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Point cloud registration is an important technique for 3D environment map construction.
Traditional point cloud registration algorithms rely on color features or geometric features,
which leave problems such as color affected by environmental lighting. This article
introduced a color point cloud registration algorithm optimized by a genetic algorithm,
which has good robustness for different lighting environments.We extracted the HSV color
data from the point cloud color information and made the HSV distribution of the tangent
plane continuous, and we used the genetic algorithm to optimize the point cloud color
information consistently. The Gauss–Newton method was utilized to realize the optimal
registration of color point clouds for the joint error function of color and geometry. The
contribution of this study was that the genetic algorithm was used to optimize HSV color
information of the point cloud and was applied to the point cloud registration algorithm,
which reduces the influence of illumination on color information and improves the accuracy
of registration. The experimental results showed that the square error of color information
saturation and lightness optimized by the genetic algorithm was reduced by 14.07% and
37.16%, respectively. The color point cloud registration algorithm in this article was
reduced by 12.53% on average compared with the optimal result algorithm RMSE.
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1 INTRODUCTION

Point cloud registration is an important technique in the fields of pose estimation, three-dimensional
positioning, and computer vision. It is commonly used in simultaneous localization and mapping
(SLAM), three-dimensional reconstruction, unmanned driving, and automation applications.
Robots use devices such as depth cameras to make three-dimensional maps of the environment
to realize the perception of the environment. Due to the limitations of shooting equipment and
physical occlusion, scanning devices can only scan part of an object or scene. Therefore, the object or
scene is scanned in different angles and directions to obtain the complete point cloud data. The
purpose of point cloud registration is to compute the rotation and translation matrices between
multiple point clouds and finally merge them into complete point cloud data.

Point cloud registration relies on geometry or color information for the moment. Douadi et al.
(2006) emphasized the influence of color information on improving the registration accuracy of
high point cloud for the existing problems of ICP. Tong and Ying (2018) proposed a rough
matching algorithm based on texture information and point cloud curvature characteristics.
Park et al. (2017) proposed a way to constrain both geometric and color information. By using
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the distribution of color on the tangent plane, a continuous
color gradient was defined to represent the functional change
of color with the location. A joint error function consisting of
geometric and color errors was constructed, effectively
constraining both geometric and color information.
However, the color space used is the RGB color space, and
then, the color information needs to be converted to gray scale
information, which is easily affected by ambient light, resulting
in large data fluctuations.

The aforementioned method combines color information with
geometric information to improve the registration’s effectiveness,
but there is inconsistency in the original color data. When the
depth camera collects data, the color information collected by the
depth camera changes due to the inconsistency in scene
illumination and the change in the acquisition of the angle.
Therefore, Ren et al. (2021) converted the RGB color space to
a hue color space to improve robustness under different lighting
conditions. However, saturation and brightness information is
ignored.

Since the saturation and brightness of images are greatly
different from hues owing to the influence of ambient lighting,
it is difficult to effectively apply the saturation and brightness
information to point cloud registration. With the help of previous
researchers, this article was based on the study of two-
dimensional image illumination uniformity; the global
brightness transformation can effectively reduce the differences
in brightness. The saturation feedback algorithm can effectively
change the image of saturation, but this kind of algorithm relies
heavily on parameter setting; setting the same parameters is not
effective for all situations. The genetic algorithm has the abilities
of fast random search, simple process, easy to integrate with other
algorithms, can effectively haphazard search for appropriate
parameters, and reduce the impact of the environment on
color information.

This article proposed a color point cloud registration
algorithm optimized by a genetic algorithm to solve the
aforementioned problems in point cloud registration. In this
algorithm, the global luminance of color information is
logarithmic transformation, and the HSV (hexcone model)
color information is optimized by using a genetic algorithm.
According to the normal vector and the surface curvature of
the point, the matching correlation points of the point cloud
are calculated. Finally, the error function composed of
geometric error and color error is constructed. Experiments
showed that the algorithm proposed in this article can also
realize accurate point cloud registration with the help of color
information and geometric information in the case of
geometric degradation and complex scenes, which proves
that the algorithm can improve the accuracy of the color
point cloud registration.

The contributions of this article are as follows:

1) Aiming at the fact that the saturation and brightness of the
HSV color space are greatly affected by illumination, the
global brightness transformation and saturation feedback
algorithm of the 2D image is applied to 3D point cloud
registration.

2) We constructed a fitness index to evaluate saturation
information, optimized the consistency of point cloud color
information by using a genetic algorithm, and effectively
reduced the influence of environmental illumination on
point cloud registration.

The remaining article is organized as follows. The Related
Work section discusses some work of the point cloud registration
in recent years, and the Algorithm Implementation section shows
the specific algorithm steps. The Experimental Result and
Analysis section shows the experimental results and analysis,
and the Conclusion summarizes the article and the future research
direction.

2 RELATED WORK

Point cloud registration has been extensively investigated in
history. The point cloud registration method mainly includes
an optimization-based registration algorithm, feature
extraction-based registration algorithm, and end-to-end
registration algorithm (Huang et al., 2021). The most
classical point cloud registration algorithm based on
optimization is the ICP algorithm (Besl and McKay, 1992).
ICP achieves registration of target point clouds by finding the
nearest point neighbor in space as a matching pair and
calculating a three-dimensional rigid transformation using
matching points. However, the challenging assignment
corresponding to the nearest point based on spatial distance
is sensitive to the initial rigid transformation and outliers. This
often leads to ICP convergence to the wrong local minimum.
To solve the problems being completed in ICP, many studies
have put forward improvement schemes for the shortcomings
of the original ICP. Rusinkiewicz and Levoy (2001) considered
the distance between the vertex and the target vertex and
proposed a point-to-surface ICP algorithm, which made the
iteration process tough to fall into local optimum. Grant et al.
(2019) proposed a surface-to-surface ICP algorithm, which not
only considered the local structure of the target point cloud but
also the local structure of the source point cloud. Segal et al.
(2009) proposed a generalized ICP (GICP). It combines the
point-to-point and surface-to-surface strategies to improve
accuracy and robustness. Serafin and Grisetti (2015) added
the curvature constraints of the normal vector and point cloud
to point cloud registration and considered the distance from
the point to the tangent and the angle difference of the normal
vector, which improved the accuracy of the registration. But
these algorithms only constrain the geometrical information of
the point cloud and do not make effective use of color
information.

With the popularization of 3D lidar and depth cameras,
depth maps and color map data can be obtained
simultaneously with corresponding equipment. Therefore,
many articles have been proposed to improve the accuracy
of the point cloud registration by combining depth map
and color map data. Traditional point cloud registration
methods based on color information extend the color
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information vector from three-dimensional to a higher
dimension (Besl and McKay, 1992; Men et al., 2011; Korn
et al., 2014; Jia et al., 2016). Jia et al. (2016) improved
homogeneity and registration accuracy by converting the
RGB color space into the LAB color space and combining
the NICP algorithm. Ren et al. (2021) reduced the impact of
ambient brightness changes by converting the RGB color space
into hue color space.

In addition, some research practices construct a point cloud
registration algorithm based on feature extraction. Hu et al.
(2021) used the scale-invariant feature transform (SIFT)
algorithm to extract scale-invariant features from the 2D gray
image, which improves the matching accuracy. Ran and Xu
(2020) proposed a point cloud registration method that
integrates sift and geometric features. The feature points are
produced by SIFT, and incorrect matching points are
evaluated by curvature.

In addition to the traditional point cloud registration
algorithm mentioned previously, with the progress of deep
learning in recent years, many researchers have proposed the
registration algorithm based on deep learning (Guo et al., 2020;
Kurobe et al., 2020; Huang et al., 2021). The current depth-
based registration algorithms are mainly divided into feature-
based learning point cloud registration algorithms and end-to-
end–based point cloud registration algorithms. The feature-
based point cloud registration algorithm mainly evaluates
features through input point cloud and deep network, then

solves the rotation translation matrix, and outputs the results.
In recent years, DCP (deep closest point) (Wang and Solomon,
2019), RPMNet (Yew and Lee, 2020), AlignNet (Groß et al.,
2019), and other models have been developed. The main
approach of the point cloud registration algorithm based on
end-to-end is to input two pieces of the point cloud. Generally,
the neural network fitting regression model is used to estimate
the rotation translation matrix or to combine the neural
network with optimization. In recent years, DeepGMR
(Yuan et al., 2020) and 3D RegNet (Pais et al., 2020) have
been used as models. The main advantage of a registration
algorithm based on deep learning is that it can combine the
advantages of a traditional mathematical theory and neural
network well. But calculating the in-depth learning model at
the same time requires a lot of training data and often only
works well for scenarios contained in the training set. When
facing untrained scenarios, the accuracy will be greatly
reduced. In addition, there is a high requirement for
training effort (Guo et al., 2020).

3 ALGORITHM IMPLEMENTATION

In this article, a color point cloud registration algorithm based
on genetic image enhancement and geometric features is
designed. The algorithm flow is shown in Figure 1. The
algorithm consists of four steps. Step 1: the global

FIGURE 1 | Algorithm process.
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luminance logarithmic transformation should be performed
on the color information, and then, the HSV color information
should be optimized based on a genetic algorithm to calculate
the color information gradient. Step 2: the association points of
the joint image features and geometric features query point
cloud should be extracted, and the association points that do
not meet the conditions should be filtered. Step 3: the error
function combining the geometric error and color error should
be constructed. Step 4: The Gauss–Newton method should be
used to solve the point cloud iteratively.

3.1 Color Point Cloud Information
Optimization
In general, the original image acquired by the depth camera is a
RGB image. The RGB color space is the most frequently used
color space mode. It composes of three primary colors: red, green,
and blue. The range of red, green, and blue is between 0 and 255,
which is widely used in the field of computer vision. However, the
uniformity of the RGB color space is insignificant; the color
difference cannot be judged directly by spatial distance, and the
brightness cannot be handled well. At the same time, due to the
influence of ambient light brightness, images from different
angles lead to coloring deviation.

To solve the aforementioned problem, this article puts forward
after a genetic algorithm to optimize the HSV color information
with the introduction of point cloud registration methods; this
article is first to study the global image brightness logarithmic
transformation and complete the dark areas in the image
enhancement and dynamic range compression. To further
improve the optimization of HSV color information, this
article used a genetic algorithm to dynamically calculate the
saturation optimization coefficient and to improve the stability
of saturation under different lighting conditions.

The global logarithmic brightness transformation is applicable
to the original image. The global logarithmic brightness
transformation formula is as follows:

V′ x, y( ) � ln V x, y( ) + 1( ), (1)
where V′(x, y) is the logarithmic brightness, and V(x, y) is the
original brightness at the point (x, y). To reduce the influence of
illumination on brightness, this article first performed a global
logarithmic brightness transformation on the original image.
Setting the red, green, and blue channels in each original RGB
image as Re, Ge, Be, and Cmax as the largest of the three channels,
the global logarithmic brightness transformation formula is as
follows:

Re′ � Re/255, Ge′ � Ge/255, Be′ � Be/255; (2)
Cmax � max Re′, Ge′, Be′( ), Cmin � min Re′, Ge′, Be′( ),Δ � Cmax − Cmin; (3)

where Re′, Ge′, and Be′, respectively, represent the normalized
results of Re, Ge, and Be in corresponding places; Cmin is the
minimum value of R′, G′, and B′; and Δ is the difference between
the maximum value and minimum value of Re′, Ge′, and Be′.

H �

Δ � 0 0°;

60°×
Ge′ − Be′

Δ mod 6( )
360

, Cmax′ � Re′;

60°×
Be′ − Re′

Δ + 2( )
360

, Cmax′ � Ge′;

60°×
Re′ − Ge′

Δ + 4( )
360

, Cmax′ � Be′;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

S �
0 , Cmax � 0;

Δ
Cmax

, Cmax ≠ 0;

⎧⎪⎪⎨⎪⎪⎩ (5)

V � Cmax. (6)
V ∈ [0, 1], S ∈ [0, 1], andH ∈ [0, 1). because the global

logarithmic brightness transformation only enhances the
brightness while the saturation remains essentially the same.
Therefore, to optimize saturation effectively, this article is
based on a genetic algorithm and feedback saturation
enhancement algorithm to enhance the saturation layer
(Strickland et al., 1987).

The genetic algorithm simulates the survival of the fittest in
nature and uses selection, crossover, and variation to solve a
satisfactory solution. According to the saturation feedback
formula, this article modified it as follows:

Sp x, y( ) � ks S′ x, y( ) − �S′ x, y( )[ ] + kv V′ x, y( ) − �V′ x, y( )[ ]
+ S x, y( ),

(7)
where Sp(x, y) is the enhanced saturation value, S′(x, y) = 1 − S (x,
y), and S(x, y) is the saturation at the point (x, y); �S′(x, y) is the
local saturation mean at the point (x, y),V′(x, y) = 1 −V(x, y), and
�V′(x, y) is the local saturation mean at the point (x, y). Because
the coefficients of ks and kv are very important for saturation
processing, the manual setting method cannot effectively meet
the actual need. For this reason, this article used a genetic
algorithm to calculate the saturation coefficient dynamically so
that it can adjust the values of ks and kv adaptively.

The genetic algorithm in this article is divided into four steps;
the specific steps are as follows:

1) Confirming the the encoding and fitness functions: float
number encoding is employed in this article. ks and kv are
the coefficients to be optimized, and their value ranges are
0–4. To test and evaluate the enhancement effect, we defined a
fitness function, and it is constructed as follows:

f fitness � exp
1

M × N
∑M
x�1

∑N
y�1

S x, y( )⎡⎢⎢⎣ ⎤⎥⎥⎦2 − 1
M × N

∑M
x�1

∑N
y�1

S x, y( )2⎛⎝ ⎞⎠, (8)

For an image of M × N size, the smaller the ffitness value, the
larger is the average change of image saturation.
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2) Identifying the selection strategy and the genetic operator: to
ensure the optimal individuals can be obtained, this article
used the sorting selection strategy, as shown in Eq. 9. In
addition, in order to maintain the diversity of the group, it is
not permitted to choose the same parent.

P Sp x, y( )i( ) � ffitness Sp x, y( )i( )∑N
j�1ffitness Sp x, y( )j( ). (9)

3) Determination of the control parameters of the genetic
algorithm: it mainly includes population size, variation rate,
and crossover rate. If the size of the population is too small
and lacks diversity, it can easily lead to regional convergence.
A large population size makes the algorithm converge slowly,
which influences the processing speed. Therefore, the size of
the population should be large enough. In the experiment, we
set the population size at 30 and the crossover rate and
variation rate at 0.9 and 0.05, respectively.

4) Determination of downtime criteria: the calculation is aborted
based on the maximum number of iterations and the rate of
change between the average fitness value of the current
population and that of the previous generation. The
maximum number of iterations is set to 100, and the
change rate of the average fitness is 0.2%. When the
number of iterations is greater than 100 or the change rate
of average fitness is less than 0.2%, the calculation is aborted.

In order to optimize the error of color information, it is
necessary to obtain the corresponding color information
gradient. Therefore, H(p) needs to be converted into the
continuous color function Hp(v), where v is the tangent plane
vector, andNp is the neighborhood of p; p′ is a point inNp, and np
is the normal of the point p, making v*np = 0. We assumed that
Hp(v) is a continuous function and represented the distribution of
HSV on the tangent plane; then it can define Hp(v) as follows:

Hp v( ) ≈ H p( ) + dT
pv, p ∈ P. (10)

For each point p, f(s) is the plane function projected by point P
to the section plane:

f s( ) � s − np s − p( )⊤np. (11)
The least square fitting objective of dp is as follows:

L dp( ) � ∑
p′∈Np

Hp f p′( ) − p( ) −H p′( )( )2
≈ ∑

p′∈Np

H p( ) + d⊤
p f p′( ) − p( ) −H p′( )( )2. (12)

There is a constraint that requires dTpnp � 0, which is solved by

using the Lagrange multiplier method in this article.

3.2 Point Cloud-Associated Points
The traditional way to find the associated points of the point
cloud usually only depends on the geometric information to find
the matching points and does not make full use of the color

information. Due to the scale invariance, rotation invariance, and
angle invariance of sphere features, the same feature information
can still be maintained at different angles and distances. At the
same time, the extraction speed of orb features is significantly
improved compared with SIFT (scale-invariant feature
transform) and surf (speed up robot features) (Rublee et al.,
2011). Therefore, in order to effectively utilize the feature and
geometric information of color images, the algorithm uses the orb
feature as the image feature extraction algorithm and combines
the KD-tree nearest neighbor algorithm with the set of matching
points found by the orb feature algorithm.

We set the orb feature point set as Korb and the geometric
point set as Kkd � (pi, qj){ }, pi ∈ P, qj ∈ Q feature point set.

K � Korb ∪ Kkd. (13)
KD-Tree is used to search for p radius, and the search

parameter is set at 0.04. Center μSi of all points centered on pi,
and the covariance ΣS

i of the Gaussian distribution is calculated.

μSi �
1
V i| | ∑

pi∈Vi

pi, (14)

ΣS
i �

1
V i| | ∑

pi∈Vi

pi − μi( ) pi − μi( )T, (15)

where V i is the set of adjacent points of point pi, and μi is the
center of V i. By matrix decomposition of ΣS

i , the eigenvalues λ1,
λ2, and λ3 of ΣS

i are obtained. In this article, σi is used to represent
the curvature of the current point to evaluate the degree of
coincidence between planes. The smaller σi is, the flatter is the
plane.

σ i � λ1/ λ1 + λ2 + λ3( ). (16)
Detail curvature filtering principle in the NICP algorithm is

used to filter the matching points (Serafin and Grisetti, 2015).

3.3 Error Function
The traditional error function only considers the geometric
information. When similar geometric structures occur, it is not
difficult to fall into the local optimal solution. In view of the
aforementioned problems, the error function set out in this article
not only considers the geometric information but also the color
information. P andQ are color point clouds, respectively, and T is
the initial alignment matrix. The goal is to determine the optimal
solution T from P and Q.

The following error functions E(T) are defined in this article:

E T( ) � 1 − λ( )EH T( ) + λEG T( ). (17)
EH (T) and EG (T) correspond to the color error and geometric

error, respectively. They have the following relationship:

qt � R w( )q + t, (18)
qp � f qt( ), (19)

where R(w) ∈ R3 × 3 is the rotation matrix of w, and t is the
displacement vector. qt is the new point after q rotation and
translation transformation. qp is the projection of qt on the
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tangent plane; then, the HSV color error EH(T) is defined as
follows:

EH T( ) � ∑
p,q( )∈K

Hp qp( ) −Hp q( )( )2. (20)

The geometric error EG is defined as the tangent plane distance
between qt and p, np is the normal of the point p; then, the
geometric error is as follows:

EG T( ) � ∑
p,q( )∈K

qt − p( )⊤np( )2. (21)

EH and EG are combined to construct a complete error
function:

E T( ) � 1 − λ( ) ∑
p,q( )∈K

e
p,q( )

H T( )( )2

+ λ ∑
p,q( )∈K

e
p,q( )

G T( )( )2

,

(22)
where e(p,q)H and e(p,q)G represent the residuals of color information
and geometric information, respectively:

e
p,q( )

H T( ) � Hp qp( ) −Hp q( ) . (23)
e

p,q( )
G T( ) � qt − p( )⊤np

. (24)

3.4 Point Cloud Registration Iteration
The Gauss–Newton method is used to solve the minimum error
of E(T). In order to facilitate the algorithm calculation, we defined
six-dimensional vector ϑ to represent T, and its structure is as
follows:

ϑ � Δδ,Δε,Δϵ,Δa,Δb,Δc( ). (25)
Since E(T) is composed of EH(T) and EG(T), the Jacobian

matrix also needs to be composed of JeH and JeG:

Je �
    
1 − λ

√
JeH 

λ
√

JeG
[ ]. (26)

ϑk represents the transformation vector after k iterations, and
then, the Jacobian matrix calculation of ϑk is as follows:

JeH � ∇e
p,q( )

H ϑ( )
∣∣∣∣∣∣ϑ�ϑk ,

JeG � ∇e
p,q( )

G ϑ( )
∣∣∣∣∣∣ϑ�ϑk . (27)

According to the chain rule, ∇e(p,q)H (ϑ) and e(p,q)G (ϑ) can be
calculated by the following formula:

∇e
p,q( )

H ϑ( ) � z

zϑi
qp − p( ) −H q( )[ ] � ∇Hp f( )Jf s( )Js θ( ) ,

(28)
∇e

p,q( )
G ϑ( ) � z

zθi
qt − p( )Tnp[ ] � nT

pJs θ( ) , (29)

where ∇Hp(f) = dp, Jf(s) is the Jacobian of f with respect to s, and
Js(θ) is the Jacobian with respect to θ. The Gauss–Newtonmethod

is used for optimization iteration of ϑ, and the specific update
steps are as follows:

ϑk+1 � ϑk − JTe Je( )−1JTe e, (30)
where e �

     
1 − σ

√
eH  

σ
√

JeGeG
[ ], when the value of error function is less

than the threshold value through repeated iterative optimization
of ϑ, the iteration is stopped, and the final result is the output.

4 EXPERIMENTAL RESULT AND ANALYSIS

4.1 Experimental Environment
Configuration
We evaluated the effectiveness of the color point cloud
matching algorithm based on the genetic algorithm.
RawFoot (Cusano et al., 2015) and TUM datasets (Sturm
et al., 2012) were used for verification, respectively. From the
corn sample set in the RawFoot dataset, 64 images with
different light intensities and angles are selected and used
to assess color consistency. In the depth and color images,
four datasets were extracted from the tums with clear 254
overlaps. It can be further used to verify the rationality and
effectiveness of the registration algorithm. The cloud
registration algorithm in this experiment was run on a
desktop computer equipped with Ubuntu18.04 LTS, AMD
Ryzen 9 5950 × 3.4ghz CPU, 64G DDR4 memory, and GTX
3070 Ti graphics card. Using Open3D (Zhou et al., 2018) and
OpenCV(Bradski, 2000) and other tools and running the
corresponding C++ algorithm program (Xu et al., 2021),
the experimental parameters are set as follows: the
maximum iteration time was set to 50, error function
threshold to 10–6, ϵd to 0.5, ϵσ to 1.3, ϵn to 0.523, Kd-Tree
search radius to 0.08, orb feature number to 500, orb pyramid
layer number to 8, and orb pyramid extraction ratio to 1.2.
The oriented BRIEF descriptor size was set to 31.

4.2 Color Information Optimization
To verify the optimization performance of the genetic algorithm
for HSV color information, this article used the RawFoot as test
datasets. The RawFoot database is designed specifically for the
descriptor; and the classification method in robustness on light
condition changes and pays special attention to the change in the
light source color; the light conditions in the direction of the light,
light color, and brightness on the combination of these factors are
different.

The sample set of corn is selected from RawFoot as test data.
The sample set of corn is composed of 46 pictures of different
light sources and angles, as shown in Figure 2. D40 is regarded
as the reference image, and the original RGB, original HSV,
and enhanced HSV data are compared to verify the
effectiveness of image enhancement. Meanwhile, in order to
effectively evaluate the consistency of the image enhancement
algorithm in different lighting and light angles, the sum square
distance SSD algorithm is used to calculate the degree of
difference between the image under different lighting and
the benchmark images:
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SSD O, E( ) � 1
N

∑N
i�1

C oi( ) − C ei( )( )2. (31)

O stands for reference pictures, on behalf of the need to compute
the degree of the difference image, oi and ei representO and Ewith a
single channel of pixels, where the function represents a pixel value
on a single channel of the picture. The smaller the pixel value
difference between the basic picture and different lighting
conditions, the closer the SSD value is. It represents the
calculated value under different lighting conditions, which is
closer to the original value of the reference picture.

Figure 2 shows the image of the corn sample set in the original
RawFoot dataset. Due to light angle and brightness, there are
obvious differences between the images. Figure 3 is the result of
the image enhancement algorithm. After the algorithm
processing, the difference between images is significantly
reduced, and the details in the dark area are more noticeable
due to the improvement of brightness and contrast.

As shown in Figure 4, Figures 4A–C are the comparison
diagrams of the original hue, saturation, and value data and the
hue, saturation, and value data after enhancement; Figures
4D–F are the differences of the original R, G, and B channels,
respectively. Compared with the unenhanced HSV data, the
average SSD index of saturation and value after image
enhancement decreased by 14.07% and 37.16% compared
with the original saturation and value. Experimental results
showed that the influence of illumination and light angle on
saturation and value is decreased after the image enhancement
algorithm.

4.3 Color Point Cloud Registration
The TUM dataset is a well-known RGB-D dataset, which
provides rich scenes. The Kinect camera is used in the TUM
dataset to collect depth information and color information,
among which the resolution of the depth image and a color
image is 640 * 480. In this article, rgbd_datasetet_freiburg1_xyz,
rgbd_dataset_freiburg1_teddy, rgbd_dataset_freiburg1_360 and

FIGURE 2 | Image of the original corn sample set.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 9237367

Liu et al. Genetic Algorithm-Based Point Registration

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


rgbd_dataset_freiburg1_plant were selected in the TUM dataset,
respectively. Partial scenes were selected from four datasets of the
plant for testing; ICP and NICP algorithms (Park et al., 2017)
(referred to as Color 3D ICP) and the method proposed in this
article were used to register overlapping color point clouds,
respectively. In order to effectively evaluate other algorithms
and the accuracy of the algorithm proposed in this article, we
used the root mean square error (RMSE) index and the fitness
index, for a given two pieces of point cloud (p, p̂) and Kpp̂ and
their matching points (pi, p̂i) ∈ Kpp̂, pit for after the rigid body
transformation, including ‖pi

t − p̂i‖22, a representative and the
distance between the pi

t and p̂i; RMSE metrics are defined as
follows:

RMSE p, p̂( ) �              
1
n
∑n
i�1

pit − p̂i

$$$$ $$$$22√
, pit � R w( )pi + ti. (32)

In order to reflect the relationship between the number of
matching points and the number of source point clouds, fitness
indicators are defined as follows:

Fitness p,Kpp̂( ) � Kpp̂

∣∣∣∣ ∣∣∣∣
|p| . (33)

In this article, rgbd_datasetet_freiburg1_xyz,
rgbd_dataset_freiburg1_teddy, rgbd_dataset_freiburg1_360 and
rgbd_dataset_freiburg1_plant were selected in the TUM dataset,
respectively. Some scenes were selected from the four datasets of
the plant for testing. ICP, NICP, Color 3D ICP, and the method
proposed in this article were used to register the overlapping color
point clouds and calculate the corresponding RMSE and fitness
indicators.

Tables 1, 2, respectively, show RMSE and fitness index test
results of ICP, NICP, Color 3D ICP, and our algorithm, and the
best results of these algorithms are shown in bold. It can be seen
from the data in Table 1 that the RMSE index of the algorithm is

FIGURE 3 | Image of the corn sample set after enhancement.
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almost lower than that of the aforementioned algorithm, and the
average RMSE is also the lowest. Meanwhile, it can be seen from

Table 2 that fitness is significantly improved compared with the
aforementioned algorithm, indicating that the number of feature
points selected by the algorithm accounts for a large proportion of
the original point cloud.

Figures 5A,B,H, and I, are the adjacent original point
clouds and target point clouds randomly selected in the
rgbd_dataset_freiburg1_teddy and rgbd_dataset_freiburg1_xyz
data sets, respectively. Figures 5C,J are the ICP algorithm, as
shown in Figure 5C. The algorithm does not fit the point cloud
well and has a serious dislocation. Figures 5D,K are the NICP
algorithm, which restricts the geometric structure of the
point cloud by restricting the normal and curvature of the
point cloud, making the algorithm better for plane
registration, but the registration effect for complex objects is
not ideal. Figures 5E, L show the color 3D ICP registration of
point clouds by combining the color information and geometric
information. However, due to the incorrect association between
matching points, registration errors still exist. Figures 5F, M, N
show the algorithm in this article. The algorithm in this article not
only constrained the color information and geometric
information but also calculated the curvatures and normals of
matching points and filtered the matching points that did not

FIGURE 4 | SSD contrast figure. (A) Comparison between the original hue and enhanced hue. (B) Comparison between the original saturation and enhanced
saturation. (C) Comparison between the original value and enhanced value. (D) Original red channel. (E) Original green channel. (F) Original blue channel.

TABLE 1 | RMSE index comparison table.

Dataset ICP NICP Color 3D ICP Our

rgbd_dataset_freiburg1_xyz 0.0225 0.0223 0.0253 0.0185
rgbd_dataset_freiburg1_teddy 0.0498 0.0731 0.0380 0.0369
rgbd_dataset_freiburg1_360 0.0469 0.0330 0.0447 0.0326
rgbd_dataset_freiburg1_plant 0.0483 0.0379 0.0324 0.0321
Average 0.0426 0.0494 0.0351 0.0300

Bold values represents the best result of these algorithms.

TABLE 2 | Fitness index comparison table.

Dataset ICP NICP Color 3D ICP Our

rgbd_dataset_freiburg1_xyz 0.3804 0.3625 0.3058 0.6742
rgbd_dataset_freiburg1_teddy 0.2804 0.1922 0.7393 0.7421
rgbd_dataset_freiburg1_360 0.2967 0.3453 0.3653 0.7121
rgbd_dataset_freiburg1_plant 0.5116 0.3747 0.9009 0.9004
Average 0.3672 0.3186 0.5778 0.7572

Bold values represents the best result of these algorithms.
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meet the requirements. The results demonstrated that the
algorithm in this article correctly registered the original point
cloud and the target point cloud well. Figures 5G, N are orb
feature point matching, and the results showed that orb
feature matching for two-color images also has a good
matching effect.

5 CONCLUSION

Point cloud acquisition is easy to be affected by the shooting
environment. Changing the light will lead to the deviation of
the brightness and color of the shooting object, which will
affect the accuracy of the point cloud registration. Based on the
aforementioned problems, a genetic algorithm is proposed to
pre-process the color information of the point cloud. It can

further eliminate the inconsistency of brightness and color
caused by different lights and reduce the impact on the point
cloud registration.

In this article, using the logarithmic transformation of
two-dimensional image brightness and the saturation
feedback formula optimized by the genetic algorithm, the
algorithm is transplanted to three-dimensional point cloud
illumination processing to study the sensitivity of three-
dimensional point cloud registration to illumination. Its
innovation lies in the combination of the saturation
feedback formula and genetic algorithm to optimize the
color consistency of the point cloud color information,
reducing the interference of illumination factors to a
certain extent.

The experiment shows that the HSV data after bionic image
enhancement decrease 14.07% and 37.16% on average compared

FIGURE 5 | Registration results of rgbd_dataset_freiburg1_teddy and rgbd_dataset_freiburg1_xyz. (A) Source point cloud of rgbd_dataset_freiburg1_teddy. (B)
Target point cloud of rgbd_dataset_freiburg1_teddy. (C) Result of the ICP algorithm of rgbd_dataset_freiburg1_teddy. (D) Result of the NICP algorithm of
rgbd_dataset_freiburg1_teddy. (E) Result of the Color 3D ICP of rgbd_dataset_freiburg1_teddy. (F) Result of our algorithm. (G) Orb matching result of
rgbd_dataset_freiburg1_teddy. (H) Source point cloud of rgbd_dataset_freiburg1_xyz. (I) Target point cloud. (J) Result of the ICP algorithm of
rgbd_dataset_freiburg1_xyz. (K) Result of the NICP algorithm of rgbd_dataset_freiburg1_xyz. (L) Result of the Color 3D ICP of rgbd_dataset_freiburg1_xyz. (M) Result
of our algorithm of rgbd_dataset_freiburg1_xyz. (N) Orb matching result of rgbd_dataset_freiburg1_xyz.
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with the SSD indexes of original saturation and brightness. In
addition, during the experiment, it is found that the input color
image may be blurred due to jitter during camera acquisition,
which will lead to blur in the registration process. Therefore, how
to reduce the influence of color image blur on the accuracy of
color point cloud registration is a problem that this article needs
to study in the future.
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