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System-wide assembly of 
pathways and modules 
hierarchically reveal metabolic 
mechanism of cerebral ischemia
Yan Zhu1,2,4,*, Zhili Guo1,5,*, Liangxiao Zhang6,*, Yingying Zhang1, Yinying Chen1, 
Jingyi Nan4, Buchang Zhao4, Hongbin Xiao3, Zhong Wang1 & Yongyan Wang1

The relationship between cerebral ischemia and metabolic disorders is poorly understood, which is 
partly due to the lack of comparative fusing data for larger complete systems and to the complexity 
of metabolic cascade reactions. Based on the fusing maps of comprehensive serum metabolome, 
fatty acid and amino acid profiling, we identified 35 potential metabolic biomarkers for ischemic 
stroke. Our analyses revealed 8 significantly altered pathways by MetPA (Metabolomics Pathway 
Analysis, impact score >0.10) and 15 significantly rewired modules in a complex ischemic network 
using the Markov clustering (MCL) method; all of these pathways became more homologous as 
the number of overlapping nodes was increased. We then detected 24 extensive pathways based 
on the total modular nodes from the network analysis, 12 of which were new discovery pathways. 
We provided a new perspective from the viewpoint of abnormal metabolites for the overall study 
of ischemic stroke as well as a new method to simplify the network analysis by selecting the more 
closely connected edges and nodes to build a module map of stroke.

Cerebral ischemia is one of the most devastating neurological conditions, with an approximate mor-
tality of 5.5 million persons annually and a loss of 44 million disability-adjusted life years worldwide1. 
Although inflammatory and immune responses play important roles in the course of ischemic stroke2,3, 
it has been estimated that the etiology and pathophysiology remain unexplained in more than 40% of 
stroke cases. Previous studies found that activation of the Raf/MEK/ERK/p90RSK cascade4, the extra-
cellular signal-regulated protein kinase cascade5, Hsp6, the MEK-ERK-p90RSK cascade7, or the ASK1/
JNK cascade8, co-activation of the GABA A and GABA B receptors9 or inhibition of the MLK3/JNK3 
cascade10 might mediate neuroprotective effects. However, these prior studies mainly focused on one 
or two specific pathways, i.e., the signaling of a particular protein kinase or the co-activation of certain 
receptors. To some extent, these results addressed only a part of the biochemical events underlying 
ischemic stroke.

Metabolomics is a systemic global quantitative assessment for the comprehensive analysis of changes 
in endogenous metabolites in a biological matrix, which can be directly coupled to biological pheno-
typic responses to a disease11,12, drug treatment13,14 or intervention15. Based on metabolite perturbations 
following a stroke, one can map all of the pathways related to ischemic stroke; understanding these 
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pathways is among the key challenges facing cerebral ischemia research. Recently, several metabolomic 
studies have shed some light on this problem through the analysis of metabolomic profiles. For exam-
ple, the levels of glutamate, glutamine, aspartate, γ -aminobutyrate (GABA), taurine, malate, fumarate, 
acetate, phosphocreatine, and inosine, hypoxanthine, xanthine, and uracil significantly decreased after 
middle cerebral artery occlusion (MCAO), as detected by high-resolution nuclear magnetic resonance 
(NMR) spectroscopy16. Additionally, metabolic patterns in the plasma and urine from patients with 
cerebral infarctions could be characterized by the 1H-NMR metabolomics approach17. However, at this 
stage, how many metabolites are involved in the current ischemic network remains unclear because most 
of these previous studies analyzed targeted metabolites as individual markers or pathways. Due to the 
complexity of diseases, with multiple metabolites distributed on different levels of signal transduction 
pathways, the novel approaches of systems biology, network pharmacology, modular pharmacology and 
bioinformatics can be employed to explore complex disease mechanisms and to design rational ther-
apies for stroke patients18–20. Our study creatively integrated non-targeted and targeted metabolomic 
results to detect all of potential biomarkers that may be useful for the early diagnosis of ischemic stroke. 
Furthermore, we provide a framework of pathways and modules to explain the biochemical mechanism 
of ischemic stroke.

Materials and Methods
Animal blood sample collection.  Six-week-old male Sprague-Dawley (SD) rats were purchased 
from the China Academy of Military Medical Science (Peking, China) (see Fig. S1 for the flow chart of 
the study). Stroke was induced using the MCAO procedure, with 1 hour of occlusion followed by reper-
fusion. The animals were then assessed for motor deficits, and inclusion/exclusion criteria were applied. 
We drew 5 ml blood from the abdominal aorta on the 3rd day; we then placed 2 ml of this blood into an 
EDTA tube, fully mixed the sample, centrifuged the sample at 3,000 rpm for 10 min, and extracted 500 μ L 
plasma. The remaining 3 mL blood were stored at 4 °C for 60 min and then centrifuged at 3,000 rpm for 
10 min, and 1000 μ L of the supernatant was collected as the serum sample. All of the samples were stored 
in a − 80 °C freezer for further analysis.

The protocol was approved by the Ethics Committee of China Academy of Chinese Medical Sciences 
and was implemented in accordance with provisions of the Declaration of Helsinki and Good Clinical 
Practice guidelines. The investigation was conducted in accordance with the ethical principles of animal 
use and care.

Serum metabolome.  Sample preparation.  Thawed plasma samples (200 μ L) were mixed with 
acetonitrile (400 μ L) by vortexing for 30 s, stored at 4 °C for 60 min, and centrifuged at 12,000 rpm for 
10 min. Then, 500 μ L of the supernatant was collected for freeze drying. The lyophilized sample was 
re-dissolved in 200 μ L acetonitrile/water (1:1, v/v), centrifuged at 12,000 rpm for 5 min, and then filtered 
through a syringe filter (0.22 μ m) for UHPLC MS analysis.

UHPLC-TOF MS analysis.  Chromatographic condition.  Serum metabolomics was performed 
with UHPLC Q-TOF/MS. Chromatography was conducted using a Zorbax Eclipse plus C18 column 
(150 mm ×  3 mm, i.d.1.8 μ m, U.S., Agilent Technologies). The binary mobile phase was composed of 
phase A (water with 0.2% methanoic acid) and Phase B (acetonitrile). The gradient for the serum sample 
was 0 ~ 25 min, 0 ~ 100% B. The proportion of phase B returned to 5% in 1 min, and the column was 
allowed to re-equilibrate for 5 min before the next injection. The flow rate was 0.5 mL/min, and 1 μ L was 
injected into the column. The column temperature was maintained at 40 °C.

TOF MS condition.  MS analysis was conducted using a QTOF 6520 (Agilent, Santa Clara, USA) oper-
ating in positive (ESI + ) electrospray ionization mode. Nitrogen was used as the dry gas, the cone gas 
flow was maintained at 10.0 L/min, and the desolvation temperature was set at 325 °C. The atomization 
gas pressure was set at 50 psig, the capillary voltage was set at 4000 V, the cone voltage was set at 65 V, the 
OCT 1 RF Vpp was set at 750 V, and the fragmentor voltage was set at 175 V. The TOF data were collected 
from 100–1000 m/z. The UHPLC Q-TOF/MS analysis platform provides the retention time, the precise 
molecular mass, and MS/MS data for the structural identification of biomarkers. The precise molecular 
mass was determined within measurement errors (< 5 ppm) by Q-TOF/MS.

Quality control and method validation.  First, we optimized the extraction method of plasma samples. 
We attempted two pretreatment methods, including nitrogen blow drying and freeze drying, and found 
that the freeze drying method was more advantageous to obtain a product closer in nature to the sample 
analyte. The selected solvent was simultaneously optimized; we ultimately chose the 1:1 mixed solution 
of acetonitrile/methanol to quantitatively analyze the samples to ensure that as more as possible metab-
olites were dissolved. We tried different chromatographic columns to optimize the separation conditions 
in experiments, eventually selecting the Zorbax Eclipse plus C18 chromatographic column (3 ×  150 mm, 
and 1.8 μ m) under positive patterns for use.
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Enzyme-linked immunosorbent assay (ELISA).  First, we removed the kit from storage (Rat Elisa Kit 
(48T× 1), Batch number: Lot#: 20130419, BlueGene Biotech Company, Shanghai, China) and let it sit in a 
20− 25 °C environment for 30 min. Then, on the enzyme-labeled plate, we added 50 μ L standard solution 
into each of the blank micro-wells, according to the standard order. We then added 50 μ L of standard 
solution into the blank micro-well or 50 μ L distilled water into the blank contrast well. Subsequently, 
we added 100 μ L enzyme marker solution to each well (excluding the blank contrast well). After sealing 
the enzyme mark plate with glue, we incubated the plate at 37 °C for 60 min. During the experiment, 
we washed the enzyme marker plates 3− 5 times to ensure that the wells were filled with adequate water 
pressure. Finally, we added 50 μ L stop solution into each well to terminate the reaction.

Instrument: ELx800 ELIASA, BioTek Co., USA.

Pathway and network analysis.  The construction, interaction and pathway analysis of potential 
biomarkers were performed with MetPA (http://metpa.metabolomics.ca), and database sources, includ-
ing the KEGG, the Human Metabolome database, and METLIN, were used to identify the related meta-
bolic pathways. The possible biological roles were evaluated by enrichment analysis using MetaboAnalyst. 
IPA used the high-quality KEGG metabolic pathways as the backend knowledge base. The impact-value 
threshold calculated from pathway topology analysis was set as 0.10, and those above the threshold were 
screened out as potentially significant pathways.

We used Cytoscape, an open source software, to integrate biomolecular interaction networks with 
high-throughput expression data into a unified conceptual framework. We mainly used Metscape, which 
is a plug-in for Cytoscape, to visualize and interpret metabolomic data in the context of human metabolic 
networks21. Metscape takes advantage of VizMapper in Cytoscape to create the Metscape visual style.

Module analysis by Markov clustering.  MCL-edge is dedicated to analyzing very large networks, 
scaling up to millions of nodes and hundreds of millions of edges. It comprises a small set of tools 
supporting algorithms that both are commonly used and scale well. The tools are ready-to-run and 
command-line based, often allowing multi-processing and job dispatching. Significant modules were 
defined when peak values of modularity and entropy were both achieved.

Results
Evaluation of ischemic models.  Ten rats in the ischemia group were successfully modeled. After 
3 days, 5 rats in the ischemia group survived, and their blood samples were therefore collected for the 
subsequent metabolic network analysis. Meanwhile, 10 rats in the sham group were taken as control 
samples. The infarct volume (p <  0.001) (see Fig. S2 for TTC result) and neurological deficit score over 
three days (p <  0.001 on each day) after the induction of ischemia were significantly increased (Fig. 1A). 
Compared with the cortical tissue of sham-operated animals (Fig. 1B), significant necrosis of the cortical 
neuronal cells in the core of the infarct was observed in the ischemia group by hematoxylin-eosin (HE) 
staining, with gap-like structured neurons and enhanced basophilic staining in the cytoplasm; the neu-
ronal cell body was deformed, and the nucleus was condensed, dissolved or disappeared (Fig. 1C). Nerve 
cell swelling and degeneration, cytoplasmic edema, intracellular component degradation, nuclear con-
densation, nuclear membrane thickening, and nuclear chromatin aggregation into blocks were observed 
under ischemic conditions by electron microscopy (Fig. 1E), whereas normal nerve cell structure, abun-
dant cytoplasm, normal mitochondria and endoplasmic reticulum, abundant glycogen granules, normal 
cell nuclei, double-layered nuclear membranes, and evenly distributed, nuclear staining quality were 
observed under normal conditions (Fig.  1D). Under ischemic conditions, marked edema was noted 
in the cytoplasm, the amount of organelles significantly decreased, the envelope and cristae of most 
mitochondria became fused and obscure, and the rough endoplasmic reticulum mildly expanded, with 
evident fusion and degranulation.

Identification of potential biomarkers.  Potential biomarkers of comprehensive metabolomics.  The 
total ion current chromatogram (TIC) of plasma samples derived from the sham and ischemia groups 
showed significant differences in metabolite abundance (Fig. 2A,B), which might contribute to the dis-
tinct separation between the sham and MCAO rats in principal component analysis (PCA) score plots 
(Fig. 3A). The potential biomarkers were discovered by Graphical Index of Separation (GIOS) (Fig. 3B) 
and were employed to build a PLS-DA model for sham and MCAO rats (Fig. 3C). The PLS score plots 
revealed various metabolites that could be responsible for the separation; thus, these metabolites were 
viewed as potential biomarkers. Finally, potentially significant biomarkers were characterized in ischemic 
rats (Table  1), including 15 significantly increased and 7 decreased metabolites in the ischemia group 
compared with the sham group.

The typical chromatogram of serum fatty acid in MCAO rats demonstrated the peak area and cor-
responding retention time using ultra-performance liquid chromatography/ electrospray ionization 
tandem mass spectrometry (UHPLC/ESI-MS/MS) for 12 free fatty acids (FFAs) (Fig.  2C); satisfactory 
separation of the FFAs in the mixed standard solution was achieved within 20 min. According to frct% 
and its χ 2 test, the separation score (sep-t) with its t-test (t-statistic of sep-t) were computed for discrim-
inating between the ischemic and sham groups (Fig. 3D). Three accordant variables (C18:3, C16:0 and 
C20:0) had the greatest contributions in discriminating the MCAO rats from sham controls (Fig. S1A). 

http:///http://metpa.metabolomics.ca
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After selecting out these potential variables, we built a PLS-DA model for MCAO rats and sham controls, 
which could be clearly separated using the 3 variables selected by GIOS (Fig. 3D). The PLS score plots 
and loading plot further revealed distinct separation between the two groups (Fig. 3E and Fig. S3). The 
three fatty acids were regarded as the potentially significant biomarkers in ischemic rats (Table 2), indi-
cating that arachidonic acid (C20:0) was significantly decreased in the ischemia group compared with the 
sham group, while gamma-linolenic acid (C18:3) and palmitic acid (C16:0) were significantly increased. 
Palmitic acid increases the risk of developing cardiovascular diseases, gamma-linolenic acid induces 
apoptosis and lipid peroxidation, and more importantly, arachidonic acid metabolism plays specific roles 
in the regulation of cerebral blood flow; the accumulation of these fatty acids leads to significant varia-
tions in the PG concentrations in brain tissues14.

Figure 1.  Phenotypes alteration of ischemic rats compared with sham-operated rats. (A) The average 
brain infarction volume and neurological deficits scores of the sham and ischemia groups. Data are 
presented as mean ±  SEM. ***P <  0.001 as determined by Bonferroni corrected t tests. (B,C) The HE stains 
of cortical neurons of the sham and ischemia groups, respectively. (D,E) The electron microscope of cortical 
neurons of the sham and ischemia groups, respectively.
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Potential biomarkers of serum amino acids.  Serum samples collected from the ischemic rats and sham 
controls contained approximately the same amino acids (Fig. 2D). The main difference was quantitative, 
i.e., the amino acid level in the ischemia group was significantly higher than that in the sham group. 
The levels of 10 of 20 amino acids (Fig.  3F,H) were significantly different (P <  0.01) between the two 
groups (Fig. 3G); thus, the 10 potentially significant biomarkers were characterized in the ischemic rats 
(Table 3). The levels of glutamic acid, threonine, valine and leucine significantly increased in the ischemia 
group compared with the sham group, while the levels of asparagine, serine, glycine, taurine, tyrosine 
and ornithine significantly decreased.

Pathway and modular analysis.  Metabolic ischemic pathways.  Metabolic pathway analysis with 
MetPA revealed that 35 metabolites (Table  1, 2 and 3) significantly varied following ischemic stroke 
(Table S1). Eight significant metabolic pathways out of a total of 27 pathways (impact score > 0.10) were 
found to be uniquely affected in the MCAO ischemic rats (Table 4), including VLI biosynthesis (impact 
score 0.67) and GST metabolism (Fig. S4; impact score 0.53), among others. Our study differed from 
the common pathway analysis framework such as elementary flux modes and extreme pathways in that 
we selected specific pathways according to the metabolic profiles of our biological samples and arranged 
them by importance. This pathway analysis method has practical significance for the comprehensive 
assessment of biochemical reactions and the related specific metabolic functions after cerebral infarction.

Construction of ischemic network and modular analysis.  A disease network model can express the com-
plex relationship between drugs, target and disease; nodes represent entities such as genes, proteins, 
small molecules, drugs, and diseases, and edges represent the interaction between nodes. We further 
reconstructed ischemia-related metabolic networks based on all of the relevant metabolites identified by 
Metscape. The whole metabolic network included 189 nodes (167 main compounds) and 237 edges (208 
main reactions), involving 23 pathways in the same database (Fig. S5, Table S2).

The evidence shows that the network of biological systems has the module structure, indicating that 
some molecules in the network perform some types of biological function. We then divided the con-
structed metabolic network into 15 different modules by MCL when the maximum values of modularity 
and entropy were both achieved (Figs 4A, S6). Then, we computed the topological parameter for these 
modules by MCL to observe the structure differences among the 15 modules (Fig. 4B). The average num-
ber of neighbors ranged from 1.33 (threonine and phosphocholine modules) to 2.069 (glutamate mod-
ule), while the number of nodes ranged from 3 (phosphocholine and threonine modules) to 37 (glycine 
module). The network density was largely changed, from 0.054 (glycine module) to 0.667 (threonine and 
phosphocholine modules), and the network heterogeneity spanned from 0.354 (threonine and phospho-
choline modules) to 2.917 (glycine module), as well. Most of the modules did not have any multi-edge 
node pairs, except the tyrosine, glutamate, arachidonate, leucine, glycine ,urate and asparagine modules, 
which had 6, 5, 4, 3, 2, and 1 node pairs, respectively. The value of network heterogeneity increased with 
the number of nodes (R =  0.9699), indicating that the topological characteristics of modules became 
more and more diverse when more nodes were added.

Our study demonstrated that ischemic stroke is a network phenomenon. The ischemia-related meta-
bolic networks constructed here may be beneficial for disease classification and diagnosis and drug target 

Figure 2.  (A) Total ion current chromatography (TIC) of plasma samples derived from the sham group;  
(B) Total ion current chromatography (TIC) of plasma samples derived from the ischemia group; (C) Profile 
of HPLC chromatogram of serum fatty acids in ischemic rats; (D) Profile of HPLC chromatogram of serum 
amino acids in ischemic rats.
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Figure 3.  Comprehensive metabolomic, HPLC chromatogram of serum fatty acids and amino 
acids profiling of plasma samples from ischemic and sham-operated rats. (A) PCA score plots for 
comprehensive metabolomic data of the sham and MCAO rats (B) Bar plot of graphical index of separation 
(GIOS) of metabolomic profiling variables from the plasma samples of the sham and ischemia groups (C) 
Score plots of the PLS model of the sham and ischemia groups. The explained variance of each PC is shown 
in the corresponding diagonal cell (D) Bar plot of graphical index of separation (GIOS) of serum fatty acids 
from the samples of the sham and ischemia groups. (E) 3D score plot of the PLS model of the sham and 
ischemia groups (serum fatty acids). The explained variances are shown in brackets. (F) Bar plot of graphical 
index of separation (GIOS) of serum amino acids from the samples of the sham and ischemia groups (G) 
3D Score plot from the PLS model of the serum amino acids from the sham and ischemia groups. (H) 
Important features of serum amino acid variables identified by PLS-DA. The colored boxes on the right 
indicate the relative concentrations of the corresponding metabolites in the sham and ischemia groups.
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candidate identification. The metabolic network was characterized by a high intrinsic potential. Our 
study successfully established 15 cerebral infarction modules. Module division will help to rebuild the 
decreased cerebral state in the course of the disease to reduce the complexity of or to shrink the disease 
network without the loss of information.

Construction of connections in the modular map.  The existing connections in the 8 most closely con-
nected modules out of 15 modules in the center of the modular map were visualized by Cytoscape 
(Fig. 4C). We found that the glycine and glutamate modules and tyrosine and leucine modules connected 
on 5 and 3 edges between them, respectively; the glycine and serine module, serine and glutamate mod-
ule, and taurine and glycine module pairs each shared 2 edges (connections), respectively; however, the 
glycine and arachidonate module, arachidonate and linoleate module, arachidonate and serine module 
pairs each shared only 1 edge (connection), respectively. Although the tyrosine and leucine modules had 
3 connections between them, they appeared to be outside of this central network. The module struc-
ture in the network has self similarity, with individual modules connected to the nodes of the adjacent 
modules in the network by bottleneck or through an inter-modular hub, resulting in overlapping edges 
between modules. These results suggest that further identification of clear node bottlenecks will signifi-
cantly impact the effective screening of drug targets22.

Metabolites RT(min) m/z Actual mass Formula Fold

Creatine 1.33 132.0716 131.0695 C4H9N3O2 1.29↑ 

Uric acid 1.57 169.0268 168.0283 C5H4NO4N3 1.35↑ 

Phytosphingosine 0.97 318.2006 317.293 C18H39NO3 0.79↓ 

LysoPC(16:1) 16.58 494.3251 493.3168 C24H48NO7P 1.82↑ 

LysoPC(18:0) 21.53 524.3726 523.3638 C26H54NO7P 1.01↑ 

L-Valine 1.30 118.0863 117.0790 C5H11NO2 1.64↑ 

L-carnitine 1.28 162.1120 161.1052 C7H15NO3 1.40↑ 

L-acetylcarnitine 1.60 204.1218 203.1158 C9H17NO4 0.66↓ 

Glycerolphosphocholine(16:0) 18.37 497.3444 496.341 C8H20NO6P 1.38↑ 

13S-Hydroxyoctadecadienoic acid 21.95 297.2408 296.2351 C18H32O3 0.99↓ 

Tyr Val/Val Tyr 19.70 281.1496 280.1423 C14H20N2O4 1.28↑ 

6-hydroxysphingosine 18.70 316.2846 315.2773 C18H37NO3 1.93↑ 

Prosopinine 15.83 288.2533 287.2460 C16H33NO3 0.72↓ 

(3R)-3-isopropenyl-6-oxoheptanoic acid 19.70 185.1172 184.1099 C10H16O3 0.89↓ 

cis-4-Decenoic acid 21.77 171.1380 170.1307 C10H18O2 0.93↓ 

Eicosapentaenoyl Serotonin 23.15 461.3163 460.3090 C30H40N2O2 0.93↓ 

LysoPC(22:6(4z,7z,10z,13z,16z,19z) 17.32 568.3398 567.3325 C30H50NO7P 1.44↑ 

LysoPE(18:0/0:0) 17.05 482.3231 481.3168 C23H48NO7P 2.53↑ 

LysoPE(0:0/20:0) 19.85 510.3520 509.3481 C25H52NO7P 1.75↑ 

LysoPC(18:1(9z)) 19.07 522.3555 521.3481 C26H52NO7P 1.95↑ 

LysoPc(16:0) 18.37 496.3399 495.3325 C24H50NO7P 1.37↑ 

LysoPC(20:4) 17.40 544.3406 543.3325 C28H50NO7P 1.39↑ 

Table 1.   Potential biomarkers of ischemic stroke identified from comprehensive metabolomic profiling. 
Arrow indicates significantly up-regulated or down-regulated metabolites in the ischemia group compared 
with the sham group.

Fatty acid RT(min) Abbrev Formula m/z Fold

γ -linolenic acid 13.00 C18:3 C18H30O2 278.22458 1.21↑ 

Arachidic acid 14.57 C20:0 C20H40O2 312.3028 0.89↓ 

Palmitic acid 16.50 C16:0 C16H32O2 256.2402 1.39↑ 

Table 2.   Potential biomarkers of ischemic stroke identified from fatty acid profiles. Arrow indicates 
significantly up-regulated or down-regulated metabolites in the ischemia group compared with the sham 
group.
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Diverse metabolic modules based on similarity analysis.  Based on the pathway structure, the above 8 
modules had some overlapping nodes with a certain pathway from the same database. We evaluated 
the similarity between the pathway and the module by the vectorial angle method23 and sequenced the 
similarity between these 8 pathways and modules (Fig.  5A). The similarity values for the 8 modules 
were 87.5% (78% identical ratio and 7 overlapping nodes, Fig. S7H), 86.72% (76% identical ratio and 19 
overlapping nodes, Fig. S7C), 84.87% (73% identical ratio and 11 overlapping nodes, Fig. S7E), 78.33% 
(65% identical ratio and 9 overlapping nodes, Fig. S7G), 67.81% (51% identical ratio and 20 overlapping 
nodes, Fig. S7B), 63.94% (47% identical ratio and 22 overlapping nodes, Fig. S7A), 39.22% (23% identical 
ratio and overlapping nodes, Fig. S7F), and 9.13% (4% identical ratio and 2 overlapping nodes, Fig. S7D), 
respectively (Fig.  5A) (Table S3). It was revealed that these 8 modules not only held higher similarity 
dependent on increases in the overlap percentage but also preserved diverse metabolic homogeneities 
despite still having their own unique nodes. These results confirm that the modules in the network have 
the ability to be overlapped. Information exchange and transmission occur through the overlapping 
area in the disease network; this will be important for the further study of signal transduction, network 
cooperation and other behaviors in the metabolic network of cerebral infarction.

Hierarchical cross-talk among modules and pathways.  First, we described the number of convergent and 
divergent pathways corresponded to each module. We then re-entered the nodes of each module into a 
web-based metabolomics tool (MetPA) for significant pathway analysis and visualization. As a result, 5 
convergent pathways were identified in the glycine module (Fig. 5B), and 8 convergent pathways were 
identified in the glutamate module (Fig. 5C). Regarding the other modules, the serine, taurine, linoleate, 
arachidonate, tyrosine, leucine, and valine modules showed convergence in 7, 2, 2, 1, 1, 1, and 1 path-
ways, respectively. In contrast, 5 pathways, Met, GST, ArP metabolism and VLI and PTT biosynthesis 
could diverge into two modules. In total, 24 pathways converged or diverged into 9 modules based on 
the known databases summarized in Fig. 5D.

Then, we analyzed multiple pathway-related convergent and divergent modules. With the exception 
of 3 modules (taurine, tyrosine and arachidonate) other modules could converge or diverge into multiple 
pathways. For example, the glycine and glutamate modules converged into the ArP metabolism pathway, 
while the serine module diverged into 3 pathways, Met and GST metabolism and A-tRNA biosynthesis. 

Amino acid RT(min) Exact mass Relative peak area Formula Fold

Glutamic acid 7.661 147.0532 17.96268 C5H9NO4 1.38↑ 

Asparagine 10.704 132.0535 4.35813 C4H8N2O3 0.58↓ 

Serine 11.709 105.0426 86.39092 C3H7NO3 0.56↓ 

Glycine 14.557 75.032 77.44959 C2H5NO2 0.88↓ 

Threonine 18.055 174.1117 35.54111 C6H14N4O2 1.23↑ 

Taurine 20.966 125.1457 55.17722 C2H7NO3S 0.96↓ 

Tyrosine 23.886 181.0739 13.36174 C9H11NO3 0.65↓ 

Valine 26.357 117.079 116.29909 C5H11NO2 1.64↑ 

Ornithine 31.178 132.0899 79.29524 C5H12N2O2 0.63↓ 

Leucine 31.858 131.0946 246.61391 C6H13NO2 1.18↑ 

Table 3.   Potential biomarkers of ischemic stroke identified from amino acid profiles. Arrow indicates 
significantly up-regulated or down-regulated metabolites in the ischemia group compared with the sham 
group.

Pathway Total Expected Hits Impact

VLI biosyn 11 0.22 2 0.67

GST metab 32 0.64 4 0.53

PTT biosyn 4 0.08 1 0.50

TaH metab 8 0.16 1 0.43

Met Metab 9 0.18 2 0.40

A-tRNA biosyn 67 1.34 7 0.14

ArP metab 44 0.88 2 0.14

Tyr metab 42 0.84 1 0.14

Table 4.   Result for pathway analysis with MetPA.
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To further explore the role of these pathways in ischemia, we verified them using a data mining method. 
In addition, 3 of 8 pathways extracted from MetPA and 9 of 16 pathways identified in this study (total of 
50%) could be verified in the literature (Fig. 5D, Table S3). The module can be viewed as a subnetwork 
with a similar function that can include multiple pathways. Simple pathway analysis often neglects the 
natural organizing principle of the network. Given the complexity and the lacunas present in its struc-
ture, an operational alternative is to work with a simplified model network. Different levels of network 
comparison may uncover novel functions and disease-specific changes, thereby aiding drug design24.

Validation by ELISA and other independent experiments.  To verify the pathways and modules 
mentioned above, we selected 4 nodes from 2 pathways for ELISA to identify the variation between the 

Figure 4.  Module topological parameters and interactions. (A) Significant modules were defined by 
analysis of modularity and entropy. When values of modularity and entropy achieved vertex, 15 modules 
were defined. (B) Comparing the topological parameters of all modules by MCL method. (C) Visualizing the 
modular map by Metscape to observe the connections among 8 modules. Each color of the node represents 
a module, and the edge between them represents the interaction of nodes among the modules. According to 
different widths, these edges indicate 1, 2, 3 and 5 interactions, respectively. Outside this central map are the 
specific modules for each colored nodes, and the red nodes are the core nodes for the module.
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sham and ischemia groups. These nodes contained arachidonate from the arachidonic acid metabo-
lism pathway (Fig. 6A) and cystathionine, L-cysteine and pyruvate, glycine, serine, and threonine from 
the GST MP(Metscape) (Fig.  6B). The results of arachidonic acid by the two metabolic analysis methods 
(P =  0.6928) were consistent with those by ELISA (P =  0.6404); the GST MP(Metscape) was activated in the 
ischemic process, manifesting as an increase in pyruvate (P =  0.0024) by ELISA (Fig. 6C) and reductions 
in glycine (P =  0.0245), serine (P =  0.0055) and an increase in threonine (P =  0.0316) by metabolic anal-
ysis (Fig. 6D); the levels of cystathionine (P =  0.666), and L-cysteine (P =  0.8014) were not significantly 
altered.

Discussion
Brain ischemia is a process of delayed neuronal cell death, not an instantaneous event25. The develop-
ment of an ischemic event, whether silent or painful, represents the cumulative impact of a sequence 
of pathophysiological events26. In particular, biomarker discovery for the early diagnosis of ischemic 
stroke will provide the opportunity to modify lifestyle and permit timely pharmacological treatment. 

Figure 5.  Multiple dimensional analysis of the relationship between modules and pathways.  
(A) Comparing the nodes similarity between the 8 pathways and the 8 modules structure in Metscape. 
Based on different contributions of overlapping and non-overlapping nodes between modules and pathways, 
the corresponding similarity profiles could uncover this trend. (B,C) Pathways convergence in the glycine 
and glutamate modules, respectively. Different colors indicate different pathways in a module. A node with 
two or three colors indicates two or three pathways in the same node. (D) Modules divergence in known 
and unknown pathways. The significant modules are displayed in the middle line, with 8 known pathways 
(shown in Fig. 4B) and 16 unknown pathways located in the left and right sides, respectively. Modules that 
can be verified in literature are highlighted in yellow. The PTT biosyn pathway was found to diverge into 
glycine and tyrosine modules.
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Figure 6.  Validated metabolites, pathways and modules using independent experiments. (A) Box 
plot comparing the concentrations of arachidonic acid (sham/ischemia groups) by metabolic analysis 
and ELISA test. n =  3. (B) Map of the GST Metab on KEGG. (C) Box plot comparing the concentrations 
of cystathionine, L-cysteine and pyruvate (sham/ischemia groups) by ELISA test. n =  3. (D) Box plot 
comparing the concentrations of glycine, serine, threonine (sham/ischemia groups) by metabolic analysis. 
n =  3. Data are presented as mean ±  SEM. *P <  0.05, **P <  0.01 as determined by Bonferroni corrected t 
tests. n =  3.
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In this study, comprehensive plasma metabolic profiling was performed with UHPLC-Q/TOF-MS and 
multivariate statistical analysis. As a result, 22 specific metabolites that might be helpful to discover 
potential individuals requiring treatment for cerebral ischemia were identified. We also conducted serum 
fatty acid and amino acid profiling, respectively, and found 3 fatty acids and 10 amino acids that might 
be associated with ischemic cascade. As the comprehensive plasma metabolite profiling usually reveals 
abundant chemicals in biological samples, it cannot detect the chemicals at low concentrations, to some 
extent. Based on comprehensive plasma metabolic profiling, we found that some amino acids and fatty 
acids might be related to ischemia, but such profiling cannot provide information on metabolites other 
than the targets. Thus, we combined the untargeted and targeted metabolomic method, and identified 
35 metabolites that were potential ischemic stroke biomarkers. The analyses provided a differential met-
abolic profile between ischemic and sham-operated rats, which may be correlated with metabolic phe-
notypes. In addition to the central nervous system and anti-inflammatory functions, most metabolites 
have some connections to cerebral ischemic stroke progression.

Newly discovered metabolites may deepen our knowledge of the metabolic mechanism of 
ischemia.  It has been shown that creatine supplementation has some positive effects on the central 
nervous system27, and creatine-derived compounds may reproduce the neuroprotective effects of creatine 
while better crossing the neuronal plasma membrane and the blood-brain barrier28,29. An increased uric 
acid level was found to be associated with a decreased risk of poor outcomes among 3,231 patients with 
acute stroke30 and silent brain infarction31,32. Prosopinine has an impact on the central and autonomic 
nervous systems33. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes34, 
and can induce caspase-3-dependent endothelial cell death35,36 and atherosclerotic plaque inflammation 
in humans37. The administration of acetyl-L-carnitine (ALCAR) attenuates neuronal damage, prevents 
apoptosis, and improves the energy status in hypoxic stress via mechanisms that are less understood38. 
Pre-treatment with chronic ALCAR significantly reduced the infarct size39, and post-ischemic treatment 
with ALCAR improved early clinical recovery and prevented significant weight loss in rat models of 
focal cerebral ischemia40. Gamma-linolenic acid induces apoptosis and lipid peroxidation41 and is also 
thought to be an anti-inflammatory fatty acid42. Neurochemical monitoring has indicated that hypo-
thermia decreases glutamate, glycerol, lactate, and pyruvate in the “tissue at risk” area of the infarct 
but not within the infarct core43. Arachidonic acid metabolism plays specific roles in the regulation of 
cerebral blood flow (CBF)44,45, the modulation of vascular permeability, and the modulation of excitatory 
and inhibitory neurotransmitter release46,47. Previous studies of arachidonic acid metabolism in exper-
imental cerebral ischemia and reperfusion48–50 have shown that the accumulation of fatty acids, mainly 
arachidonic acid, due to the breakdown of structural membrane lipids leads to significant variations 
in prostaglandin (PG) concentrations in brain tissues48,51. Once free, arachidonic acid undergoes both 
enzyme-independent and enzyme-mediated oxidative metabolism, resulting in the formation of a num-
ber of biologically active metabolites, which themselves contribute to pathological stroke outcomes52. 
The relationship between dietary omega-3 fatty acids and the risk of developing CVD began to emerge 
in the late 1970s53,54. Moreover, these results suggest that glycerophospholipid metabolism, particularly 
phosphatidylcholine biosynthesis, plays an important role in ischemic stroke. Excessive glutamate release 
and impaired uptake occur as part of the ischemic cascade and are associated with stroke55. The serine 
metabolism pathway might be associated with the incidence of cerebral ischemia56. Taurine crosses the 
blood–brain barrier and has been implicated in a wide array of physiological phenomena57. In conclu-
sion, our study found that the levels of 35 metabolites, most of which are reported to relate to stroke 
or to have neuroprotective functions, were significantly changed after the onset of ischemic stroke. This 
result differs from that reported by Yun Wang et al.58. These 35 metabolites can be considered as potential 
biomarkers of cerebral infarction and could be beneficial for early stage disease risk identification, early 
diagnosis, pathological mechanism research and drug target screening.

Network and modular analyses may contribute to future metabolic research.  Complex dis-
eases or complex physiological processes have been described as network phenomena for quite some 
time59–61. The disease-related molecular networks are no doubt helpful to predict novel disease biomark-
ers by using network-assembled bio-data, including novel disease-related genes, proteins or metabolites. 
In this study, we used MetPA and Metscape software to analyze stroke-related pathways and to construct 
a compound network map for further studies. Among 24 pathways, 12 pathways were shown to be 
related to cerebral ischemia, and the other 12 had never been previously reported.

Metabolic pathways are a series of chemical reactions occurring within a cell; each pathway is modi-
fied by a series of chemical reactions and is mainly related to a certain biological function. A module is 
the minimum functional unit in a pharmacological profile. Disease can be viewed as a breakdown of the 
robustness of normal physiological systems and the re-establishment of robust and potentially progressive 
disease62. We define an active unit as a module to describe the sub-networks. Pathway analysis of central 
catabolism is feasible to assess network properties such as flexibility and functionality. Metabolic pathway 
analysis is important for assessing inherent network properties in reconstructed biochemical reaction 
networks63. However, most concept for pathway analysis rely on one common framework such as ele-
mentary flux modes and extreme pathways. In fact, the metabolic network can be subdivided into several 
small, highly connected functional units, termed metabolic modules. Each module can be observed as a 
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discrete entity of several elementary components and performs an identifiable task, separable from the 
functions of other modules. Recent studies have found that metabolic networks are characterized by a 
high intrinsic potential modularity. Network size markedly determines modular organization; the larger 
the network, the greater the modularity. Moreover, modularity is a driving force for the self-organization 
of networks and is a basis for functional adaptation64,65. The unique modular structure facilitates partic-
ipation in both system-wide and pathway-specific regulatory processes66. In our study, we successfully 
built a network for cerebral ischemia and divided the network into 15 modules. Meanwhile, we verified 
these results by ELISA, confirmed these modules by testing the central points, confirmed the consistency 
of the ELISA and metabolic analysis results by testing the same compound independently, and confirmed 
the existence of these significant pathways by testing more points in the same pathway.

The significance of this research includes the following: (1) we creatively integrated the non-targeted 
and targeted metabolomic results to detect all of the potential biomarkers that may be useful for the 
early diagnosis of ischemic stroke; (2) the network map provided a new perspective from the viewpoint 
of abnormal metabolites for the overall study of ischemic stroke and offered a new method for further 
studies of the stroke-related network; (3) in addition to constructing a complicated network map, we 
also provided a method (modular pattern) to simplify the map by selecting the more closely connected 
edges and nodes to build a module map for stroke; and (4) we discovered 12 new pathways based on 
modularity of the metabolic network and found that most of the new pathways were related to stroke, 
indicating that more modules of the network may be somewhat related to ischemia. Further studies will 
be required to shed more light on the actual contribution of these metabolic pathways and modules that 
are related to cerebral ischemia.

In brief, our study found glutamic acid, serine, asparagine, glycine, taurine, tyrosine, valine, ornithine, 
gamma-linolenic acid, arachidonic acid, palmitic acid, creatine, uric acid, phytosphingosine, L-carnitine, 
glycerophosphocholine, lysoPE (18:0/0:0) and lysoPC (18:1(9z)) may be potential biomarkers for ischemic 
stroke. These metabolite biomarker can be used for early stage disease risk identification, early diagnosis, 
pathological mechanism research and drug target screening. Additionally, the result indirectly confirmed 
that the module structure in the network has self-similarity and overlapping ability. The module can be 
viewed as a sub-network with a similar function that includes multiple pathways. Different levels of net-
work comparison may uncover novel functions and disease-specific changes, thereby aiding drug design.
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