential of
BMMs, BMMs-SS-Py, Pro@BMMs-SS-Py, and Pro@BMMs-SS-Py/β-CD NPs were deter-
mined according to dynamic light scattering (DLS) using a nanoparticle analyzer (Ze-
tasizer Nano ZS, Malvern Instruments Ltd., Malvern, UK). The surface areas, pore-size
distributions, and pore volumes of the samples were determined by an Autosorb-iQ
pore analyzer (Quantachrome, Boynton Beach, FL, USA) and calculated by the Brunauer–
Emmett–Teller (BET, Micromeritics, Atlanta, GA, USA) and Barrett–Joyner–Halenda meth-
ods. Thermogravimetric analysis (TGA) was conducted with a thermogravimetric analyzer
(PerkinElmer, Waltham, MA, USA). To verify the characterization of MPTES-SS-Py, liquid
nuclear-magnetic-resonance (NMR) spectra were recorded on an AscendTM 400 (AVANCE
HD III) spectrometer (Bruker, Germany). All chemical shifts were measured relative to
residual 13C NMR resonances in the deuterated solvents: CD2Cl2, δ 53.8 ppm for 13C.

2.7. Pro Measurement

Pro@BMMs-SS-Py/β-CD NPs (5 mg) was dispersed in 30 mL of methanol and lysed on
ice by sonication (80 × 30 s with 1-minintervals, Misonix Sonicator 3000, Misonix Inc., NY,
USA). Then, 1 mL of the solution was collected and centrifuged at 12,000 rpm for 15 min.
Subsequently, Pro content was detected with high-performance liquid chromatography
(HPLC, Agilent 1200 Series, Agilent Technologies, Wilmington, DE, USA). The operating
parameters for HPLC determination were as follows: C18 reversed-phase column, 5 µm
× 4.6 mm × 250 mm; column temperature, 30 ◦C; detection wavelength, 220 nm; mobile
phase, acetonitrile/0.1% acetic acid water (v/v, 70:30); injection volume, 10 µL; flow rate,
1.0 mL min−1.

The loading content (%) of Pro in NPs was calculated as follows: loading con-
tent (%) = (weight of Pro encapsulated in Pro@BMMs-SS-Py/β-CD/weight of Pro@BMMs-
SS-Py/β-CD) × 100%.

2.8. pH/Redox Dual-Responsive Release

Pro@BMMs-SS-Py/β-CD NPs (5 mg) were separately dispersed in 3.0 mL of deionized
water containing 0.1% Tween-80 emulsifier in dialysis bags (molecular weight cutoff:
3500 Da). Subsequently, the sealed dialysis bags were placed in 48 mL of release medium
at 27 ◦C in the dark and stirred at 100 rpm. Within certain predetermined time intervals,
1.0 mL of the mixture was removed and an equal volume of fresh solvent added. Pro
content was analyzed with HPLC.

To investigate the effects of pH, GSH, and temperature on the release behaviors of
Pro from nanoparticles, the contents of Pro were determined by HPLC at different pH
levels (4.0, 7.0, and 10.0), GSH (0, 1.0, and 2.0 mM), and temperature (4, 25, and 54 ◦C). The
accumulative Pro release was calculated as follows:

Q(%) =
Ve ∑n−1

n Ci + V0Cn

m
× 100%

where Q is the cumulative release (%) of Pro from the Pro@BMMs-SS-Py/β-CD NPs, Ve
is the volume of the release medium taken at a given time interval, V0 is the volume of
release solution; Cn (mg·mL−1) is the Pro concentration in the release medium at time n,
and m (mg) is the total pesticide loaded in the Pro@BMMs-SS-Py/β-CD NPs.

To more systematically elucidate the effect of pH and GSH on the behavior of sustained
Pro release from Pro@BMMs-SS-Py/β-CD NPs, the release kinetics of Pro from the NPs
was separately investigated using four dynamic mathematical models, namely, a zero-order
equation, a first-order equation, the Higuchi model, and the Ritger–Peppas model.
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2.9. Stability Study

To determine the ultraviolet (UV) light stability of Pro@BMMs-SS-Py/β-CD NPs, 5 mg
of Pro@BMMs-SS-Py/β-CD NPs was dispersed in 50 mL of 0.1% Tween-80 aqueous solution
and exposed to a 36 W UV lamp (254 nm) at a distance of 20 cm at room temperature.
Technical Pro was used as a control. Samples were collected at predetermined time points
and analyzed with HPLC.

The storage stability of Pro@BMMs-SS-Py/β-CD NPs was determined according to
a previous report [9]. NPs were stored at 4, 25 ± 2, and 54 ± 2 ◦C for 14 days, and Pro
content was analyzed using HPLC.

2.10. Foliage Adhesion Test

Fresh tomato leaves were cultivated in a greenhouse, and leaves were cleaned with
deionized water without destroying the leaf structure and then completely air-dried. The
dynamic contact angles of the prepared NPs were measured using a contact-angle meter
(Kruss DSA 100, JC2000D2M, Powereach Ltd., Shanghai, China). A droplet (2 µL) of
the solution was dropped onto the surface of the leaves with a microsyringe. The contact
angles were then measured for 1 min. Technical Pro, BMMs, and deionized water were used
as controls.

2.11. Bioefficacy Test

The fungicidal efficacy of Pro@BMMs-SS-Py/β-CD NPs against R. solani was deter-
mined using the poison plate method. Potato dextrose agar (PDA) plates were treated with
Pro@BMMs-SS-Py/β-CD NPs and Pro technical control (TC) of different concentrations
(0, 0.0625, 0.125, 0.25, 0.5, and 1 mg·L−1). Deionized water was used as a negative control.
The mycelial discs (5 mm in diameter) of R. solani were inoculated on the plates for 12 days
(d). After incubation at 27 ◦C for 12 d, the colony diameter of the mycelium was measured
by the crisscross method, and 50% inhibition concentration (IC50) of NPs on R. solani was
calculated. The bioefficacy test of NPs was evaluated by inhibitive rate and IC50 value. All
tests were carried out in triplicate.

2.12. Biosafety Evaluation

Human bronchial epithelial (16HBE) cells in the logarithmic growth stage were seeded
in 96-well plates in triplicate and cultured in 1640 medium supplemented with 10% FBS
and 1% penicillin/streptomycin at 37 ◦C for 24 h. Then, 16HBE cells were treated with
different concentrations (0, 31.25, 62.5, 125, and 250 mg·L−1) of BMMs-SS-Py/β-CD NPs
for 24 h, followed by analysis of cell viability using a cell-counting kit (CCK8, Dojindo,
Japan). Escherichia coli was cultured in Luria–Bertani (LB) culture medium with different
concentrations (0, 31.25, 62.5, 125, and 250 mg·L−1) of BMMs-SS-Py/β-CD NPs at 37 ◦C
for 24 h, and E. coli concentrations were measured with UV–vis absorptiometry using a
photometer (BioPhotometer Plus Model 6132, Eppendorf, Hamburg, Germany) at 600 nm.

2.13. Data Analysis

Data were analyzed using Statistical Product and Service Solutions (SPSS 20.0) sta-
tistical analysis software (SPSS, Chicago, IL, USA). All experiments were performed in
triplicate. Statistical significance was determined as p < 0.05.

3. Results and Discussion
3.1. Characterization and Interaction Analysis

The morphological images of BMMs and Pro@BMMs-SS-Py/β-CD NPs, observed by
SEM, are shown in Figure 2. The nanoscale spherical morphology of Pro@BMMs-SS-Py/β-
CD NPs was similar to that of BMMs, indicating that MPTES-SS-Py grafting, Pro loading,
and encapsulation with β-CD did not destroy BMMs morphology. After Pro had been
loaded and the mesopore surface grafted with β-CD, the particle size of NPs increased
from 387.2 ± 3.8 nm (BMMs) to 546.4 ± 3.0 nm (Pro@BMMs-SS-Py/β-CD) (Figure 3A).
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The PDI value of Pro@BMMs-SS-Py/β-CD NPs was 0.32 ± 0.02, which was lower than
that of the other NPs, showing that the nanomaterials could be steadily dispersed in water.
As shown in Figure 3B, the zeta potential of BMMs was −15.27 ± 0.25 mV owing to the
presence of –OH on the surface of the mesoporous silica. After the grafting of MPTES-SS-Py,
the zeta-potential value of BMMs decreased to −18.73 ± 0.41 mV because it was easy for
the nucleophilic substitution reaction to take place at the pyridine rings contained in the
MPTES-SS-Py compound. After loading Pro, the zeta-potential value of Pro@BMMs-SS-Py
NPs increased to −17.5 ± 0.3 mV due to the positive charge of Pro [31], indicating that the
Pro pesticide was successfully loaded into the NPs. After the modification of β-CD, the
zeta-potential value increased to−15.9± 0.5 mV because the reaction between the pyridine
ring and water was inhibited by introduction of β-CD.
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The crystal structure of NPs was also tested by XRPD, and results are shown in
Figure 3C. BMMs had an obvious (100) crystal-plane diffraction peak at 2θ = 1.86◦, in-
dicating that they had a highly ordered double-hole structure. After the metafiction of
MPTES-SS-Py, an identical crystal-plane diffraction peak (100) was observed, indicating
that BMMs-SS-Py NPs still maintained an ordered mesoporous structure; in addition, peak
intensity increased to 1.95◦, and d value decreased from 47.34 to 44.71 nm because the
successful grafting of MPTES-SS-Py and the doping of new atoms in the silicon wall led
to a decrease in the lattice constant of BMMs. After Pro had been loaded into BMMs, the
strength of the XRPD peaks (2θ = 1.97◦) of Pro@BMMs-SS-Py NPs significantly decreased,
and the shape broadened, showing that the mesoporous structure was significantly affected.
The peak value of NPs decreased further after grafting β-CD, indicating that β-CD was
successfully encapsulated into the system.

The FTIR spectra of BMMs, BMMs-SS-Py, Pro@BMMs-SS-Py, and Pro@BMMs-SS-
Py/β-CD were determined to evaluate the NPs structural changes with different functional
groups (Figure 3D). BMMs exhibited characteristic peaks at 1086 and 811 cm−1, which
were the antisymmetrical and symmetrical stretching-vibration peaks of Si–O–Si groups,
respectively. The absorption band at 1648 cm−1 was the specific stretching vibration of
the pyridine-ring skeleton, indicating that MPTES-SS-Py was successfully grafted onto
the BMMs surface. The characteristic absorption peak of Pro at 1469 and 1742 cm−1

suggested that the Pro pesticide was adsorbed in the mesoporous silica. The porosity
characterizations of NPs were investigated using the N2 adsorption-desorption technique.
As shown in Figure 4A, the N2 adsorption-desorption isotherms of BMMs, BMMs-SS-Py,
Pro@BMMs-SS-Py, and Pro@BMMs-SS-Py/β-CD belonged to the Langmuir IV isotherm
with two hysteresis loops. The first hysteresis loop, at 0.3 < P/P0 < 0.5, increased rapidly
owing to the monolayer adsorption of nitrogen. The second hysteresis loop appeared at
P/P0 = 0.8–0.95, indicating that the capillary tube of the particle accumulation pore had
been condensed. The corresponding pore-size distribution revealed that NPs had a dual-
model structure and two pore sizes (Figure 4B). After modification of MPTES-SS-Py in
BMMs, the shape of the adsorption isotherm remained basically unchanged compared
with that of BMMs. After loading Pro, the BET specific surface area and pore volume of
Pro@BMMs-SS-Py decreased significantly to 56.15 and 0.25, respectively, implying that
Pro molecules occupied pore channels of the NPs, and were successfully loaded into
Pro@BMMs-SS-Py/β-CD NPs. However, the pore volume and specific surface area of NPs
increased slightly after grafting of β-CD, which might be due to the slight leakage of the
Pro when grafting β-CD (Table 1).

To verify that β-CD could self-assemble with BMMs-SS-Py to form a gatekeeper for the
controlled-release of pesticide Pro, we separately detected the UV absorption spectra of NPs
under UV irradiation (Figure 4C). BMMs-SS-Py produced an obvious UV absorption peak
at 280 nm due to the n–π transition by the pyridine ring, which indicated that MPTES-SS-Py
was successfully grafted onto the BMMs surface. When β-CD had been coated onto the
surface of the NPs, the pyridine ring was covered and interfered with by the high electron
cloud in the β-CD cavity, which hindered the source and led to the red shift of the spectrum.

The loading ratio of Pro@BMMs-SS-Py/β-CD NPs was determined with
TGA (Figure 4D).

Significant weight loss of NPs occurred between 150 and 800 ◦C. Weight loss before
150 ◦C was caused by the gasification of water and residual solvent contained in NPs. The
TG curve of Pro@BMMs-SS-Py/β-CD NPs obviously showed two levels of decrease. The
first weight-loss peak occurred at 150–300 ◦C, which was mainly due to the decomposition
of Pro in the NPs channel. The second obvious weight-loss interval appeared at 300–500 ◦C
due to the decomposition of MPTES-SS-Py (15.2%) and β-CD (6%) grafted onto the surface
of BMMs. The loading rate of Pro in Pro@BMMs-SS-Py/β-CD NPs was about 28.3%, which
was largely consistent with results measured with HPLC (28.1%). It was thus proved that
Pro was successfully loaded into BMMs-SS-Py/β-CD NPs.
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Table 1. Mesoporous structure characterization, size, and zeta potential of samples.

Sample SBET
(m2/g)

Vt
(cm3/g)

Pore
Size
(nm)

Size (nm) PDI Zeta (mV)

BMMs 1126.57 1.48 5.26 295.3 ± 3.9 0.52 ± 0.02 −15.3 ± 0.3
BMMs-SS-Py 546.93 0.69 5.07 360.6 ± 2.8 0.66 ± 0.04 −18.7 ± 0.4

Pro@BMMs-SS-Py 56.15 0.25 — 466.6 ± 3.5 0.61 ± 0.03 −17.5 ± 0.3
Pro@BMMs-SS-

Py/β-CD 98.08 0.34 — 546.4 ± 3.0 0.32 ± 0.02 −15.9 ± 0.5

The success of MPTES-SS-Py synthesis was also verified by nuclear magnetic carbon
spectroscopy (Figure A1). Four signals were displayed in the 0–50 ppm region: resonances
at approximately 42 and 23 ppm were attributed to the carbon atoms of a propyl moiety
situated in α and β positions of the disulfide bond, the resonance at approximately 10 ppm
to the carbon atom directly connected to the silicon atom, and the 48 ppm resonance to a
methoxy group. In addition, signals from all carbon atoms in the pyridine base appeared at
120–150 ppm.

3.2. Foliage Adhesion

Foliage-adhesion experiments were conducted to evaluate the adhesion behavior
of Pro@BMMs-SS-Py/β-CD NPs. As shown in Figure 5, the dynamic contact angle of
Pro@BMMs-SS-Py/β-CD NPs decreased from 62.89 to 60.11 in 1 min, which was obviously
lower than that of Pro technical solution (from 93.87 to 85.09) and deionized water (from
85.81 to 79.23). Data showed that β-CD-coated Pro@BMMs-SS-Py microcapsules exhibited
excellent adhesion properties. Compared with deionized water and technical Pro, a large
amount of –OH on the β-CD surface interacted with –CHO and –COOH on the blade
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surface, which increased the electrostatic force between NPs and the blade, and enhanced
NPs wettability.
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3.3. Stability Study

The utilization of Pro was limited due to its light instability. To evaluate the potential
effects of UV irradiation on the stability of Pro@BMMs-SS-Py/β-CD NPs, photolytic rate
curves at different UV exposure times were obtained (Figure 6A). Compared with technical
Pro, the photolysis rate of Pro in NPs was slow, with 72% degradation after 144 h of
exposure to continuous UV light. These data indicated that the photolytic stability of
Pro in the delivery nanosystem was significantly promoted by the efficient protection of
nanocarriers.
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Active ingredients of pesticides are easily affected by storage stability. The Pro contents
of Pro@BMMs-SS-Py/β-CD NPs at three different temperatures (4, 25, and 54 ◦C) were
measured separately. Figure 6B shows that Pro loading rates during storage at 4 ◦C (28.1%)
and 25 ◦C (28%) exhibited no obvious changes. A loss of less than 1% of Pro was observed
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after 14 days at 54 ◦C because the melting point of Pro is 46.5–49.3 ◦C, and Pro might
undergo degradation during the transition from solid to liquid. These results showed that
the encapsulation of the nanocarriers increased Pro’s storage stability.

3.4. pH/Redox Dual-Responsive Release Behavior

The release behaviors of Pro@BMMs-SS-Py/β-CD NPs were investigated at different
pH values. The cumulative release curves of Pro are shown in Figure 7A. The cumulative-
release rate gradually increased as pH value decreased, and the Pro release rate reached
41.43% at 24 h at pH 4. After 120 h, the release rate of Pro increased to 64.92%, and those at
pH 7 and pH 10 were only 55.62% and 47.14%, respectively. This was due to the degradation
of “gatekeeper” β-CD encapsulated on the surface of nanocarriers under acidic conditions,
which promoted the release of Pro. In addition, excessive hydrogen ions (H+) in the acid
solution were bound to the C = N bonds of the pyridine ring, resulting in the breakage of
the connection of β-CD and pyridine rings, and ultimately in Pro release.
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The release behaviors of Pro@BMMs-SS-Py/β-CD NPs were further explored at differ-
ent GSH values. The content of GSH in fungi is approximately 0.5–8 mM. In our previous
work, when GSH values were 4 and 8 mM, the Pro release profile was similar to that of
GSH at 2 mM. In addition, the grafted GSH concentration had an obvious effect on the
pesticide-loading capacity of the nanosystem. Since the disulfide bond accounted for a large
surface area of the NPs, a high GSH concentration reduced Pro’s pesticide-loading capacity.
Therefore, we chose 0–2 mM GSH to study the effect on Pro release. The cumulative release
curves of Pro with various GSH concentrations are shown in Figure 7C. The release rate
of Pro was 94.32% at 120 h, which was 69.58% and 17.44% higher than those of GSH at
0 and 1 mM, respectively. Owing to MPTES-SS-Py being grafted onto the surface of BMMs
containing disulfide bonds, GSH contained in the release medium broke the disulfide bonds
and accelerated Pro release.
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The sustained release curves of Pro at different temperatures are shown in Figure 8.
The cumulative release rate of Pro gradually improved with the increase in temperature.
The release ratio of Pro from Pro@BMMs-SS-Py/β-CD NPs at 54 ◦C was 55.4%, and those
at 25 and 4 ◦C were 48.2% and 46.1%, respectively. This was mainly due to the high
temperature accelerating the movement of Pro molecules in the NPs channel [41]. In
addition, the melting point of Pro is below 50 ◦C, and the morphology of Pro encapsulated
in the pores of the nanocarrier gradually changed from solid to liquid, which promoted the
enhancement of the release rate of NPs.
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3.5. Release-Kinetics Analysis

To further elucidate the effect of pH and GSH on the release of Pro in Pro@BMMs-SS-
Py/β-CD NPs, we studied the release kinetics using Ritger-Peppas kinetics (Figure 7B,D)
and the zero- and first-order Higuchi models (Figure A2). The regression-coefficient (R2)
values of the Ritger-Peppas kinetic equation were higher than those of the three other
mathematical models under the conditions of different pH values and GSH concentrations,
indicating that the Ritger-Peppas kinetic model was more suitable for studying the Pro
release behavior (Tables A1 and A2). The values of n were lower than 0.45, proving that the
Pro release in Pro@BMMs-SS-Py/β-CD mainly followed Fick diffusion.

3.6. Bioactivity Test

The antifungal activity of Pro@BMMs-SS-Py/β-CD NPs against R. solani was investi-
gated using the growth-rate method. As shown in Figure 9, the inhibition rates of NPs and
Pro TC were 85.5% and 73.5%, respectively, at the Pro-as-an-active-ingredient concentra-
tion of 1 mg·L−1 after 12 days. Accordingly, the IC50 values of Pro@BMMs-SS-Py/β-CD
NPs (0.2003 ± 0.0018) were 11% lower than those of Pro TC (0.2249 ± 0.02) owing to the
sustained release of Pro in the nanocomplex systems. R. solani secreted acidic substances
during colonization [42], and acidification of the external environment caused the pH
response of the NPs. As nanocarriers were modified by β-CD, the connection between
β-CD and guest molecules was broken by H+, resulting in the release of Pro under acidic
environments. In addition, the presence of glutathione in the internal environment of fungi
caused the redox response of the NPs. The sulfhydryl group (−SH−) in glutathione broken
the disulfide bond (−S−S−) integrated in Pro@BMMs-SS-Py/β-CD NPs, and promoted
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the release of Pro from NPs. The above redox and pH dual response of NPs resulted in the
sustained release of Pro from NPs and significantly inhibited the growth of R. solani.
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3.7. Biosafety Evaluation

The biosafety of NPs is a major influencing factor in their application. To further
evaluate the biological safety of nanocarriers, the toxicological effects of different concentra-
tions of BMMs-SS-Py/β-CD NPs on 16HBE cells and E. coli were studied. Figure 10 shows
that different concentrations of BMMs-SS-Py/β-CD NPs had little influence on the growth
of 16HBE cells and E. coli. NPs also promoted the growth of E. coli with increasing NPs
concentration, which might have been due to the introduction of β-CD molecules. As a
result, this dual-responsive nanocarrier exhibited excellent biological safety.
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Figure 10. Biosafety evaluation of BMMs−SS−Py/β−CD NPs against (A) 16HBE cells and (B) E. coli.
The concentrations of Nps in 16HBE cells and E. coli were (a) 0 mg·L−1, (b) 31.25 mg·L−1, (c) 62.5
mg·L−1, (d) 125 mg·L−1, and (e) 250 mg·L−1, respectively.
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4. Conclusions

In this work, we prepared a novel pesticide delivery nanosystem with both pH and
redox dual response by the sol-gel method. Pro@BMMs-SS-Py/β-CD NPs had a uniformly
spherical morphology and good dispersibility in water. The nanocomplex showed excellent
pH and redox dual-responsive controlled-release performance owing to the host-guest
complex between the MPTES-SS-Py and β-CD. The Ritger-Peppas kinetic model was
fitted with the release behavior of Pro. The nanocarrier displayed good adhesion on leaf
surfaces, and benign stability for light and temperature. The sustained fungicidal efficacy
against Rhizoctonia solani indicated that Pro@BMMs-SS-Py/β-CD NPs could effectively
improve the efficacy of Pro and reduce pesticide residue. Moreover, the NPs possessed
excellent biosafety. Some studies on Pro sustained release systems were performed, but the
nanomaterials and the release mechanisms of these delivery nanosystems are different. As
shown in Table 2, Pro nanoparticles display higher stability and better antifungal activity
than that of traditional Pro in different stimuli-responsive environments, indicating that
nanocarriers are highly effective in the protection of pesticides. We systematically explored
the stability, adhesion properties, and bioactivity of Pro@BMMs-SS-Py/β-CD NPs under
redox/pH dual-responsive stimuli, which provided a novel approach for improving the
effective utilization of Pro. Therefore, this work provides a promising strategy to decreasing
the risks to the environment, and can promote the development of green agriculture.

Table 2. Summary of nanosystems encapsulated with Prochloraz.

Nanocarrier Stimuli Release
Time (h)

Stability
(Pro Loss) Adhesion EC50 (mg·L−1) Reference

Zif-8 Light and pH 36 60.2 ± 4.6% after
24 h

Pro retention
175.6 ± 1.6 µg·cm2

(before leaf)
155.6 ± 11.7

µg·cm2

(after leaf)

0.122 ± 0.02
(S. sclerotiorum) [31]

MSN — 96 — — 0.3058 (Botrytis
cinerea) [39]

MON-CaC pH and
reduction 120 Less than 15% after

24 h — 0.142 (S.
sclerotiorum) [19]

BMMs-
PMAA/Fe3+ pH 144

54.2% after 7 d,
good thermal

stability
— 0.184 ± 0.013

(Rhizoctonia solani) [43]

MSNs-chitosan Esterase and
pH 720 About 6.3% after

72 h

12.468
(11.274–13.900) at
96 h (zebrafish)

[17]

Silica-Alginate — 1440

Good stability
under different pH,

temperature and
light

— — [44]

mPEG-PLGA — 384 — —
Best germicidal

efficacy (Fusarium
graminearum)

[40]
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Appendix A

Figure A1: 13C NMR spectrum of MPTES-SS-Py in dideuteromethylenechloride
(CD2Cl2). Figure A2: The kinetics fitting models of Pro@BMMs-SS-Py/β-CD NPs with
different pH (A-C) and GSH (D-F) values. Table A1: Release parameters of Pro@BMMs-
SS-Py/β-CD NPs at different pH values. Table A2: Release parameters of Pro@BMMs-SS-
Py/β-CD NPs with different GSH concentrations.
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Table A1. Release parameters of Pro@BMMs-SS-Py/β-CD NPs at different pH values.

pH Fitting Methods Kinetic Equation Determiation
Coefficient, R2

4

Zero-order fitting Q = 0.4507t + 21.04 0.7863
First-order fitting Q = 59.49

(
1− e−0.05998t

)
0.9585

Higuchi fitting Q = 5.786t1/2 + 8.132 0.9537
Ritger–Peppas fitting Q = 13.28tn1 0.9891

7

Zero-order fitting Q = 0.4304t + 14.04 0.8501
First-order fitting Q = 54.86

(
1− e−0.0371t

)
0.9787

Higuchi fitting Q = 5.378t1/2 + 2.49 0.9766
Ritger–Peppas fitting Q = 7.687tn2 0.9836

10

Zero-order fitting Q = 0.3609t + 10.76 0.8805
First-order fitting Q = 45.55

(
1− e−0.0339t

)
0.9670

Higuchi fitting Q = 4.459t1/2 + 1.349 0.9888
Ritger–Peppas fitting Q = 5.745tn3 0.9924

Note: Q, cumulative release of Pro in a certain period of time; t, time elapsed to release Pro; R2, high value of
the linear regression coefficient of Pro release curve; and n, pesticide release exponent, where n1, n2, and n3 are
0.341,0.429, and 0.448, respectively.
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Figure A2. Kinetics fitting models of Pro@BMMs-SS-Py/β-CD NPs with different (A–C) pH and
(D–F) GSH values.

Table A2. Release parameters of Pro@BMMs-SS-Py/β-CD NPs with different GSH concentrations.

GSH Fitting Methods Kinetic Equation
Determination

Coefficient,
R2

0

Zero-order fitting Q = 0.4304t + 14.04 0.8501
First-order fitting Q = 54.86

(
1− e−0.0371t

)
0.9787

Higuchi fitting Q = 5.378t1/2 + 2.49 0.9766
Ritger–Peppas fitting Q = 7.687tn2 0.9836

1

Zero-order fitting Q = 0.4243t + 41.19 0.5394
First-order fitting Q = 73.18

(
1− e−0.1622t

)
0.9520

Higuchi fitting Q = 5.911t1/2 + 26.61 0.7704
Ritger-Peppas fitting Q = 34.68tn4 0.9792

2

Zero-order fitting Q = 0.4997t + 50.696 0.7098
First-order fitting Q = 89.47

(
1− e−0.1568t

)
0.9698

Higuchi fitting Q = 7.099t1/2 + 32.80 0.7481
Ritger–Peppas fitting Q = 42.59tn5 0.9699

Note: Q, cumulative release of Pro in a certain period of time; t, time elapsed to release Pro; R2, high value of
linear regression coefficient of Pro release curve; and n, pesticide release exponent, where n2, n4, and n5 are 0.429,
0.183 and 0.180, respectively.
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