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In complex nervous systems patterns of neuronal activity and measures of intrinsic neu-
ronal excitability are often used as criteria for identifying and/or classifying neurons. We
asked how well identification of neurons by conventional measures of intrinsic excitability
compares with a measure of neuronal excitability derived from a neuron’s behavior in a
dynamic clamp constructed two-cell network. We used four cell types from the crab stom-
atogastric ganglion: the pyloric dilator, lateral pyloric, gastric mill, and dorsal gastric neurons.
Each neuron was evaluated for six conventional measures of intrinsic excitability (intrinsic
properties, IPs). Additionally, each neuron was coupled by reciprocal inhibitory synapses
made with the dynamic clamp to a Morris–Lecar model neuron and the resulting network
was assayed for four measures of network activity (network activity properties, NAPs). We
searched for linear combinations of IPs that correlated with each NAP, and combinations
of NAPs that correlated with each IP. In the process we developed a method to correct for
multiple correlations while searching for correlating features. When properly controlled for
multiple correlations, four of the IPs were correlated with NAPs, and all four NAPs were
correlated with IPs. Neurons were classified into cell types by training a linear classifier on
sets of properties, or using k -medoids clustering.The IPs were modestly successful in clas-
sifying the neurons, and the NAPs were more successful. Combining the two measures
did better than either measure alone, but not well enough to classify neurons with perfect
accuracy, thus reiterating that electrophysiological measures of single-cell properties alone
are not sufficient for reliable cell identification.
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INTRODUCTION
A major step in elucidating the connectivity of nervous system cir-
cuits is identifying the neurons in the circuit. In the case of small
invertebrate circuits neuronal identification is often straightfor-
ward (Getting and Dekin, 1985; Getting, 1989; Marder and Cal-
abrese, 1996; Marder and Bucher, 2001, 2007; Kristan et al., 2005),
using a combination of neuronal projection patterns, position, fir-
ing patterns, size, and color. This has facilitated the establishment
of the connectivity diagrams of the circuits underlying stereo-
typed behaviors in a variety of animals (Mulloney and Selverston,
1974a,b; Selverston et al., 1976; Getting et al., 1980; Selverston
and Miller, 1980; Getting, 1981; Hume and Getting, 1982; Hume
et al., 1982; Miller and Selverston, 1982a,b; Pearson et al., 1985;
Katz, 1996; Marder and Calabrese, 1996; Perrins and Weiss, 1996;
Schmidt et al., 2001; Sasaki et al., 2007; Calabrese et al., 2011).

In contrast, developing relatively unambiguous connectivity
diagrams for circuits with larger numbers of neurons such as those
found in most vertebrate nervous systems has been historically
more difficult, partially because neuronal identification has been
challenging. This is starting to change with the advent of new
genetic and molecular techniques. Nonetheless, classification of
neurons into types and subtypes is not yet routine in larger net-
works (Jonas et al., 2004; Sugino et al., 2006; Toledo-Rodriguez

and Markram, 2007; Miller et al., 2008; Okaty et al., 2011a,b), and
a variety of electrophysiological measures are often used to classify
neurons in types and subtypes.

The use of electrophysiological measurements alone for iden-
tification can be potentially problematical, as many neurons can
change their activity patterns as a function of neuromodulation
and activation of modulatory pathways (Dickinson et al., 1990;
Meyrand et al., 1991; Weimann et al., 1991; Weimann and Marder,
1994). Moreover, recent work has shown that the same identified
neurons can show large ranges in the values of many conven-
tional measures of intrinsic excitability (intrinsic properties; IPs)
in different animals (Grashow et al., 2010). In this study we com-
pare directly the utility of six IPs with less conventional measures
obtained by introducing a biological neuron into an artificial net-
work with an oscillatory model neuron, and analyzing the resulting
activity (network activity properties, NAPs). IPs are obtained via
open-loop stimulation, whereas the NAPs are obtained in closed
loop: the dynamic clamp injects current into the biological neuron
based on the state of the model neuron, which is in turn affected by
the biological neuron. The NAPs nevertheless constitute a measure
of the biological neuron’s properties, because the model neuron is
standardized, and thus differences in NAPs between experiments
must originate in differences in the neurons themselves.
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Our hypothesis was that a measure of intrinsic excitability that
challenges a biological neuron with a time-varying closed-loop
stimulation might better reveal its essential properties than more
static measures. To this end, we searched for relationships between
IPs and NAPs, and asked if either was effective in predicting the
neuron’s cell type.

Grashow et al. (2010) searched for relationships between IPs
and NAPs, as pairwise correlations. We expected whole sets of
properties to give more information about neuronal identity than
individual properties, therefore we asked the related but distinct
question: can the IPs be reconstructed from NAPs, and vice versa?
Thus for each IP we chose a subset of NAPs and performed a linear
regression to fit the IP with the chosen NAPs. We then searched for
the subset of NAPs that gave the least regression error per degree of
freedom. This search for the most relevant set of properties, known
as “feature selection” (see Materials and Methods), found a small
set of NAPs that correlated highly with each IP; and when applied
conversely, a small set of IPs that correlated highly with each NAP.
We were then confronted with the problem of assessing the signifi-
cance of the correlation that we had discovered. Consequently, one
of the goals of this paper was to develop a statistical procedure to
correctly assess the significance of multiple correlations, especially
those that arise from feature selection.

While Grashow et al. (2010) showed that IPs and NAPs differ
across cell types, here we attempt to deduce neuronal type from
properties. We trained linear classifiers to test if neuronal types
fall into different (linearly separable) regions of property-space.
We used k-medoids clustering to test if neuronal identity could
be blindly discovered, looking only at the properties. One chal-
lenge of this approach is that the result of a clustering algorithm
is the assignment of each cell to an essentially unlabeled cluster
index, making assessment of clustering accuracy an issue. Particu-
larly problematic is determining if differing clustering results from
two different sets of properties are significant or merely statistical
flukes. Therefore another goal was to develop a procedure to assess
the significance of differences in clustering results.

MATERIALS AND METHODS
The majority of the raw data used for these analyses was published
in Grashow et al. (2010), and then supplemented with additional
experiments. All experiments were done on identified neurons of
the stomatogastric ganglion (STG) of the crab Cancer borealis. For
each neuron we measured six traditional IPs, and with dynamic
clamp, four NAPs. Details of the experimental methods are iden-
tical to those previously published (Grashow et al., 2010). Here we
reiterate the essential details.

ELECTROPHYSIOLOGY
Recordings and current injections were performed in discontin-
uous current-clamp mode with sample rates between 1.8 and
2.1 kHz. Input resistance was measured as the slope of the voltage–
current (VI ) curve in response to hyperpolarizing current injec-
tions, (voltage was measured after the neuron reached steady state).
The frequency–current (FI) curve was measured as the response
to depolarizing current injections (typically between 0 and 1 nA).
In the STG cells that we assayed, the FI curve had a characteris-
tic shape that was curved at lower injected currents, but became

approximately linear at higher injected currents. We computed FI
slope by fitting a line to the linear region of the FI curve. This
linear region was determined by fitting a line to the FI curve,
then progressively eliminating the point with the lowest current
injected, until the residual error was small or only three points
remained. The residual error was considered acceptable if the
sum of squared error divided by the degrees of freedom (num-
ber of points minus two) was less than 2.0. Spike frequency at
1 nA was read from the FI curve. Minimum voltage with zero
injected current was taken from a trace where the neuron was
not perturbed (in silent cells, this would be the resting membrane
potential).

CONSTRUCTING THE HYBRID CIRCUIT
Real-time Linux dynamic clamp (Dorval et al., 2001), version 2.6,
was run on an 800-MHz Dell Precision desktop computer. STG
neurons were incorporated into a hybrid network with a sim-
ulated Morris and Lecar (1981) model. The biological neuron
and the Morris–Lecar model neuron were connected with mutu-
ally inhibitory synapses, and artificial hyperpolarization-activated
inward current (I h) was added to the biological neuron. The maxi-
mal conductance of the synapse from the model to the STG cell was
ḡsyn. The maximal conductance of the synapse from the biological
cell to the Morris–Lecar cell was 2 × ḡsyn. The maximal conduc-
tance of the I h current was ḡh. ḡsyn and ḡh were each independently
varied from 10 to 100 nS in 15 nS steps, forming a seven-by-seven
grid from every possible combination.

Identically to the procedures in Grashow et al. (2010), the
Morris–Lecar model contained a non-inactivating Ca2+ conduc-
tance and a non-inactivating K+ conductance, in addition to a leak
conductance. The membrane voltage of the Morris–Lecar neuron
was determined based on the following equations:

C
dV

dt
= −ḡleak (V − Eleak) − ḡCaM (V − ECa) − ḡKN (V − EK)

dN

dt
= τN (N∞ − N )

dM

dt
= τM (M∞ − M )

M∞ = 1

1 + exp
(−(V −V1/2,Ca)

Vslope,Ca

)
N∞ = 1

1 + exp
(−(V −V1/2,K)

Vslope,K

)
τN = τ0Ksech

(
V − V1/2,K

2Vslope,K

)

The values of the fixed parameters are in Table 1. C was the
membrane capacitance of the Morris–Lecar model neuron. ḡCa ,
ḡK, and ḡleak were the maximal conductances for the Ca2+, K+,
and leak conductances, respectively. V 1/2,Ca was the half-activation
voltage of the Ca2+ conductance and V slope,Ca was the slope of the
activation curve for g Ca2+. ECa was the reversal potential for the
Ca2+ current, and τM was the time constant for M, the activation
variable of the Ca2+ conductance. V 1/2,K was the half-activation
of the K+ current, V slope,K was the slope of the activation curve
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Table 1 |Values of parameters for the Morris–Lecar model cell, artificial

hyperpolarization-activated currents, and artificial inhibitory

synapses.

MORRIS–LECAR PARAMETERS

C 10 nF

ḡCa 200 nS

ECa 100 mV

V 1/2,Ca −20 mV

V slope,Ca 15 mV

τM 1 us

ḡK 200 nS

EK −80 mV

V 1/2,K −20 mV

V slope,K 15 mV

τ0K 500 ms

ḡleak 50 nS

E leak −60 mV

I h PARAMETERS

ḡh 10–100 nS

Eh −10 mV

V 1/2 −50 mV

sR 7 mV

cR 0.33 Hz

V kR −110 mV

skR −13 mV

SYNAPSE PARAMETERS

ḡsyn 10–100 nS

Esyn (bio postsynaptic) −70 mV

Esyn (model postsynaptic) −80 mV

τsyn 100 ms

V 1/2 −45 mV

V slope 5 mV

for the K+ conductance and EK was the reversal potential of K+.
τ0K is the scale factor for the time constant for N, the activation
variable of the K+ current. E leak is the reversal potential for the
leak current.

The artificial I h (Buchholtz et al., 1992; Sharp et al., 1996) was
described by the equations:

Ih = ḡhR (Eh − V )

dR

dt
= kR (R∞ − R)

where

R∞(V ) = 1

1 + exp
[(

V − V1/2
)/

sR
]

kR(V ) = cR
{

1 + exp
[
(V − VkR)

/
skR

]}
where ḡh (varied from 10 to 100 nS) was the maximal conductance
of I h; R was the instantaneous activation; R∞ was the steady-
state activation; Eh was the I h reversal potential; V 1/2 was the
half-maximum activation; sR was the step width; cR was the rate
constant; V kR was the half-maximum potential for the rate; and
skR was the step width for the rate.

The artificial inhibitory graded transmission synapse from the
Morris–Lecar model to the biological cell was based on Sharp et al.
(1996) and was described by the following equations:

Isyn = ḡsyn · S · (
Esyn − Vpost

)
(1 − S∞) τsyn

dS

dt
= (S∞ − S)

where

S∞
(
Vpre

) =
{

tanh
[(

Vpre − V1/2
)/

Vslope
]

if Vpre > V1/2

0 otherwise

}

where ḡsyn(varied from 10 to 100 nS) was the maximal synap-
tic conductance; S was the instantaneous synaptic activation; S∞
was the steady-state synaptic activation. The reversal potential
of the synaptic current, Esyn, had different values in the two
synapses: −80 mV when the biological neuron was postsynaptic,
and −70 mV when the Morris–Lecar model was postsynaptic. V pre

and V post are the presynaptic and postsynaptic potentials, respec-
tively; τsyn was the time constant for synaptic decay; V 1/2 was the
synaptic half-activation voltage and V slope was the synaptic slope
voltage.

ASSAYING HALF-CENTER ACTIVITY
Network activity was classified into one of four categories. If the
biological cell did not fire action potentials and had no oscillation,
the network was “silent.” If the biological cell had no spikes but
did have a slow membrane potential oscillation, the network was
“model dominated.” If the biological cell fired action potentials,
the network was either “half-center” or “bio-dominated.” In half-
center networks, the biological cell had slow membrane potential
oscillations, and the predominant flow of synaptic current was
from the bursting cell (the biological cell, then the model cell in
alternation) to the non-bursting cell greater than 90% of the time.

FINDING CORRELATIONS BETWEEN NAPs AND IPs
For each IP, we searched for subsets of NAPs that were highly cor-
related with it. Conversely for each NAP we searched for subsets of
IPs that were highly correlated with it. Both analyses were required
because the problem is inherently asymmetric: it is possible for
each individual NAP to be well-explained by a linear combination
of IPs, but conversely have no individual IP that is well-explained
by a linear combination of NAPs. We describe the algorithm to
find subsets of NAPs that are highly correlated with an IP; the
converse algorithm is identical, only with the data sets swapped.

We formed matrices M IP and M NAP, whose rows denote iden-
tity and whose columns denote different IPs and NAPs respectively.
We z-scored each matrix column to eliminate the effects of scal-
ing and offset. For each IP (column of M IP) we searched for a
subset of NAPs (columns of M NAP) and linear coefficients that
approximated the column of M IP. For a given subset of NAPs we
formed a reduced matrix RNAP that contained only the columns
corresponding to the properties we chose, then performed lin-
ear regression to find the best linear coefficients. We assessed the
quality of this fit, or “prediction error” as mean square error per
degree of freedom, where the number of degrees of freedom was
the number of rows (STG neurons) minus the number of columns
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of RNAP (properties in the subset). We associated this prediction
error with the subset of NAPs, and found the best subset of NAPs
by minimizing the prediction error with greedy feature selection.

GREEDY FEATURE SELECTION
The greedy algorithm is a heuristic approach to searching a large
space of candidate features. It quickly selects a very good subset
of features, although not necessarily the best. We initialized the
greedy algorithm by creating an empty set of features, and declar-
ing its prediction error to be infinite. We then proceeded iteratively
as follows:

1. Form every subset of features that can be created by adding
either one or two new properties to the current best subset.

2. Compute the prediction error of all the new subsets.
3. If any has a prediction error lower than the current best subset,

select the subset with the lowest prediction error as the new
best, and iterate again; otherwise stop.

At the end of iteration, the output of the greedy algorithm was
the best subset of features and their prediction error.

ASSIGNING p-VALUES TO CORRELATIONS
Given enough properties, we expect to see large correlations
between some of them, even if they are merely random numbers.
This is exacerbated by the greedy algorithm, because it discov-
ers the largest correlations and ignores small ones. To determine
whether the correlations in the data were large enough to be likely
real, we computed the probability that equally large correlations
would be found randomly in uncorrelated data.

Correlations in data are related to ordering. Independently
scrambling the order of rows of M IP and rows of M NAP elim-
inates any correlations between IPs and NAPs, while preserving
their distributions as well as the relationships within the IPs and
within the NAPs. Performing the greedy search for correlations
on these scrambled data returns the prediction errors for corre-
lations between unrelated data. Because there are many ways to
scramble the rows, we did this repeatedly (10,000 scrambled tri-
als) and obtained an empirical estimate of the null distribution for
prediction errors. The p-value of a correlation arising randomly is
the proportion of prediction errors in the null distribution that is
lower than the prediction error from the unscrambled data.

CORRECTING FOR MULTIPLE CORRELATIONS
Because of the need to assign many p-values, we expected that
several might yield apparently “significant” results by chance, thus
p-values needed to be adjusted to compensate for this problem. We
describe a method for evaluating and correcting p-values obtained
from scrambled data, that is conceptually similar to the Holm–
Bonferroni correction (Holm, 1979; Aickin and Gensler, 1996) for
multiple comparisons. A fit to scrambled data is expected to occa-
sionally produce outliers with very low errors, although it is not
clear that these outliers would be concentrated on any particu-
lar IP or NAP. Thus to determine if our best fit is likely due to
chance, we compare our best fit to the best fit for each scrambled
trial, regardless of which property gave the best fit in the different
scrambled trials.

Therefore we started by sorting the prediction errors from the
correlation search into increasing order. Then we proceeded iter-
atively as with the Holm–Bonferroni technique, starting with the
best fit (least prediction error). We sorted the prediction error from
each scrambled trial into increasing order, generating an empiri-
cal estimate of the null distribution of the best fit. The adjusted
p-value for the fit was the proportion of scrambled best fits that had
lower error. If the adjusted p-value did not meet the significance
criterion (p < 0.05) the fit and all higher error fits were not signif-
icant and the iteration stopped. Otherwise the fit was significant,
and the corresponding property was removed from consideration
in future p-values, both in the scrambled and unscrambled data.
For example, if property P_3 was the best fit and was found to be
significant, then P_3 would be removed from each scrambled trial
regardless of whether it was the best fit for that scrambled trial.
Then the iteration would continue with the next best fit. In this
way (similar to Holm–Bonferroni), the best overall fit is compared
to the best of N scrambled fits, the second-best is compared to
N − 1, etc., until one of the fits is not significant. Furthermore, the
data being removed from consideration are data that have already
been shown to have correlations significantly better than chance.

LINEAR CLASSIFICATION
Linear classifiers were constructed of four binary classifiers, one
for each neuronal type. Each binary classifier computed the like-
lihood that a set of properties belonged to a cell corresponding to
the classifier’s type. The likelihood function for binary classifiers
was a logistic function acting on a linear function of z-scored neu-
ronal properties (Bishop, 1996; Taylor et al., 2006). If there are N
properties, then the likelihood L was calculated as

L(−→w ) = P
(
w0 + p1 ∗ w1 + p2 ∗ w2 + . . . + pN ∗ wN

)
,

where pn are the z-scored properties, wn are the weights (w0 is an
offset), and P is the logistic function,

P(x) = 1

1 + exp(−x)
.

The weights for all binary classifiers were trained simulta-
neously using the whole dataset (or a subset if we were using
cross-validation). To minimize the weights, we used a “soft max”
function

S = Lcorrect

LDG + LPD + LGM + LLP
,

where LDG, LPD, LGM, and LLP were the likelihoods computed for
each cell type, and Lcorrect is the likelihood for the correct cell type
for a given cell. When training the classifier, we maximized the
sum of the log-likelihood of S over the whole dataset (or a subset
if we were using cross-validation),

−→w = arg max
∑

k∈{neurons}
log

(
Sk(

−→w )
)

The optimization was performed using an iterative line-search
method (Bishop, 1996), initialized with Fisher’s linear discrimi-
nant (Bishop, 1996). When determining the results of the trained
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classifier, we determined the cell type as the one with the greatest
likelihood.

To determine how well linear classification generalized, we used
leave-two-out cross-validation. Thousand trials were conducted.
In each trial the properties for two randomly chosen neurons were
selected to be test data, and a linear classifier was trained on the
remaining data. After the classifier was trained, the test data were
classified. The cross-validation accuracy was the proportion of test
data that were classified correctly.

FINDING CLUSTERS
We used k-medoids (Hastie et al., 2009) to categorize blindly
STG neurons based on their z-scored properties. We set k = 4 and
measured distance between points using L1 (taxicab) norm. The
k-medoids algorithm was initialized using the same procedure as
k-means++ (Arthur and Vassilvitskii, 2007). Because the initial-
ization is not deterministic, we used 200 trials, using the results of
the trial that had the smallest average distance from each point to
its medoid.

The results of the clustering allow construction of a contin-
gency table called a “confusion matrix.” The rows of the matrix
correspond to STG cell type, the columns to cluster label, and the
entries are the number of cells so categorized [e.g., the gastric mill
(GM), 2 entry corresponds to the number of GM cells grouped
into cluster 2]. Cluster labels were assigned the cell identity that
maximized the proportion of cells correctly identified (proportion
correct). Mutual information (MI) was computed as in Vinh et al.
(2009). Adjusted mutual information (AMI) was computed as

AMI = MI − MI

MImax − MI
,

where MI is the expected value of MI for a random clustering, and
MImax is the maximum possible MI. MImax was computed as in
Vinh et al. (2009). We computed MI as the mean of the distrib-
ution of MI for random clustering, generated using a bootstrap
technique.

GENERATING THE DISTRIBUTION OF MUTUAL INFORMATION VIA
BOOTSTRAP
We modeled the confusion matrix as being generated by binomial
random numbers [e.g., if two out of 13 dorsal gastric (DG) neu-
rons were in cluster 1, the DG,1 entry was modeled as binomial
random with a maximum value of 13 and an expectation value of
2]. From a given confusion matrix, we randomly generated syn-
thetic confusion matrices using the same binomial distributions
for each entry, and computed MI from these synthetic confusion
matrices. We used 10,000 synthetic confusion matrices to generate
an empirical distribution of MI. Because the clustering algorithm
will always place at least one cell in every cluster, any synthetic
confusion matrices with a column of all zeros were discarded and
regenerated. To generate the MI distribution for real data sets,
we used the confusion matrix generated by the results of the k-
medoids algorithm. To generate the MI distribution for clustering
of random data sets, we used a confusion matrix with identical
columns, and rows that summed to the number of cells in our
actual data set (e.g., the sum of the DG row was equal to the
number of DG cells in our data).

COMPUTING P -VALUES FOR DIFFERENCES IN CLUSTERING
We did not seek to compute a rigorous probability that one set of
properties is inherently superior to another with regard to cluster-
ing performance. Instead we asked if the difference in MI between
two clustering results (MIlow and MIhigh) can be plausibly ascribed
merely to fluctuations in the number of cells in each cluster. To
compute p between two clusterings, we used the bootstrap method
to obtain the distribution of MIlow. We then calculated p as the
proportion of synthetic MIlow that is greater than the actual MIhigh.
We called differences with p < 0.05 “significant.”

SOURCE CODE
Source code implementing the statistical methods that we devel-
oped is hosted permanently at http://www.bio.brandeis.edu/
MarderLabCode/

RESULTS
The STG of the crab C. borealis has 26–27 neurons, that can be reli-
ably identified according to their projection patterns (Marder and
Bucher, 2007). Each STG has two pyloric dilator (PD) neurons,
one lateral pyloric (LP) neuron, four GM neurons, and one DG
neuron. The data in this paper come from 55 neurons (PD n = 13;
LP n = 15; GM n = 14; DG n = 13). The PD and LP neurons are
part of the circuit that generates the fast (period ∼1 s) pyloric
rhythm and the GM and DG neurons are part of the circuit that
generates the slow (period 6–10 s) GM rhythm.

Conventional IPs were measured by injecting current steps and
ramps into individual neurons to measure input resistance, spike
threshold voltage, FI slope, spike frequency with 1 nA injected
current, spike height, and minimum voltage with zero injected
current. Figure 1A shows a recording of a DG neuron in response
to a current ramp, showing the voltage at threshold and the spike
height. Figure 1B shows the same cell in response to depolariz-
ing current pulses of different amplitudes. Figure 1C shows the
plot of spike frequency vs. injected current. Spike frequency with
1 nA injected current can be read directly from this plot, while the
linear fit (blue line) allows determination of FI slope. Figure 2
summarizes all of the IPs that went into the analysis, with the new
data points in color, and those from the prior study (Grashow
et al., 2010) in gray. Note that the variance of each measure is
considerable, and there is a great deal of overlap across cell types.

Because of the overlap in these measures even across neurons
with very different characteristic behaviors during ongoing net-
work activity, we reasoned that a set of properties that better
captured the potential dynamics of the neurons in a closed-loop
dynamic network might be more useful in characterizing these
neurons than the conventional, open-loop IPs shown in Figure 1.

Stomatogastric ganglion neurons are part of circuits that are
rhythmically active, so we sought a measure that would place these
neurons into a rhythmically active circuit under experimenter
control. Therefore we used the dynamic clamp to create two-cell
circuits: one cell being the neuron to be evaluated, the second a
standard model neuron used in all experiments. Figure 3 shows
the result of a dynamic clamp experiment in which an isolated DG
neuron was coupled with reciprocal inhibition to a Morris–Lecar
model neuron (Morris and Lecar, 1981; Grashow et al., 2010), and
the strength of the synaptic conductances (ḡsyn) and an imposed
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FIGURE 1 |Traditional IPs for one DG neuron. (A,B) Membrane potential
is shown in the top trace, and injected current in the bottom trace. (A)

Spike threshold voltage is the voltage at the point of maximum curvature
(dashed line) before the first spike in response to a ramp of injected
current. (B) The FI curve was obtained by measuring spike frequency in
response to depolarizing current steps. (C) FI Slope is the slope of the
best-fit line to the linear region of the FI curve. For this DG neuron, the four
rightmost points were used (see Materials and Methods). The spike rate in
response to 1 nA of injected current is (in this case) the last data point.

I h conductance (ḡh) were varied. A schematic of this circuit is
shown in Figure 3A. Figure 3B shows the behavior of the model
neuron and the biological neuron in the uncoupled state, and
Figures 3C,D show different patterns of resulting network activ-
ity. Figure 3E illustrates the case in which the model and biological
neurons are firing in alternating bursts of activity, or half-center
oscillations. We obtained NAPs exclusively by examining networks
with half-center activity, because these were precisely the networks
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FIGURE 2 | Values of IPs, by neuron type. New data points are in color,
and those from the prior study (Grashow et al., 2010) are in gray. (A) Spike
frequency with 1 nA injected current. (B) Input resistance. (C) Spike
threshold voltage. (D) Frequency–current slope. (E) Minimum voltage with
zero injected current. (F) Spike height.

that exhibited rhythmic activity with the complex mix of spiking
and slow membrane potential oscillations that characterizes the
membrane potential trajectories that STG neurons display during
ongoing pyloric and gastric mill rhythms.

Figure 3F shows a map of the network behavior as ḡsyn and ḡh

were varied. The map positions that produced half-center alter-
nating bursts are shown in the red dots. For each of the 55 exper-
iments, we used these maps to calculate the proportion of map
positions that resulted in half-center activity. In the map shown
in Figure 3F, this proportion was 11/49. For each set of parame-
ters that gave half-center activity (map positions with alternating
bursts) we calculated the half-center frequency and the number of
spikes/burst in the biological neuron (Figure 3G). Because each
biological neuron used had a different set of IPs, we expected that
the map produced with each one would be different. The hypothe-
sis was that features of these maps and of their half-center behavior
(size, location, burst frequencies, number of spikes/burst of half-
center activity) would constitute a data set that might more reliably
capture the neurons’ dynamics, and consequently their cellular
identity, than the conventional measures of intrinsic excitability.
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FIGURE 3 | Network activity of the artificial circuit depends on

(ḡsyn, ḡh) parameter values. (A) Schematic for two-cell synthetic circuit. A
model Morris–Lecar neuron is connected to a biological STG neuron
(either DG, GM, LP, or PD) via artificial mutual inhibitory synapses.
Dynamic clamp simulated the synapses, as well as injecting artificial
h-conductance into the STG neuron. (B) Voltage traces from uncoupled
(ḡsyn = 0, ḡh = 0)Morris–Lecar model (top) and DG neuron (bottom). (C–E)

Voltage traces from connected circuit with different (ḡsyn , ḡh) parameter
values. Colors denote network activity classification: green traces denote

networks dominated by the DG neuron, blue denotes networks dominated
by the Morris–Lecar neuron, and red denotes networks exhibiting
half-center oscillations. (C) ḡsyn = 70, ḡh = 55. (D) ḡsyn = 85, ḡh = 10. (E)

ḡsyn = 40, ḡh = 40. (F,G) NAPs are representative of a biological neuron’s
overall response to all of the (ḡsyn , ḡh) parameter values in a map. (F) The
proportion of half-center networks is trivially obtained from the map. Std
ḡh is the SD of ḡh values among half-center networks. (G) Spikes per burst
and half-center frequency are both obtained from individual networks,
then averaged over all half-center networks.

Figure 4 presents the data from all of the half-centers found
in the 55 experiments analyzed. In most of the maps half-center
activity was found in a horizontal swath, indicating that half-center
activity was more sensitive to ḡh than to ḡsyn . The SD of ḡh provides
a measure of the width of the horizontal swath. Figure 4A shows
that although the variance of this measure for each cell type is con-
siderable, the PDs had a larger SD than the other cell types. The
proportion of half-centers in the 55 neurons is shown in Figure 4B.
The mean half-center frequency was higher in the PD neuron set
of networks (Figure 4C), and mean number of spikes/burst was
lowest in the networks made with GM neurons (Figure 4D).

We refer to the four measures – “SD of ḡh,”“proportion of half-
center networks,”“mean half-center frequency,” and “mean spikes
per burst” – as NAPs. There are many conceivable network prop-
erties; however we restricted the analysis to a handful that were
simple to measure and that we reasoned would be related to both
IPs and cell identity.

CORRELATIONS BETWEEN NAPs AND IPs
We first asked if there is any predictive relationship between these
measures of network activity and conventional IPs. For each IP, we
searched for the subset of NAPs that best predicted it (see Materi-
als and Methods). Conversely, we looked for the subset of IPs that
best predicted each NAP.

To assess the significance of any correlations we repeated the
predictive analysis on 10,000 shuffled trials (see Materials and
Methods). In a shuffled trial, we scrambled the cell identity while
preserving the distribution of individual properties. The shuf-
fled trials provided an empirical estimate of the null distribution
for prediction error; and because the null distribution was esti-
mated from trials with multiple correlations, we were able to
correct for multiple correlations and calculate adjusted p-values
(see Materials and Methods).

The results of this analysis are detailed in Table 2. Figure 5
shows selected scatter-plots of several properties vs. the values pre-
dicted by their best-fit linear combination. Three of the six IPs were
significantly predicted by NAPs, and all of the NAPs were signifi-
cantly predicted by IPs. However, the R2 values of the correlations
were low, indicating weak predictive value.

LINEAR CLASSIFIER
We next asked whether we could reliably determine the identity of
the four neuron types using the six measurements of IPs (Figure 2),
using the four measurements of NAPs taken from the dynamic
clamp networks (Figure 4) or by combining the two sets of data
together. Given the large range of these measurements within a
cell type and the overlap of the values across the cell types, it is
clear that no single measure would reliably allow the identification
of the neurons.

To identify neuron types by their properties, the different cell
types must have properties that segregate into different clusters.
To check if this is the case, we attempted to train a linear classifier
to determine neuronal identity based on a given set of z-scored
properties. The classifier was constructed of four binary linear clas-
sifiers, one for each neuronal class. Binary classifiers estimated the
likelihood that a neuron’s properties corresponded to the binary
classifier’s STG type. The likelihood was a number between zero
and one; whichever binary classifier returned the highest likeli-
hood “won,” and the overall classifier then determined that the
properties belonged to a neuron of the corresponding type.

Conceptually, for a set of N properties, a linear classifier
describes four N − 1 dimensional oriented hyperplanes (one for
each binary classifier), with all the neurons of the correct type on
the “plus” side of a hyperplane, and the remaining neurons on
the “minus” side. In practice, the situation may be less straightfor-
ward, with all four hyperplanes being in compromise positions,
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allowing their pooled information to determine identity. In such a
situation, placement, and orientation of hyperplanes may depend
on outlier points, especially when the number of cells is small but
N is large.

We trained a linear classifier for each set of properties. The clas-
sifier based on IPs identified 85% of cells correctly, the classifier

based on NAPs identified 84% correctly, and the combined prop-
erties classifier identified 100% of cells correctly (Figure 6). How-
ever, these high accuracies were partially due to overfitting outlier
points. When we tested the generalizability of these classifiers with
leave-two-out cross-validation (see Materials and Methods), the
accuracy of each classifier dropped somewhat: IPs classified 64%
correctly, NAPs 68%, and the combined data 78%. Thus only by
combining the two data sets can the cell types be distinguished
on the basis of properties, and even then the boundary between
them is complex and dependent upon the position of outlier
points.

FINDING CLUSTERS
Ideally, one would like to identify neuron types blindly, not merely
verify that they fall into properties of clusters. This approach would
be applicable to a system where cells cannot be unambiguously
identified as they can in the STG. We used the k-medoids algo-
rithm (Hastie et al., 2009) with k = 4 to find clusters of properties.
However, clusters do not directly correspond to any particular cell
type (i.e., after running k-medoids, a cell is labeled “cluster 2”
not “GM”). To address this issue, we computed two measures of
accuracy. We assigned cluster labels to cell identity to maximize
the number of cells that are correctly categorized, and computed
the “proportion correct.” This number is necessarily in the inter-
val between 1/k and 1. We also computed the MI between the
cluster labels and the cell identities. By appropriately scaling the
MI we computed the AMI which has a maximum value of one,
and an expected value of zero for random numbers. In addi-
tion to our real data, we applied the clustering technique to a
synthetic set of properties generated from Gaussian random num-
bers, to illustrate chance results. We used a bootstrap technique
to estimate p-values for significant differences in MI between
clusterings.

Both of the accuracy measures (MI/AMI and proportion
correct) showed the same general trends. No set of prop-
erties was able to correctly identify all cells. When we per-
formed k-medoids clustering on Gaussian random numbers, as
expected we obtained no information (proportion correct = 0.29,
MI = 0.089,AMI = −0.002). Real neuronal properties were able to
obtain significant information: for IPs proportion correct = 0.60,
MI = 0.36, and AMI = 0.21; for NAPs proportion correct = 0.69,
MI = 0.72, and AMI = 0.49; and for both sets joined proportion
correct = 0.84, MI = 0.90, and AMI = 0.62. The results of clus-
tering on the combined properties are depicted in Figure 7A.
All sets of STG properties achieved results significantly better
than random numbers, with p < 0.001. The differences between
sets of properties were also significant (NAPs vs. IPs p = 0.01,
combined properties vs. IPs p < 0.001, combined properties vs.
NAPs p = 0.03). The quantification of accuracy is summarized in
Figure 7B. Together these results show that NAPs encode more
information about cell identity than traditional IPs, but both sets
contain distinct information (Figure 7C).

DISCUSSION
Establishing reasonable and reliable methods for classifying and
characterizing neurons has been a far thornier practical problem
than might have been predicted from first principles. While there
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Table 2 | Correlations between IPs and NAPs.

IP R2 Adjusted

p-value

Best fit with NAP R2 Adjusted

p-value

Best fit with

Spike rate + 1 nA 0.65 <0.001 Mean spikes per burst,

proportion half-center, std ḡh

Mean spikes

per burst

0.68 <0.001 Spike rate + 1 nA, min v, spike threshV, FI

slope

Spike threshold

voltage

0.46 <0.001 Mean spikes per burst, mean

half-center frequency,

proportion half-center

Mean

half-center

frequency

0.54 <0.001 Spike thresh V, min v, FI slope, spike

rate + 1 nA

Minimum

voltage

0.34 0.0017 Mean spikes per burst,

proportion half-center

Std ḡh 0.54 <0.001 Spike height, spike thresh V, min v, spike

rate + 1 nA, FI slope, input resistance

Spike height 0.20 N.S. Std ḡh , mean spikes per burst Proportion

half-center

0.48 <0.001 Spike thresh V, min v, spike rate + 1 nA,

spike height, FI slope, input resistance

Input resistance 0.14 N.S. Std ḡh mean spikes per burst

FI slope 0.10 N.S. Mean spikes per burst

Each property (in bold) was fit with one or more properties from the other data set.The optimal set of fitting parameters was determined via greedy feature selection.

We list the resulting R2, adjusted p-value, and optimal fitting properties for each property. p-Values are adjusted for multiple correlations and the feature-selection

process.

are large and uniquely identifiable neurons in small invertebrate
nervous systems and in the spinal cords of fish and frogs, in most
regions of the vertebrate central nervous system and in many brain
areas in invertebrates, cell identification cannot be achieved by size
or location of the neurons alone. The electrophysiological firing
patterns of many neurons change (Dickinson et al.,1990;Weimann
et al., 1991), either as a consequence of neuromodulation, develop-
ment, or disease. Transmitter phenotype (Borodinsky et al., 2004)
and transcription factor expression (William et al., 2003; Wienecke
et al., 2010) are often developmentally or activity regulated, com-
plicating the use of a single chemical marker to identify neurons,
although chemical markers may be sufficient at times (Zagoraiou
et al., 2009). Neuronal projection patterns to distant targets such as
muscles or other brain regions often provide unambiguous identi-
fication, but when multiple cell types are entangled in local circuits,
even projection patterns may not be sufficient. These issues are
further confounded by the large variance measured in a variety
of properties of individual neurons (Getting, 1981; Hume and
Getting, 1982; Swensen and Bean, 2005; Schulz et al., 2006, 2007;
Goaillard et al., 2009; Tobin et al., 2009; Grashow et al., 2010). This
raises the question of whether combining multiple measures can
serve to better cluster or identify neurons, and if so, what kinds of
assays are potentially more useful than conventional measures of
intrinsic excitability.

In this study we used six conventional measures of neuronal IPs
and four measures of how neurons behaved in an artificial network
to determine whether any or all of these measures could correctly
cluster and identify neurons whose identity was already known.
This exercise highlighted a number of difficulties that, to a greater
or lesser degree, will potentially plague investigators wishing to use
electrophysiological measures to identify neurons. It is clear from
the variance in each of the IPs across individual neurons of the
same class and from the overlap of these values across cell types,
that no single measure would reliably serve to identify the neurons

(Figure 2; Grashow et al., 2010). Therefore, our goal was to deter-
mine whether the combined set of electrophysiological measures
would reliably allow us to cluster the neurons into groups that
mapped correctly with their identity.

One might naively think that increasing the number of electro-
physiological measures performed for each neuron would increase
the likelihood of proper identification. This might appear to be
especially the case if each measure probes a different essential fea-
ture of the cell’s performance. For that reason, we chose to embed
each neuron in an artificial network that we reasoned would test its
dynamic behavior differently than the conventional measures of
excitability. Nonetheless, increasing the number of measures made
for each neuron tested comes with a statistical cost, as each addi-
tional increases the likelihood of finding spurious correlations.
Because it is necessary to correct for this before assigning statistical
significance, adding measures that even partially sample the same
biophysical attributes to a neuron may be more counterproductive
than helpful. For some cell types a different set of measured IPs or
NAPs might be more useful than those studied here. Nonetheless,
our point is simply to say that “more is not necessarily better.”
To this end, in choosing the NAPs that we included, we used our
biological intuition to select four that appeared to be relatively
functionally independent of each other, and we discarded many
other potential network measures that might have added relatively
little to the analysis and added a substantial multiple comparison
statistical burden. Obviously, these problems are more acute with
relatively modest-sized data sets, such as that analyzed here, and
become less acute with data sets with n’s in the several thousand
(at which point it is also possible to use additional methods).

Because STG neurons can be recorded from intracellularly
for many hours it was experimentally feasible for us to ask
whether these NAPs would be useful in neuron characterization.
We were surprised that the networks did not provide more infor-
mation than they did, and we do not expect or recommend that

Frontiers in Neural Circuits www.frontiersin.org April 2012 | Volume 6 | Article 19 | 9

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Brookings et al. Statistics of neuronal identification

Mean  spikes per burst

Fi
t

Spike rate 1 nA

Proportion of half-center
           networks

Fi
t

FI slope

Fi
t

z-scored NAP z-scored NAP

z-scored NAP z-scored NAP

A B

C D

−1 0 1 2 3

−1

0

1

2

3
DG
GM
LP
PD

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−1 0 1 2 3
−1

0

1

2

3

Fi
t

FIGURE 5 | Sample fits of z-scored neuronal properties. Value of the
property being fit (x ) vs. value predicted by the best regression (y ). The line
y = x corresponds to a perfect fit. (A) Mean spikes per burst was best fit
simultaneously to spike rate 1 nA, minimum voltage, spike threshold
voltage, and FI slope (R2 = 0.68, p < 0.001). (B) Spike rate 1 nA was best fit
simultaneously to mean spikes per burst, proportion of half-center
networks, and std ḡh (R2 = 0.65, p < 0.001). (C) Proportion of half-center
networks was best fit simultaneously to spike threshold voltage, minimum
voltage, spike rate 1 nA, spike height, FI slope, and input resistance
(R2 = 0.48, p < 0.001). (D) FI slope had no significant correlations, but was
best fit with mean spikes per burst (R2 = 0.10, p > 0.05).

an investigator working in systems where recordings cannot be
maintained for many hours attempt the same process, although
other closed-loop measures that are less time-consuming could be
devised.

We assessed significance of correlations with a custom boot-
strapping method that combines shuffled trials and the Holm–
Bonferroni correction for multiple comparisons. It is commonly
assumed that correlations do not need to be corrected because they
are only indicative of interesting relationships, not a rigorous test
in themselves. However, the process of finding correlations may
be too effective – if it can find seemingly strong correlations in
random data, then there may be confusion between correlations
that are indicative of real relationships, and those that are most
likely spurious.

Data-mining commonly produces large spurious correlations.
When we simply applied a Pearson correlation test, every corre-
lation was “significant” and there were several p-values less than
10−10. Using shuffled trials properly accounts for the power of
data-mining and dramatically increased the magnitude of the
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FIGURE 6 | A linear classifier can be trained to correctly identify cell

type. Hundred percentage of neurons were correctly identified when a
linear classifier was trained on combined IPs and NAPs. To visualize the
grouping of neurons by property, we projected the 10-dimensional space of
properties down to two dimensions. Analogously to the results of Principal
Component Analysis, we determined components (combinations of
properties) that pointed along directions of particular interest. These
directions (Dimension 1 and Dimension 2) were chosen to provide maximal
spacing between the different neuronal types.

p-values (many were still highly significant). Building Holm–
Bonferroni into the procedure allowed further correction for
investigating many properties.

Although these two methods (comparing to shuffled trials,
and adjusting p-values with the Holm–Bonferroni method) are
commonly used separately, we are not aware of them being used
together as done here. However, we believe it is necessary to com-
bine them because we had no a priori hypothesis about which
correlations were likely to be most significant. After searching a
data set for correlations we find several with varying strengths,
and want to know which correlations are weak enough that they
could plausibly be drawn from the distribution of expected spu-
rious correlations. To do this it was necessary to keep track of all
the correlations for each shuffled trial, and therefore integrate the
multiple comparisons correction into the shuffled trial structure.

The results of our correlation analysis appear to differ from
Grashow et al. (2010) which analyzed much of the same data.
However it should be borne in mind that the two analyses ask
different questions. Grashow et al. (2010) asked, “What are the
pairwise relationships between these different properties?”, while
here we asked “How well can we reconstruct one set of properties
from the other?” Both are potentially interesting questions, and
have their strengths and weaknesses.

Grashow et al. (2010) tested all possible pairwise correla-
tions (48 total) between larger property sets. Because of this,
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FIGURE 7 | IPs and NAPs partially encode neuronal identity.

(A) k -Medoids clustering was applied to the combined IPs and NAPs of
STG neurons. Filled circles denote correctly classified neurons, Xs
denote errors. The 10-dimensional space is projected down to two
dimensions that best separate the different neuronal types. (B) Adjusted
mutual information (blue) and proportion correct (red) by property type.
p-Values between clustering results are computed by the technique

described in Section “Materials and Methods.” *p < 0.05, ***p < 0.001.
(C) A Venn diagram depicting the information encoded by the two sets of
properties, assuming improved encoding of the combined sets is due to
non-overlapping mutual information. The area of the black circle depicts
perfect encoding of cell identity, while the magenta circle describes the
mutual information expected from a set of randomly generated
properties.

their correction for multiple comparisons was quite large. We
searched for the best linear reconstruction for each property (10
total), thus incurring a smaller penalty for multiple comparisons.
However the approach here may not find all the correlations
that are of potential interest. For instance, if an NAP is highly
correlated with two IPs, and those two IPs are highly corre-
lated with each other, then this approach is unlikely to discover
that the NAP is correlated with both IPs. More likely it would
only discover one of them. This is because adding the second
IP will decrease the degrees of freedom without substantially
improving the fit, leading the combination to be heavily dis-
counted by the feature-selection algorithm. Thus some of the
differences between the two studies result from asking different
questions.

However, some differences between the studies were due to
improvements in methodology. As is often done, Grashow et al.
(2010) computed adjusted p-values by using the Pearson correla-
tion coefficient test for normally distributed data, then applying
the Holm–Bonferroni correction for multiple comparisons. These
data exhibit deviations from normality (e.g., Figure 2F, where
LP exhibits substantial skew, and PD appears to be bimodal) and
thus the Pearson correlation test is not fully appropriate. Further-
more the Holm–Bonferroni correction may be overly conservative
because it does not account for potential relationships between the
different quantities whose correlation is being tested. Here, bas-
ing the significance test on scrambled trials, we avoided making
assumptions about the distribution of the data. By incorporating
the adjustment for multiple correlations into the scrambled trials,
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we directly computed the approximate null distribution for the
nth-best correlation. This enabled us to compute a p-value that is
conservative enough to account for multiple correlations without
being unnecessarily over-conservative.

In general, the methods we used – searching for correlations
and clustering – decrease in effectiveness as the dimensionality
they must work in (the number of properties) increases. Increas-
ing dimensionality increases the probability of finding correla-
tions between random numbers, making corrections for multiple
correlations more severe and therefore decreasing the ability to
detect real correlations. Clustering algorithms suffer from a host
of problems referred to collectively as “the curse of dimension-
ality” (Bishop, 1996; Beyer et al., 1999; Hinneburg et al., 2000;
Houle et al., 2010), which cause them to find the “wrong” clus-
ters. It is especially difficult if extraneous dimensions are added,
because algorithms naturally tend to break up clusters at essentially
meaningless gaps in the extraneous dimensions. We decreased the
number of properties we considered to avoid this problem as much
as possible.

In this analysis the information pertaining to cell identity can
be thought of as a Venn diagram (Figure 7C), with IPs contain-
ing some information, NAPs containing more information, and
some overlap between the two sets. It is possible that because
we used six measures of IPs, thus a higher dimension than the
NAPs, they are merely falling afoul of the curse of dimensional-
ity and thus unfairly penalized when compared to the four NAPs.
However, when the two sets are grouped together the resulting
set of properties has still higher dimensionality and outperforms
either one separately, suggesting that the Venn diagram is appro-
priately representing the data. Looking at the raw MI if we naively
assume that non-overlapping information combines additively, we
see that the NAPs contain roughly twice as much information as
the IPs, and that roughly half the information in the IPs is in the
overlapping region of the Venn diagram (Figure 7C). Thus the
NAPs do capture the neuronal dynamics of each cell type bet-
ter than the conventional measures of IPs, although we cannot
perfectly identify neurons only by their properties. The success
of NAPs suggests that closed-loop dynamic current perturbations
yield greater information about cell identity than static pertur-
bations. However, the properties extracted from this perturbation
must be chosen carefully, because the size of the data sets will never
be large enough to search through the essentially infinite space of
all possible properties.

We used k-medoids, one of the simplest clustering algorithms
(Andreopoulos et al., 2009), but not always the best. The k-
medoids algorithm is nearly the same as the k-means algorithm,

however clusters are represented by one of the members of the
cluster (called the “medoid,” and chosen to minimize distance to
other members of the cluster) rather than the mean of members
of the cluster. k-Medoids is more robust to outliers than k-means
(Andreopoulos et al., 2009; Hastie et al., 2009) and is applicable
in situations when computing mean objects is impossible or unde-
sirable. k-Medoids is slower than k-means with very large data
sets [selecting the medoid is O(N2) while computing the mean is
O(N)]. However, as is common for electrophysiology, the data set
studied here is small and we expect plentiful outliers due to the
variability in neurons and noise inherent in measuring neuronal
properties. In principle, more sophisticated density-based (Sander
et al., 1998), nearest-neighbor-based (Ertöz et al., 2003; Bohm
et al., 2004; Pei et al., 2009; Kriegel et al., 2011), or correlation-
based (Kriegel et al., 2008) methods are capable of determining the
number of clusters, recognizing extraneous dimensions, and find-
ing clusters with complex shapes. When deciding on the methods
we would use for this paper, we conducted pilot tests for a variety
of clustering algorithms on synthetic data sets of a size compara-
ble to our IPs and NAPs. In these pilot tests, we found that the
more sophisticated clustering algorithms were less successful at
identifying cluster membership (i.e., neuronal identity) correctly.
With small data sets, there were inevitably extraneous large density
fluctuations or extraneous correlations, therefore for this study, k-
medoids was superior by virtue of being simpler, but this would
certainly change with a larger data set. These results suggest that
with a large number of neurons and a small number of highly
relevant properties, identifying cells via clustering is likely to be
fruitful.

In this analysis we implemented corrections for multiple com-
parisons and methods to determine the statistical significance
of the resulting correlations. In many studies reporting cor-
relations, corrections for multiple correlations were not made.
Obviously, if the correlations are robust, they will persist after
the appropriate corrections are made. Nonetheless, it is likely
that some reported correlations in the literature would not
have survived a more rigorous statistical analysis. Of course,
it is essential to remember that a weak correlation may point
to a fundamental biological insight, while a strong correla-
tion may not always help illuminate an underlying biological
process.
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