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Abstract
We consider evolution of a large population, where fitness of each
organism is defined by many phenotypical traits. These traits result from
expression of many genes. Under some assumptions on  fitness we prove
that such model organisms  are capable, to some extent, to recognize the
fitness landscape. That fitness landscape learning sharply reduces the
number of mutations needed for adaptation. Moreover, this learning
increases phenotype robustness with respect to mutations, i.e., canalizes
the phenotype.  We show that learning and canalization work only when
evolution is gradual. Organisms can be adapted to  many constraints
associated with a hard environment, if that environment becomes harder
step by step. Our results explain why evolution can involve genetic changes
of a relatively large effect and why the total number of changes are
surprisingly small.
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1 Introduction
A central idea of modern biology is that evolution proceeds 
by mutation and selection. This process may be represented 
as a walk in a fitness landscape leading to fitness increase and 
slow adaptation1. According to classical ideas this walk can 
be considered a sequence of small random steps with small  
phenotypic effects. Nevertheless, there is a limited amount of  
experimental support for this idea2 and some experimental  
evidence that evolution can involve genetic changes of a  
relatively large effect and that the total number of changes are 
surprisingly small3. Another intriguing fact is that organisms 
are capable of making adaptive predictions of environmental  
changes4.

To explain those facts new evolutionary concepts have been 
suggested (see the review by 5 and references therein). The 
main idea is that a population can “learn” (recognize) fitness  
landscapes5–7. The approach developed in these works is a gen-
eralization of ideas from machine learning in which learning 
(regression to data) is viewed as selection and generalization  
(interpolation or extrapolation) is viewed as adaptation.

A mathematical basis for investigation of evolution learning 
problems has been developed by 8. However, this work uses a  
simplified model, where organisms are represented as Boolean 
circuits seeking an “ideal answer” to environmental challenges.  
These circuits involve N

g
 Boolean variables that can be inter-

preted as genes, and the ideal circuit answer maximizes the fitness.  
A similar model was studied numerically by 7 to confirm the 
theory of “facilitated variation” explaining the appearance of 
genetic variations which can lead to large phenotypic ones. In 
the work by 9 a theory of the evolution of these Boolean circuits 
was advanced. It was shown that, under some conditions—
weak selection, see 10—a polynomially large population over  
polynomially many generations (polynomial in N

g
) will end 

up almost surely consisting exclusively of assignments, which  
satisfy all constraints. This theorem can shed light on the  

problem of the evolution of complex adaptations since that  
satisfiability problem can be considered as a rough mathematical 
model of adaptation to many constraints.

In 6 it is shown that, in the regime of weak selection, population 
evolution can be described by the multiplicative weight update 
algorithm (MWUA), which is a powerful tool, well known in  
theoretical computer science and a generalization of such famous 
algorithms as Adaboost and others11. Note that in 6 infinitely large 
populations are investigated whereas the results of 9 hold only  
for finite populations and take into account genetic drift.

Evolution Computation(EC) problems are considered recently 
by many papers12–16 mainly for artificial test fitness functions  
like OneMax or LeadingOnes (for an overwiew of EC problems, 
see 17).

In this paper, we investigate adaptation and the fitness  
landscape learning problem for more realistic fitness function 
This fitness can model adaptation for insects and connected with a  
fundamental hard combinatorial problem: K-SAT.

The main results can be outlined as follows. We show that, in a  
fixed environment, genes can serve as learners in the machine  
learning sense. Indeed, if an organism has survived for a long 
period, this fact alone constitutes important information, which 
can be used. The biological interpretation of this fact is simple: 
if a population is large enough and mutations are sufficiently 
rare, deleterious mutations are eliminated by purifying selection.  
Hence, those non-neutral mutant alleles which have become 
fixed in natural populations will, with probability close to 
1, be adaptive and cause a positive increment of fitness (see  
Theorem 3.1 and Theorem 3.2 in Subsection 3.1 and Subsection 
3.2). We obtain mathematical results, which allows us to estimate 
the reduction of mutation number due to that learning landscape 
procedure. Learning can sharply reduce the number of mutations 
needed to form a phenotypic trait useful for adaptation that is  
consistent with experimental data mentioned above (see 3).

Another important result is as follows. We estimate the accuracy 
of fundamental Nagylaki equations6,10 for a realistic population  
model, where the population size is bounded and a non-zero  
mutation rate is taken into account (in the case of asexual  
reproduction). Those accuracy estimates are fulfilled for all  
possible values of mutation rates and population sizes.

2 Model
In this section, we describe our model and mathematical  
approach.

2.1 Genome
We assume that the genotype can be described by Boolean  
strings of length N

g
, where N

g
 is the number of genes. Then

 	   { }1 2( , ,..., ) , 0,1 , ,
Ng

Ng is s s s s S s S= ∈ = ∈ 	   (2.1)

where s
i
 = 1 means that gene i is activated (switched on) and  

s
i
 = 0 means that it is repressed (switched off). Correspondence 

            Amendments from Version 1

To respond to the reviewers’ comments, in this revision, we 
extended the discussion. For the key point that the network 
modifies the thresholds by a simply feedback mechanism we 
point to regulation via enhancers.

In order to explain in more detail the regulation we added a new 
Section 2.5 on “Gene regulation networks”. Two new figures 
(Figure 1 and Figure 2) show results of numerical simulations 
based on the ``strong selection weak mutation’’ (SSWM) 
algorithm.

In the discussion of Theorem 3.2 we added a paragraph on rare 
mutants and giving some intuitions towards the proof of  
Theorem 3.2 as it is based on estimates of the accuracy of the 
Nagylaki equations. For the main Lemma 4.5 for the proof of 
Theorem 3.2. we add a transparent interpretation.

Additional references pointed out by the reviewers are 
incorporated into version 2 of the paper.

Any further responses from the reviewers can be found at the 
end of the article

REVISED
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between Boolean hypercube and genotypes is considered for  
example in 12.

2.2 Phenotypic traits
Although phenotype is controlled by genes, it is also influenced 
by environmental conditions and various epigenetic processes. 
In this paper, we suppose that phenotypic traits are controlled 
by genotype only. We consider levels f

j
 of expressions of those 

traits as real variables in the interval (0, 1). Then the vector  
f = (f

1
, . . . , f

Nb
) can be considered to represent the organismal  

phenotype. We suppose that

		  ( ), 1, , ,j j bf f s j N= = … 	                    (2.2)

where f
j
 ∈ (0, 1) is a real valued function of the Boolean string  

s, the genotype.

Only a part of s
i
 is involved in f

j
. Namely, for each j we have a  

set of indices K
j
 = {i

1
, i

2
, . . . , i

nj
} such that f

j
 depends on s

i
 with  

i ∈ K
j
, so that

…
1 2

( ) ( , , , ),
j

j j ni i if s f s s s=

where i
l
 ∈ K

j
 and n

j
 is the number of genes involved in the  

control of the trait expression. 

The representation of phenotype by the quantities f
j
 is suggestive  

of quantitative traits because the f
j
 are real valued. The limit-

ing values of 0 or 1 suggest another interpretation, however, 
in terms of cell type. Multicellular organisms consist of cells of  
different types. One can suppose that the organismal pheno-
type is defined completely by the corresponding cell pattern. The  
cell type j is determined by morphogenes, which can be identi-
fied as gene products or signaling molecules that can change  
cell type (or genes that code for signaling molecules that can  
determine cell types or cell-cell interactions and then finally  
the cell pattern). The morphogene activity is defined by (2.2).

We further suppose:

Assumption M. Assume activities f
j
 have the following properties.

The sets K
j
 are independent uniformly random subsets of  

S
g
 = {1, . . . N

g
}

	    … …1, , , 1, , .,{ }
j l jgj ni iK i S l n= ∈ = 	   (2.3)

We denote the total number of genes involved in regulation of  
all f

j
 by N

r
, where .j brN n KN= ≤∑

Assumption M implies that the genetic control of the pheno-
type is organized, in a sense, randomly, and that only a portion 
of the full set of genes controls phenotypic traits. That modu-
larity of gene control is well known from experimental data  
(see 18, 19) and for evolution computation problems it was  
studied, for example, in 16.

Consider an example, where the assumption M holds, where we 
have a saturated expression, inspired by earlier work20,21. Let

                              
1

( ),
g

j jj

N

ii
i

f w s hσ
=

= −∑                     (2.4)

where j = 1, . . ., N
b
. Here σ (z) is a sigmoidal function of real  

z such that

              ( ) 1, ( ) 0, ( ) 0z zσ σ σ′+∞ = −∞ = > ∀               (2.5)

and w
ij
, h

j
 are some coefficients (their meaning will be explained 

below). As an example, we can take σ (S) = (1 + exp(−bS))−1, 
where b > 0 is a sharpness parameter. Note that for large b this  
sigmoidal function tends to the step function and for b = +∞ 
our model becomes a Boolean one. The parameters h

j
 defines  

thresholds for trait expression20. The relation (2.4) can be  
interpreted as a simple mathematical model for quantitative trait 
locus (QTL) action.

To understand the role of h
j
 consider a trait f

j
 and suppose 

that for a well adapted organism f
j
 ≈ 1. Let, for simplicity, w

ij
 

take the values 1, 0, or −1. Then the parameter h
j
 defines how 

many genes involved in the control of the f
j
 expression should 

be activators and how many should be repressors. Let the  
numbers of activator and repressor genes be jn±, respectively.

Then fj ≈ 1 if .j j jn n h+ −−   

One can suppose that h
j
 describes a direct influence of environ-

ment on phenotype, such as stress, that can exert epigenetic 
effects. In Section 2.6 using data from 22 we will show that the 
model defined by (2.4) are capable to describe main topological 
characteristics of really observed fitness functions in the case of  
mimicry, camouflage and thermoregulation for insects.

Let us introduce the matrix W of size N
b
 × N

g
 with the entries w

ij
. 

The coefficients w
ji
 determine the effects of terminal differentia-

tion genes (see 23), and hence encodes the genotype-phenotype 
map. We assume that the coefficients w

ji
 are random, with the 

probability that w
ji
 > 0 or that w

ji
 < 0 is β /2N, where β > 0 is a 

parameter. This quantity β << N defines a genetic redundancy,  
i.e., averaged numbers of genes that control a trait. Note that 
then large β  1 one has n

j
 < 4β with the probability Prβ, which 

is exponentially close to 1: Prβ > 1 – exp(−0.1β), thus, the  
number n

j
 are bounded.

2.3 Fitness
We know little about the details of how fitness relates to the 
phenotype of multicellular organisms, and for that reason  
classic neo-Darwinian theory takes fitness to be a function of 
genotype. Some models which take account of epistasis have 
been proposed24. The random field models assign fitness values 
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to genotypes independently from a fixed probability distribution.  
They are close to mutation selection models introduced by 25, 
and can be named House of Cards (HoC) model. The best known 
model of this kind is the NK model introduced by Kauffman 
and Weinberger26, where each locus interacts with K other 
loci. Rough Mount Fuji (RMF) models are obtained by com-
bining a random HoC landscape with an additive landscape  
models27. In evolution computations (EC) some artificial fitness  
models were used, for example OneMax and Leading Ones  
to test evolution algorithms, see for example15.

In this work, we use the classical approach of R. Fisher by intro-
ducing an explicit representation of phenotype, f, and allow it 
to determine fitness through interaction with an environment  
b. That is, we assume that the phenotype is completely deter-
mined by the phenotype trait expression, and thus the fitness  
depends on the genotype s via f

j
.

We express the relative fitness F and its dependence on  
environment b via an auxiliary function W via the relation

                            ( , ) exp ( ( , )),FF s b K W s b=                             (2.6)

where K
F
 is a positive constant and b = (b

1
,..., b

Nb
) is a vector 

consisting of coefficients b
j
, respectively. Below we refer to  

W as a fitness potential, and we assume that

                                
1

( , ) ( ).
b

j j
j

N

W s b b f s
=

=∑                                 (2.7) 

Sometimes, if the parameter b is fixed, we shall omit the  
corresponding argument in notation for W and F.

We consider fitness as a numerical measure of interactions 
between the phenotype and an environment. For a fixed environ-
ment, this idea gives us the fitness of classical population genet-
ics. A part of the fitness, however, depends on the organism 
developing properly and for now we represent it as independent 
of the environment, although we are aware that this is not always 
the case. Note that some coefficients b

j
 may be negative and 

others may be positive, and that the model (2.7) can describe  
gene epistatic effects via dependence of f

j
 on s if f

j
 are nonlinear 

in s.

The expression (2.7) can serve as a rough approximation of the 
fitness function in the case of insects such as grasshoppers or 
fruit flies. In fact, important factors, which determine insect sur-
vival, are thermoregulation, mimicry and camouflage levels18,22,28. 
All those factors depend on colour pigmentation pattern.  
Blackwhite pigmentation patterns can be roughly described 
by vectors f = (f

1
, f

2
,..., f

Nb
), where f

j
 ≈ 1 and f

j
 ≈ 0 mean that the 

cell j is black, or white, respectively, Then thermoregulation  
depends on .jj

f∑  The mimicry level can be approximately defined 
by expression *

j jj
f f−∑ , where f

*
 is a target pattern correspond-

ing to an insect to mimic. Colour patterns can be also described  
by classical RGB formalism.

The representation of the fitness as a sum of terms (2.7) is of 
course a rough approximation; however if assumption M holds 

that representation is consistent with important observed facts. 
First, mutations have been identified that alter one part of the 
pigment pattern without affecting any other. This independence  
of different pattern parts can be explained by the modular organi-
zation of the genetic regulation that controls pigmentation. In 
the course of evolution, different aspects of the pigment pattern 
have clearly evolved independently of each other18. Second,  
the topology of the fitness landscapes was studied in 22 by field 
experiments in the case of insect mimicry. Main conclusions are 
as follows. A number of studies of fitness landscapes in natu-
ral populations have demonstrated low fitness of intermediate  
phenotypes, i.e., existence of valley in the fitness landscape. It 
is found22 that natural selection promotes genetic architecture  
preventing the expression of intermediate phenotypes. Close  
fitness peaks are separated by ridges, favouring colour pattern  
switches and allowing drift from local peaks.

In Section 2.6 we will show that the fitness model defined  
by (2.4) and (2.7) have those topological properties.

2.4 Population dynamics model
For simplicity, we consider populations with asexual reproduction. 
(Although a part of the results remain valid for sexual repro-
duction, as we discuss at the end of this subsection). We choose  
initial genotypes randomly from a gene pool and assign them to 
organisms. This choice is invariant with respect to the popula-
tion member, i.e,. the probability to assign a given genotype s to  
a member of the population does not depend on that member.

In each generation, there are N
pop

(t) individuals, the genome of 
each of which is denoted by s(t), where t = 0, 1, 2,... stands for 
the evolution step number). Following the classical Wright-Fisher  
ideas, we suppose that generations do not overlap. In each genera-
tion (i.e., for each t), the following three steps are performed:

1.   �Each individual s at each evolution step can mutate  
with probability p

mut
 per gene;

2.   �At evolution step t each individual with a genotype s 
produces k progeny, where k is a random non-negative  
integer, distributed according to the Poisson law

                                     exp( ),
!

k

k

q
P q

k
= −                                  (2.8) 

     where q = F(s) is the fitness of that individual;

3.   �To take into account ecological restrictions on the popu-
lation size, we introduce the maximal population size 
N

popmax
. If N′(t) > N

popmax
, where N′(t) is the number of 

progeny produced by the population at step t, we kill  
randomly selected individuals in a population-dependent  
manner. The probability of the death of an individual is 
given by p

kill
(N′) = 1 − (N

popmax
/N′(t)). If N′(t) ≤ N

popmax
, we 

do nothing. We refer to this as the “massacre procedure.”

Conditions 1 and 2 imply that mutations in the genotypes cre-
ate a new genetic pool and then a new round of selection starts. 
Condition 3 expresses the fundamental ecological limitation 
that all environments can only support populations of a limited 
size. If N

popmax
  1 then by (2.8) and the Central Limit  
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Theorem one can show, under some additional conditions,  
(see Section 4) that fluctuations of the population size are small, 
and thus the population is ecologically stable and N

pop
(t) ≈ N

popmax
.

In the limit case of infinitely large populations we will write 
the discrete dynamical equation for the time evolution of the  
frequency X(s, t) of the genotype s in the population as

         1
0( , 1) ( ) ( , ) ( ), ( ,0) ( ),X s t F t X s t F s X s X s−+ = =           (2.9) 

where F(t) is the average fitness of the population at the moment  
t defined by

                              
( )

( ) ( , ) ( ),
S ts

F t X s t F s
∈

= ∑                             (2.10) 

where S(t) is the set of genotypes existing in the population 
at time t (the genetic pool) and X(s, t) = N(s, t)/N

pop
(t) is the  

frequency of the genotype s. Here N(s, t) denotes the number of  
the population members with the genotype s at the step t.

The equations (2.9) do not take mutations into account. They 
only describe changes in the genotype frequencies because 
of selection at the t-th time step. The same equations govern  
evolution in the case of sexual reproduction in the limit of weak  
selection6,10. Note that for an evolution defined by (2.9), the  
average fitness F(t) defined by (2.10) satisfies Fisher’s theorem,  
so that this function increases at each time step t: F(t + 1) ≥ F(t).

2.5 Gene regulation network
In this section, we follow ideas of the classic paper29: the model 
should include a regulatory network, which evolves itself.

Regulatory genes as well as environmental factors, such as  
temperature, can influence the trait expression. This effect can 
be realized via thresholds hj (we shall describe it below), or via  
a regulation of coefficients wij (see 30). In fact, these  
approaches are similar for sharp sigmoidal functions σ that are  
close to step functions, as can be shown by ideas from 31.  
Consider the expression

                                    1

Ng

i ij j j
i

S w s h
=

= −∑
                          

(2.11)

involved in relation (2.4). Suppose following 31 that wij take the 
values γ, 0 or –γ, where γ is a parameter, which can be regulated. 
Let hj  γ  be fixed.

Assume that at an evolution step we have Si > dS, where  
dS > 0 is a parameter, which is more than γ. According to our  
Theorems this fact indicates, that for a well adapted organism 
the trait fj(s) ≈ 1 and the corresponding coefficient bj = 1. On the  
contrary, if Si < –dS, then one can expect that bj = –1 and fj(s)  
must be 0.

In the both cases, we can regulate the trait expression by  
a feedback so that whenever Si attains a critical level, i.e., a trait 
is well expressed, then γ should be increased. In our numerical 

simulations we use an alternative model, where we change hj.  
The alternative model, which is used in our numerical simula-
tions, can be described as follows. We suppose that depending on  
activity of some regulatory genes or proteins (such as Hsp90),  
the threshold value can take three values ( )

ih − , ( )
ih +  and (0)

ih  such 
that

             

( ) ( ) (0), , 0,i i ih hh D h D h− +≤ − ≥ ≈
   

(2.12)

where Dh > 1 is a large parameter that defines the number of  
genes involved in trait specification (see Subsection 2.2). Thus,  
hj can take large negative or positive values, and also a neutral  
value close to 0. The feedback can be described as follows:  
if Si > 0 is large enough and hi is small, then hi = –Dh; if  
Si < 0 and iS  is large enough and hi is small, then hi = Dh;  
otherwise, we do not change hi.

In our simulations, each ∆T evolution steps we modify hi from 0  
to –Dh or Dh for the trait with the maximal value iS .

Such a regulation produces a good adaptation even when the  
number of genes is essentially less than the number of the traits. 
The plot in Figure 3 shows a difference between an evolution  
without any regulation and with the regulation by (2.12)  
described above.

However, the evolution of gene regulation via hi has an  
advantage: it makes phenotype more robust. In fact, the traits  
with large ih  are non-sensitive with respect to mutations. The  
effect produced by this robustness is shown on Figure 1.

This regulation is even more effective, if we consider the  
modular evolution, following the recent paper32. Indeed, bio-
logical systems are characterized by a high degree of modularity. 
This modularity allows biological systems to vary only in a small 
subset of traits at each evolution round. Figure 2 shows an effect  
of this modularity. We consider a toy example, where a system 
with only 10 genes should be adapted to 200 constraints. Without  
regulation, we have no chances to make an adaptation (only 
about 10 traits are correctly adapted, see the green curve). It is  
a consequence of a formidable pleiotropy (20 traits on 1 gene). 
However, if at each evolution stage an organism should be  
adapted to 4 traits whereas the remaining ones are made robust 
by high ih , then already 66 traits are correctly expressed after  
20000 evolution steps. Note that the learning plays a key role  
in the regulation. In fact, the sign of the regulation threshold  
hi depends on the sign of the corresponding coefficient bi, and  
the knowledge of that sign gives us important information on the 
fitness landscape.

2.6 Adaptation as a hard combinatorial problem
Adaptation (i.e., maximization of fitness in a changing environ-
ment) is a very hard problem since over evolutionary history we 
observe the coevolution of many traits accompanied by changes 
in many genes. In its general context, this is a problem in the 
theory of macroevolution, which in general requires the integra-
tion of population genetics and developmental biology for its full  
understanding. There are two key components of this problem. 
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Figure 1. This graph illustrates a difference between the adaptation for evolution without evolution of gene regulation via  
threshold (the red curve) and with that evolution by 2.12 (the green curve). The parameters are Ng = 50, M = 300, the mutation rate  
pmut = 0.01, γ = 1 and K = 4. Non-zero coefficients wij are random numbers distributed according to the standard normal law. The initial 
genome is a random binary string, where each value is 0 or 1 with probability 1/2. The coefficients bi are either 1 or –1, where the  
probability of 1 is pb = 0.8.

First, development is itself a dynamical process operating over 
time. Second, there is a combinatorial component of development 
wherein different combinations of gene must be expressed in 
different cell types. This combinatorial aspect of the problem 
means that straightforward theoretical methods of considering the  
relationship between gene expression and a changing environ-
ment that have been very successful in single celled organisms33 
cannot be applied to metazoa. In this work, for the sake of  
tractability, we focus on the combinatorial aspect of the prob-
lem and neglect developmental dynamics. Even at the highly  
simplified level of our model, adaptation is a hard computational  
problem, as we now demonstrate.

Consider the case, where f
j
 are defined by relations (2.4) and  

assume that

i) σ is the step function;

ii) b
j
 > 0.

As a consequence of the second assumption, F attains its maxi-
mum for f

1
 = 1, f

2
 = 1,..., f

Nb
 = 1. Let us show that, even in this 

particular case, the problem of the fitness maximization with 
respect to s is very complex. In fact, for a choice of h

j
 it reduces 

to the famous NP-complete problem, so-called K-SAT, which 

has received a great deal of attention in the last few decades  
(see 34–39). The K-SAT can be formulated as follows.

K-SAT problem. Let us consider the set V
n
 = {s

1
,..., s

n
} of 

Boolean variables s
i
 ∈ {0, 1} and a set C

m
 of m clauses. The 

clauses C
j
 are disjunctions (logical ORs) involving K literals 

z
i1
, z

i2
,..., z

ik
, where each z

i
 is either s

i
 or the negation si of s

i
. 

The problem is to test whether one can satisfy all of the clauses  
by an assignment of Boolean variables.

Cook and Levin35,34 have shown that the K-SAT problem is NP-
complete and therefore in general it is not feasible in a reasona-
ble running time. In subsequent studies—for instance, by 36—it 
was shown that K-SAT of a random structure is feasible under the  
condition that N

b
 < α

c
(K)N

g
, where α

c
(K) ≈ 2K log 2 for large K.

The set C
K
 of solutions of random K-SAT has a nontrivial struc-

ture depending on parameter α = N
b
/N

g
37,39. For sufficiently small 

α < α
g
(K), where α

g
(K) ≈ 2K log(K)/K is some critical param-

eter, the set C
K
 forms a giant cluster, where nearest solutions are  

connected by a single flip and one can go from a solution to 
another by a sequence of single flips (pointed mutations)39.  
For α ∈ (α

g
, α

d
), where α

d
(k) < α

c
 is another critical value,  

solutions form a set of disconnected clusters. The local search  
algorithms do not work in the domain α > α

g
.
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Figure 2. This graph shows that the modular evolution of gene regulation allows adaptation with a few genes, in that case Ng = 10 
and the number of traits M = 200. This means that we have a very big pleiotropy. Evolution proceeds in 20000 steps. The green curve 
corresponds to random walk with fixed small h without any evolution of gene regulation. We observe that with 10 genes 9 traits are correctly 
expressed. If evolution goes into 50 rounds then 66 traits are correctly adapted, and if evolution goes in 190 rounds then 129 traits are 
correctly adapted (the red curve). In that last case, at each step we make adaptation to at most one trait. Parameters are as follows. The 
mutation rate pmut = 0.01 and K = 5. Non-zero coefficients wij are random numbers distributed according to the standard normal law. The initial 
genome is a random binary string, where each value is 0 or 1 with probability 1/2. The coefficients bi are either 1 or –1, where the probability 
of 1 is pb = 0.8.Thus such mutations produce non-viable organisms.

Probably, for evolution context K-SAT was applied first in 40,  
where it was used for an investigation of speciation problem.

To see the connection of our model with K-SAT, consider  
equation (2.4) supposing that w

ij
 ∈ {1, 0, −1} and h

j
 = −C

j
 + 0.5, 

where C
j
 is the number of negative w

ji
 in the sum 

1
.

N

j j

g

iii
S w s

=
=∑  

We set m = N
b
 and n = N

g
. Under this choice of h

j
, the terms 

σ(S
j
) can be represented as disjunctions of literals z

j
. Each literal 

z
j
 equals either s

j
 or s j

, where s j
 denotes negation of s

j
. To  

maximize the fitness, we must assign s
j
 such that all disjunctions 

will be satisfied. If we fix the number n
j
 of the literals participating 

in each disjunction (clause) and set n
j
 = K, this assignment  

problem is precisely the K-SAT problem formulated above.

Reduction to the K-SAT problem is a transparent way of rep-
resenting the idea that multiple constraints need to be satisfied. 
The number K defines the gene redundancy and the probabil-
ity of gene pleiotropy. Remind that pleiotropy occurs when one 
gene influences two or more seemingly unrelated phenotypic 
traits. The threshold h

j
 and K define the number of genes which 

need be flipped in order to attain a high expression of the trait f
j
.  

Note that gene pleiotropy is a fundamental characteristics41, 
which is studied for real organisms only recently (see 19). We 
can compare experimental observations and consequence of 
model (2.4), which is a generalisation of K-SAT (compare plot 
Figure 3 and plots on Figure 1 in 19). So, we can fit our model  
parameters using real data. Moreover, we can check validity of  
our model by the following arguments.

We note that, in the case of giant cluster formation, the topologi-
cal properties of the solution set C

K
, mentioned above, outline 

the properties of really observed fitness landscapes22: existence 
of many peaks, valleys and ridges connecting peaks. Namely, 
existence of many solutions of K-SAT, when a giant cluster 
exists, means that the landscape has a number of peaks separated  
by valleys. On the other hand, connectance of solutions within 
the giant cluster can be interpreted that there exist ridges that  
connect peaks.

Note that there are important differences between K-SAT in The-
oretical Computer Science and fitness maximization problems. 
First, the signs of b

j
 are unknown for real biological situations 
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Figure 3. Frequency distributions of degree of gene pleiotropy for model (2.4) with the parameters Ng = 4000, β = 4, h = 0, Nb = 3000. 

since the fitness landscape is unknown. Second, our adaptation 
problem involves the threshold parameters h

j
 (see (2.4)). In con-

trast to K-SAT, in our case the Boolean circuit is plastic, because  
the h

j
 are not fixed.

If the b
j
 are unknown, the adaptation (fitness maximiza-

tion) problem becomes even harder because we do not know 
the function to optimize. Therefore, many algorithms for  
K-SAT are useless for biological adaptation problems. Below 
we will nonetheless obtain some analytical results based on the  
assumption that b

j
 are random.

3. Main theorems
The subsequent material is organized as follows. First we formu-
late a result on regulation mechanism power. Furthermore, we  
prove two fitness landscape learning theorems.

3.1 Fitness landscape learning theorems
For simplicity, we consider asexual reproduction. To obtain similar 
results for sexual reproduction, one can consider a weak selection 
regime and use the results of 10, where eq. (2.9) are derived.

Let us introduce two sets of indices I
+
 and I

−
, such that  

I
+
 ∪ I

−
 = {1,..., N

b
}. We refer to these sets in the sequel as positive 

and negative sets, respectively. We have

                           { }{ }…1, , | 0 ,b jjI N b+ ∈= >                        (3.1) 

                           { }{ }…1, , | 0 .b jjI N b− ∈= <                        (3.2)

The biological interpretation of that definition is transparent: 
the expression of the traits f

j
 with j ∈ I

+
 increases the fitness and  

for j ∈ I
–
 expression of the trait decreases the fitness.

Let s and s  be two genotypes. Then we denote by Diff(s, s ) the  
set of positions i such that s

i
 ≠ s i

:

                      { }{ }( ) 1, , |N s iDiff g is,s  i s= ∈ ≠

The set Diff(s, s ) indicates which genes in s should be  
flipped in order to obtain s .

We formulate two theorems on fitness landscape learning. First  
we consider the case of infinitely large populations.

Theorem 3.1. Suppose that the evolution of the genotype  
frequencies X(s, t) is determined by equations (2.9) and (2.10).  
Moreover, assume that

I for all t ∈ [T
1
, T

1
 + T

c
], where T

1
, T

c
 > 0 are integers, the popu-

lation contains two genotypes s and s  such that the frequencies  
X(s, t) and X(s , t) satisfy

                01 1( , ) ( ) 0,1 CX s, T T p= > 0, + = >X s T p              (3.3)

II we have

                                     Diff( , ) js s K ,⊂                                     (3.4)

for some j. In other words, the genes s
i
 such that s

i
 ≠ s i

 are  
involved in a single regulation set K

j
; and finally,

III Let

                      ( ) ( )j jf s f sδ =| − |> 0, | |> 0,j jb                   (3.5)
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and

                                      
0 1log( )

.c 
jj

T
b

−
>

| |δ

p p
                              (3.6)

Then, if

                                            ( ) ( ),j jf s f s<                                (3.7)

we have j ∈ I
+
. If f

j
(s) > f

j
(s ), then j ∈ I

–
.

Before proving this, let us make some comments. The biologi-
cal meaning of the theorem is simple: for simple fitness mod-
els, where unknown parameters b

j
 are involved in a linear way, 

in the limit of infinitely large populations fitness landscape  
learning is possible.

Moreover, note that we do not make any specific assumptions 
about the nature of mutation, but only that all genetic variation  
between s and s  are contained in a single regulatory set K

j
.

The assertion of Theorem 3.1 is not valid if the set Diff(s, s ) 
belongs to a union of different regulation sets K

j
 , j = j

1
, . . . , j

p
 

with p > 1. This effect of belonging to different sets K
j
 is pleiot-

ropy in gene regulation. Note that if N
b
  N

g
 then the pleiotropy 

probability is small for large genome lengths N
g
. On the  

contrary, if N
b
  N

g
 then assumption II is invalid.

Assumption II looks natural if when we deal with point muta-
tions. In fact, if s  is obtained from s by a single point mutation 
then condition (3.4) always holds for some j. For small mutation 
rates the probability of two point mutations is essentially below  
than the probability of a single mutation.

To conclude let us note that Theorem gives a rough estimate for  
the learning time T

c
:

                                  
0 1log( )

( )c
p p

T O= −
| |δ

i
j jb

.

Proof. The main idea is simple. Negative mutations lead to 
elimination of mutant genotypes from the population, and the  
corresponding frequencies become, for large times, exponentially 
small.

Assume that (3.7) holds. Let j ∈ I
−
, and thus b

j
 < 0. Consider  

the quantity

                               
( , ) ( , )

( )
( , ) ( , )

X s t N s t
Q t

X s t N s t
= = i.                          (3.8)

According to assumption II

                    ( ) ( ) ( ( ) ( ))j jW W s W s b f s∆ = − = − ⋅f s               (3.9)

Assumption III entails that

                                       .W j j b∆ ≥| |δ                                   (3.10)

Relations (2.6) and (3.10) imply

                           
( )

exp( )
( )

F s
W

F s iexp( )j jb= ∆ ≥ | |δ .

By (2.9) and the last inequality we find that for T > T
1

                       1 1( ) ( )exp ( )( )Q T Q T T T≥ | |δ − ij jb .                 (3.11)

Consider inequality (3.11) for T = T
1
 + T

c
. Let us note that in the 

relation Q(T
1
) = X(s, T

1
)/X(s , T

1
) the numerator is p

0
 whereas  

the denominator ≤ 1. Thus, Q(T
1
) ≥ p

0
. The same arguments  

show that Q(T
1
 + T

c
 ) ≤ 1/p

1
. Therefore, by (3.11) one obtains that

                                  
1 0

1
exp( )cT

p p
≥ | |δ ij jb .                         (3.12)

This inequality leads to a contradiction for T
c
 satisfying (3.6),  

thus completing the proof.

3.2 The case of finite populations
Theorem 3.1 can be extended to the case of finite populations and 
non-zero mutation rates. is small. To formulate this generaliza-
tion, we need an additional assumption about the fitness function.  
Suppose that
                    

( )
min ( ),1
s S t∈

< <F F sc

                  1 1
( )

max ( ) , [ , ]ct T T T∀
∈

< ∈ +F
s S t

F s C          (3.13)

where c
F
, C

F
 > 0 are constants independent of t. For example, if

                                             
1

Nb

j
j

b
=

< γ,∑

then c
F
 = K

F
 exp(–γ) and C

F
 = K

F
 exp(γ) and (3.13) holds  

if K
F
 > exp(γ).

Condition (3.13) means that each individual gives birth to at 
least c

F
 and at most C

F
 descendants, where those bounds do not  

depend on the population size and evolution step.

Let

                                   pop 1 popmax( )N T N= i                               (3.14)

Note that for simplicity in the next Theorem 3.2 we consider 
point mutations (bit flipping) only. The model used here cannot 
represent mutations of arbitrarily small effect, but it can include 
insertions or deletions. In contrast to Theorem 3.2, Theorem 3.1  
is valid for all kinds of mutations.

Then we have

Theorem 3.2. Consider the population dynamics defined by 
model 1-3 in subsection 2.4. Assume conditions (3.14) and M 
hold, and assumptions (3.3), (3.4), (3.5), (3.7) of Theorem 3.1 are  
satisfied. Suppose

                       0 1 1( , ) [ , + ],X s t p ∀ ct T T T≥ ∈                     (3.15)

                        1 1 1( , ) [ , + ]p ∀ cX s t t T T T≥ ∈ ⋅                      (3.16)

Then if j ∈ I
–
 the inequality

                        1
1 0 exp( 0.5 )cp p T−< − | |δj jb                          (3.17)
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is fulfilled with the probability Pr
v
 such that

                           0 1(1 ) ,Prv p p> − ρ( )− ρ( ) Tc                         (3.18)

where for large N
popmax

 and p
mut

 → 0

                     ( )mut popmaxexp ln 2p p κρ( )= −( −1 2) ⋅Fc p N  

Interpretation of Theorem 3.2

It is interesting to compare Theorem 3.1 and Theorem 3.2. The 
previous one asserts that for infinite populations the probabil-
ity of the event j ∈ I

− 
is zero whereas the second one claims that 

this probability becomes exponentially small as the population  
size increases.

This theorem also shows that evolution can make a statistical test 
checking the hypothesis H

–
 that j ∈ I

–
 against the hypothesis H

+
 

that j ∈ I
+
. Suppose that H

–
 is true. Let V be the event that the 

frequency X(s , t) of the genotype s  in the population is larger 
than p

1
 within a sufficiently large time T

c
. According to estimate 

(3.18), the probability of the event V is so small that it is  
almost unbelievable. Therefore, the hypothesis H

–
 should be 

rejected. We will refer T
c
 as the checking time.

Rare mutants. In this Theorem we assume that the frequencies  
p0 and p1 of genotypes (wild and mutant) are fixed and our esti-
mate is valid as pmut → 0. I.e., we do not consider mutants with  
a very small frequencies (fractions). Of course, a large population 
always contains a small number of such mutants. In numerical  
simulations we assume that evolution is successful and popula-
tion is perfectly adapted, if, say, 95 or 99 percents of population  
members have the maximal fitness.

Ideas for the proof. The main idea is the same as that for the 
previous theorem: we compare the frequencies of the organ-
isms with the genotype s  and the organisms with the genotype s. 
However, the proof includes a number of technical details  
connected with estimates of mutation effects and fluctuations.  
The formal proof can be found in Section 4. It is based on  
estimates of the accuracy of the Nagylaki equations (2.9). The  
main Lemma 4.5 for the proof of Theorem 3.2. admits a  
transparent interpretation. We show that fraction X(s, t) of 
genotype s evolves in time in such a way that the estimates

       mut popmax( , 1) ( ( ) ( , , )) ( , ) / ( )X s t F s r p N s X s t F t+ < +

    mut popmax( , 1) ( ( ) ( , , )) ( , ) / ( )X s t F s r p N s X s t F t+ > −

are satisfied, where F(s) is a fitness of genotype s, F  is average 
population fitness, and r(pmut, Npop)) are small corrections, which 
converge to zero uniformly in s as the mutation rate pmut → 0  
and the population size Npopmax → ∞. This means that in the  
limit pmut → 0, Npopmax → ∞ we have equation (2.9). The main  
problem with the application of Theorem 3.2 is how it allows  
to perform fitness landscape learning. It can be done by a  
regulation, as is detailed in the following section.

4 Proof of theorems
Let us prove Theorem 3.2.

4.1 Main tools and auxiliary Lemmas
Let us introduce notation and make some preliminary remarks. 
Remind that we denote by N(s, t) the number of the popula-
tion members with the genotype s at the moment t. Let X(t) 
be the set of all population members at the moment t. For each  
x ∈ X(t) let us denote by N′(x, t) the number of progeny born by 
the individual x at the moment t before the massacre (see point 
3 of model from Subsection 2.4). Let s

g
 (x) be the genotype  

of x. Then, according to (2.8), the mean of N′(x, t) is

                                 ( ) ( )( ), ,=′ gEN x t F s x                             (4.1)

where EX denotes the expected value of X. By ( ),N s t  we 
denote the number of all progeny born by individuals with the 
genotype s at the moment t before the massacre. Since all prog-
eny are produced independently and randomly, the previous  
relation gives

                               ( ) ( ) ( ), , .EN s t N s t F s=                           (4.2)

Our main analytical tools are the Chernoff bounds and the  
Hoeffding inequalities. We also use the Markov inequality: for a  
positive random quantity X and a > 0 one has

                                     { } .
EXPr X a
a

> ≤                                 (4.3)

Moreover, we use two elementary estimates. Let A be an event in 
stochastic population dynamics. We denote by Not A the negation 
(complement) of A and by Pr(A |B ) the conditional probability  
of A under the condition B. For events A, B

1
, . . . , B

n
 we have

                

( ) ( )
( )( )

( ) ( )

1

1

1
1

Pr Pr

Pr Not

Pr | Pr Not .
=

= +

≤ + ∑

…

…

…

n

n

n

n j
j

A A B B

A B B

A B B B
           

 (4.4)

For two events A , B one has

                  ( ) ( ) ( )Pr 1 Pr Pr .Not Not≥ − − �A B A B                 (4.5)

Lemma 4.1. Let X
i
 be independent random quantities, where  

i = 1, . . . , n. Let each X
i
 be distributed according to the Poisson  

law with the average EX
i
 = μ

i
. Let us denote

                          1

1

, .

n
n jj

j
j

X X
n

µ
µ =

=

= =
∑∑

Then for all δ > 0

                   ( ){ } ( )( )Pr 1 exp ,X n d nδ µ µ δ> + ≤ −                   (4.6)

where

                         ( ) ( ) ( )1 ln 1 .d δ δ δ δ= + + −

Page 11 of 25

F1000Research 2019, 8:358 Last updated: 16 OCT 2019



Similarly, 

                ( ){ } ( )( )Pr 1 exp .δ µ µ δ< − ≤ − −X n d n                   (4.7)

Proof. Note that for any λ > 0

               

( ){ }
( ) ( )( )){ }

Pr 1

Pr exp exp 1

δ µ

λ λ δ µ

> + =

> +

X n

X n                (4.8)

Since X
j
 are independent quantities, we have

                         ( ) ( )
1

exp exp .
n

j
j

E X E Xλ λ
=

= ∏
The straight forward computation shows that

                        ( ) ( )exp exp ( 1) .j jE X eλλ µ= − .

Therefore, due to the Markov inequality (4.3) and estimate (4.8) 
one has

                     ( ){ } ( )Pr 1 exp ( ) ,X n n fδ µ µ λ> + ≤

where

                          ( ) ( ) ( )exp 1 1 .f λ λ λ δ= − − +

We minimize f with respect to λ and obtain (4.6). To derive (4.7), 
we use

                                

( ){ }
( ){

( )( ))}

Pr 1

Pr exp

exp 1

X n

X

n

δ µ

λ

λ δ µ

< − =

− >

− −                              (4.9)

and repeat the same arguments. The Lemma is proved.

Lemma 4.2. Let X
i
 be independent random quantities, where  

i = 1, . . . , n such that X
i
 ∈ {0, 1} and EX

i
 = p. Then

                       { } ( )( )Pr 2 exp ,< ≤ −X pn g p n                       (4.10)

where

                            ( ) ln 2
ln(1 ).

2 2

p pg p = − − −                         (4.11)

Proof. Note that for any λ > 0

       { } ( ) ( )){ }Pr / 2 Pr exp exp / 2 .X pn X pnλ λ< = − > −       (4.12)

Since X
j
 are independent quantities, we have

                          ( ) ( )
1

exp exp .
n

j
j

E X E Xλ λ
=

− = −∏
Note that E exp(−λX

j
) = p exp(−λ) + 1 − p. Let

                  ( ) ( ), / 2 ln exp( ) 1 .G p p p pλ λ λ= + − + −

We take λ = ln 2 and find that G(ln 2, p) = −g(p). Now by using 
the Markov inequality (4.3) and estimate (4.12) one obtains  
(4.10). The Lemma is proved.

We also use the following Chernoff-Hoeffding theorem. Let 
X

i
 be i.i.d. quantities such that X

i
 ∈ {0, 1} and EX

i
 = p, where  

i = 1, . . . , n. Then for 
1

n
jj

X X
=

= ∑  one has

              ( ){ } ( )( )Pr exp ,X p n D p p nε ε> + ≤ − +              (4.13)

where D(x||y) is the Kullback-Leibler divergence

         ( ) ( ) ( ) ( ) ( )( )ln / 1 ln 1 / 1 .= + − − −D x y x x y x x y           (4.14)

Moreover, we will use the Hoeffding Theorem: if i.i.d. quantities  
X

i
 ∈ [0, 1] with the probability 1 then

                   { } ( )2Pr 2exp 2 / .− > ≤ −X EX a a n                  (4.15)

4.2 Main lemmas
First we estimate the population size fluctuations.

Lemma 4.3. Let ( )N t  be the number of all progeny, born in 
the population at the moment t before the massacre, and ε

1
 > 0  

be a small number. Then

               ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1

1 pop 1 pop1 , 1

N t J t

F t N t F t N t
ε

ε ε

∈ =

 − + 
       

    (4.16)

with probability 

                                      ( )0 1Pr 1 ,N η ε> −                                (4.17)

where

                     
( ) ( ) ( )( )

( ) ( )( )
0 1 1 pop

1 pop

exp

exp .

η ε ε

ε

= − +

− −

F

F

d c N t

d c N t
                  

 (4.18)

Proof. Let n' (x, t) denote the number of progeny produced 
by the individual x before the massacre at the t-th evolution  
step. The number ( )N t  is the sum

                                     ( ) ( )
( )

,
x X t

N t N x t
∈

= ′∑

of the mutually independent random quantities. According to  
(4.2), the average EN' (x, t) is F(s

g
 (x)). Therefore,

                                ( ) ( )
( )

,
x X t

EN t EN x t
∈

= ′∑                           (4.19)

                                            ( )( )
( )

g
x X t

F s x
∈

= ∑                           (4.20)

                                            ( ) ( )pop .N t F t=                              (4.21)

We set

                   ( ) ( )( ) ( )pop , ,µ µ= = =x gn N t F s x F t

and use the Lemma 4.1 that gives us (4.17).

Lemma 4.4. Let ε
2
 ∈ (0, 1) be fixed and condition (3.13)  

be fulfilled. Assume, moreover, that
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                         ( )popmax pop popmax2 ,N N t Nκ≥ ≥                         (4.22)

where

                                      ( )1, 1κ −∈ Fc                                         (4.23)

and c
F
 > 1 is defined by (3.13). Let us define the event Dε 2

 (t) by

            ( ) ( ){ }2 pop popmax 2 popmax1 .ε ε= + − <t N t N ND           (4.24)

Then one has

                               ( )( ) ( )
2 2Pr 1 ,tε η ε> −D                            (4.25)

where

                              

( )
( )( )

( )( )

( ))

2

popmax

popmax

2
2 popmax

exp

exp

2
2exp

2 1 F

d N

d N

N
C

η ε

ε κ

ε κ

ε
ε

=

− +

− − +

 
− + 






                        (4.26)

and

                                        ( ) 1
1 .Fcε κ −= −                                 (4.27)

Proof. Let ξ(x) be random quantities defined as follows:  
ξ(x) = 1 if the individual x is survived as a result of massacre 
(see point 3 of our model from Subsection 2.4), and ξ(x) = 0  
otherwise. Let X' (t) be the set of progeny produced by all indi-
viduals from the population. Then the number N

sur
(t) = N

pop
(t + 1)  

of finally survived progeny can be computed as follows:

                                    ( ) ( )
( )

sur .
x X t

N t xξ
∈ ′

= ∑

Note that ( ) ( ).X t N t=′  Moreover, ( ) ( )popmax /ξ =E x N N t  for 
( ) popmax .N t N≥  Therefore, if ( ) popmax .N t N≥  then

                                   ( )sur popmax .EN t N=                                (4.28)

Let us define the event

                               ( ) ( ) ( ){ },t N t J tε= ∈ B                            (4.29)

where the interval Jε(t) is defined by (4.16) and ε  is defined  
by (4.27). By (4.4) we have

                 2 2
Pr (Not ( )) Pr ( | )

Pr(Not ) .

t Not t t

t
ε ε≤ +( ) ( )

( )

D D B

B
            

    (4.30)

Now we apply the Hoeffding inequality (4.15). For each ε
2
 > 0  

we obtain

                    
2

2 2
2 sur2 ( )

Pr(Not ( )) 2exp .
( )

EN tt
N tε

ε 
< −  

D

If B (t) takes place, then ( ) popmaxN t N≥  and consequently

                             
( )

( ) ( )
2 22

2 popmax2 sur 22
.

2 1 F

NEN t
N t C

εε
ε

>
+ 

                       (4.31)

Therefore,

               2

2
2 popmax2

Pr( ( ) | ( )) 2exp .
2(1 ) F

N
Not t t

Cε

ε
ε

 
< − + 

D B            (4.32)

Moreover, by Lemma 4.3

              

( )
( )

popmax

popmax

Pr(Not ) exp ( )

exp ( ) .

t d N

d N

ε κ

ε κ

< − +

− −





( )B

               (4.33)

Inequalities (4.30), (4.32) and (4.33) prove (4.25).

The following lemma, in particular, allows us to obtain equa-
tions (2.9) and (2.10) in the limit of infinite populations and  
for small mutation probabilities.

Recall that ( , ).N s t  denotes the number of non-mutated prog-
eny generated by the individuals with the genotype s before the 
massacre. Let N

sur
(s, t) be the number of those progeny that  

survived after that massacre.

Lemma 4.5. Let ε
0
 be a positive number satisfying (4.75) and

                           popmax pop popmax( ) 2 .N N t Nκ < <                        (4.34)

Then one has

                   ε −+ > − 1
0( , 1) (1 ) ( ) ( ) ( , )N s t F s F t N s t                 (4.35)

with the probability Pr
s,t,+

 such that

                               +
=

> − ∑
5

, ,
1

Pr 1 ( , ),s t i
i

R s t                              (4.36)

where

                   

( )
( )

= − +

− −

1 pop

pop

( , ) exp (1) ( )

exp ( 1) ( ) ,

F

F

R s t d c N t

d c N t                     (4.37)

                  

= − +
− −

2 ( , ) exp( (0.5) ( , ))

exp( ( 0.5) ( , )),
F

F

R s t d c N s t

d c N s t
                    

(4.38)

                   

ε −
=   

2
0

3 2
( , ) 2exp ( , ) ,

16 F
F

R s t c N s t
C                       (4.39)

                 

(

)

= − +

−
− ⋅

−

4 mut

mut
mut

mut

( , ) exp 0.5 2 ln 2

1 2
(1 ) ln( )

1

( , ) ,

(

)

F

R s t p

p
p

p

c N s t
                     (4.40)

                  

( )
( )

= − +

− −
5 ( , ) exp (1) ( , )

exp ( 1) ( , ) ,

F

F

R s t d c N s t

d c N s t                     (4.41)
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Similarly,

                 ε −+ < + 1
0( , 1) (1 ) ( ) ( ) ( , )N s t F s F t N s t                  (4.42)

with the probability Pr
s,t,−

 such that

                                  −
=

> − ∑
5

, ,
1

Pr 1 ( , ).s t i
i

R s t                            (4.43)

Proof. Step 1, estimates of fluctuations. First let us estimate the 
fluctuations of the number ( , ).N s t  For each ε

2
 > 0 let us define  

the event

           2, 2( ) {| ( , ) ( , ) | ( , )}.s t N s t EN s t EN s tε ε= − >A          (4.44)

By Lemma 4.1 one has

               

( )
( )

2, 2

2

Pr( ( )) exp ( ) ( , )

exp ( ) ( , ) .

s t d EN s t

d EN s t

ε ε

ε

< − +

− −

A

                (4.45)

Note that

                     = >( , ) ( ) ( , ) ( , ).FEN s t F s N s t c N s t                   (4.46)

As a result, by (4.46) we obtain

              

2, 2

2

Pr( ( )) exp( ( ) ( , ))

exp( ( ) ( , )) .

s F

F

t d c N s t

d c N s t

ε ε

ε

< − +

− −

A

                  (4.47)

Step 2. Here we estimate the number of progeny that  
survived as a result of the massacre procedure (point 3 of the 
population dynamics model, see subsection 2.9). Let X' (s, t) be 
the set of progeny produced by individuals with the geno-
type s. Then the number N

sur
(s, t) of survived progeny x for  

individuals x belonging to the set Z' (s, t) is

                                  ξ
∈ ′

= ∑sur
( , )

( , ) ( ),
x X s t

N s t x

where ξ(x) are defined in the proof of the previous Lemma. For  
ε

3
 > 0 we consider the event

                

3sur, , sur sur

3 sur

( ) {| ( , ) ( , ) |

                 > [ ( , )]},

s t N s t EN s t

E N s t

ε

ε

= −A
               

   (4.48)

Let us estimate the probability Pr(A
sur,s

(t)). According to the  
Hoeffding Theorem (4.15)

                 

( )( )
( ) ( )( )

3sur, ,

2 12
3 sur

Pr

2exp 2 , , .

ε

ε −

<

 −  

s t

E N s t N s t

A

                 (4.49)

Note that ξ(x) and ξ(y) are independent quantities for different  
x and y, thus under the condition popmax( )N t N>

                  ξ
∈ ′

= =∑ popmax
sur

( , )

( , ) ( ) ( , ) ,
( )x X s t

N
EN s t E x N s t

N t

therefore,

        3

pop max2 2
sur, , 3Pr( ( )) 2exp 2 ( , )( ) .

( )ε ε
 

< −  s

N
t N s t

N t
A          (4.50)

Let us define the events B
s
(t) and B(t) by

                           2

( ) { ( , )

(1 ) ( , )},
s t N s t

EN s tε

=

> −

B

                         (4.51)

                             1

( ) { ( )

(1 ) ( )}.

t N t
EN tε

=
< +

B

                             (4.52)

Then using (4.4) one has

               

3sur, , sur,Pr( ( )) Pr( ( ) | ( ) ( ))

Pr(Not ( ))

Pr(Not ( )).

ε ≤ +

+
s s s

s

t t t t

t
t

A A B B

B

B              (4.53)

We observe that under conditions B
s
(t) and B(t)

                  

( )( ) 2popmax 2
2 1

popmax 2

( , )( ) 1 1 .
( )

( , ).

( ) .
( )

ε ε −< − +
N

N s t
N t

EN s t
N
EN t                    

(4.54)

In that estimate let us set ε
2
 = 0.5 and ε

1
 = 1. Taking into  

account that pop popmax( ) ( ) ( ) 2 ,= < FEN t F t N t C N  we have that

                
3sur, , 3 3Pr( ( ) | ( ) ( )) ( , , ),s st t t R s tε ε<A B B                (4.55)

where

             ( )2 2
3 3 3( , , ) 2exp 0.25 ( , ) .F FR s t C c N s tε ε −= −              (4.56)

Moreover, according to (4.47)

                              2Pr(Not ( )) ( , ),s t R s t<B                           (4.57)

and due to (4.17)

                             1Pr(Not ( ) ) ( , ),t R s tν <B                           (4.58)

where R
1
,R

2
 are defined by (4.37) and (4.38). Finally,

         3sur, , 1 2 3 3Pr( ( )) ( , ) ( , ) ( , , ).s t R s t R s t R s tε ε< + +A          (4.59)

Step 3, estimate of the number of mutants.
Let us estimate how many individuals with genotypes s can 
mutate. The probability of mutation is p

mut
. Let N

mut
(s, t) be the  

number of such mutants. Let us define the event A
mut,s

(t) by

                  mut, mut mut( ) { ( , ) 2 ( , )},s t N s t p N s t= >A                 (4.60)
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Since the random quantity N
mut

(s, t) is subject to the Bernoulli 
law, we can apply the Chernoff-Hoeffding inequality (4.13).  
Then we obtain that

          ( )mut, mut mutPr( ( )) exp (2 || ) ( , ) ,s t D p p N s t< −A          (4.61)

where, according to definition (4.14) of D(x||y), one has

                              
mut mut mut(2 || ) ( )D p p g p=

and g is defined by (4.11).

Using (4.4) one has

      mut, mut,Pr( ( )) Pr( ( ) | ( )) Pr(Not ( )).≤ +s s s st t t tA A B B        (4.62)

As a result, by Lemma 4.3 one finds

                             mut, 4 5Pr( ( )) ,s t R R≤ +A                              (4.63)

where R
4
,R

5
 are defined by (4.40) and (4.41). 

To prove (4.35), we set ε
3
 = ε

0
/2. Taking into account condition 

(4.75) for ε
0
 we see that if the both events Not A

mut,s
(t) and Not 

A
sur,s,ε0/2

(t) take place, then inequality (4.35) is fulfilled. Thus

                   

0

0

mut, sur, , /2

mut, sur, , / 2

5

1

Pr(Not ( )Not ( ))

1 Pr( ( )) Pr( ( ))

1 ,

s s

s s

i
i

t t

t t

R

ε

ε

=

≥

− − >

− ∑

A A

A A

where R
i
 are defined by (4.37)–(4.41).

Finally, taking into account the results of steps 1, 2 and 3 
we see that estimate (4.35) holds with the probability Pr

t,+
. It  

completes the proof of (4.35). The second inequality (4.42) can  
be obtained in the same way.

4.3 Remaining part of the proof of Theorem 3.2
We use the same idea that in the proof of Theorem 3.1 but first 
we establish uniform bounds for the population size and other  
quantities involved in the proof.

Step 1 Here we estimate the population size. Let us set

                                      2 1 0ε κ= − >

in Lemma 4.4. Let us consider the events Dε2
(t) defined by 

(4.24) in Lemma 4.4. If the events Dε2
(t) take place for all  

t ∈ [T
1
, T

1
 + T

c
] and N

pop
(0) = N

popmax,
 we have that

            
popmax pop2 ( )N N t>                                                      (4.64)

                           [ ]popmax 1 1, .κ> ∀ ∈ + cN t T T T           (4.65)

Then conditions (3.15), (3.16) of Theorem 3.2 imply

      ( ) ( )0 popmax 1 popmax, , , .κ κ> >N s t p N N s t p N .     (4.66)

Those inequalities imply the following estimates for the  
quantities R

i
 defined by (4.37)–(4.41):

                   ( ) ( ) ( ) ( )0 1, , , ,> >i i i iR s t q p R s t q p                 (4.67)

where q
i
 are defined by

                     

( )( )
( )

1 popmax

popmax

exp 2ln 2 1

exp ,

F

F

q c N

c N

κ

κ

= − − +

−                (4.68)

               

( ) ( )( )

( )

2

popmax

popmax

2exp( 3/ 2 ln 3/ 2 1/ 2

)

exp( 1/ 2 1 ln 2

),

F

F

q p

c p N

c p
N

κ

κ

= − −

+

− −

                

 (4.69)

               ( )
2
0

3 popmax22exp ,
16 F

F

q p c pN
C

ε
κ

 
= −                (4.70)

              ( ) ( )( )4 mut popmaxexp 0.5 ,κ= − Fq p U p c p N               (4.71)

              

( ) ( )
( )

5 popmax

popmax

exp( 2ln 2 1 )

exp ,

κ

κ

= − − +

−
F

F

q p c pN

c p N             (4.72)

where

           ( ) ( ) ( ) ( )( )2ln 2 1 ln 1 2 / 1 ,U p p p p p= + − − −         (4.73)

and

                  

( )( )
( )( )

( )
( )

popmax

popmax

2

popmax

exp

exp

2 1
2exp .

2 1+ F

q d N

d N

N
C

ε κ

ε κ

κ
ε

= − +

− − +

 −
− 

 






             (4.74)

where ε̃  = 1 – (κc
F
)–1, and

                         

( )
( )0

1 exp / 2

1 exp / 2

4 .

δ
ε

δ

− −
=

+ −

>

j j c

j j c

mut F

b T

b T

p C
                         (4.75)

For each p ∈ (0, 1) let us define an auxiliary function

        ( ) ( ) ( ) ( ) ( )1 2 3 4 5 ,ρ = + + + + + p q q p q p q p q p q         (4.76)
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where q
i
, q  are defined by relations (4.68)–(4.72). We can 

find asymptotics of ρ under natural assumptions that p
mut

 → 0 
and N

popmax
 → ∞ while all the rest parameters are fixed. Then 

the leading term in the right hand side of (4.36) is q
4
 and  

( ) ( ) ( )2
mut mut mut2 ln 2 1 .U p p O p= − +  As a result, we have

             

( ) ( )( )
( )( )

mut popmax

mut

exp ln 2 1/ 2 .

1 1 , 0.

ρ κ= − −

+ →

Fp p c p N

o p             (4.77)

Step 2. Let Q(t) is defined by (3.8) and, moreover, let j ∈ I
−
.  

We use Lemma 4.5 inductively for genotypes s and s .  
Let us set

                                         
0

0

1
,

1

ε
θ

ε
−

=
+

where ε is defined by (4.75). We remark that the inequality

                 ( ) ( ) ( )1 expc c j j cQ T t Q T t b Tθ δ+ + ≥ +                 (4.78)

holds with a probability Pr
Q,t

 > 0. Let us obtain a uniform  
estimate of that probability. Let E (t) be the event that (4.78)  
holds at the step t. Using (4.4) we have

                  

( )( ) ( ) ( )( )
( )( )

2

2

Pr Not Pr Not |

                             Pr Not ,

ε

ε

≤ +t t t

t

E E D

D                 (4.79)

where, according to Lemma 4.4, the probability of the event  
Not Dε2

(t) is less than η, where η is defined by (4.25), and

                  ( ) ( )( ) ( ) ( )
2 0 1| .Pr Not t t q p pε ρ ρ< + +E D

We conclude by (4.5) that

                  ( ) ( ), 0 1, 1 ,Q tPr Z Z q p pρ ρ> = − − −                 (4.80)

where q  is defined by (4.74). This estimate is uniform in  
t ∈ [1, . . . , T

c
]. By (4.80) we obtain then that the inequality

           ( ) ( ) ( )0
1 1

0

1
, exp .

1

ε
θ θ δ

ε
−

+ ≥ =
+c j j cQ T T Q T b T             (4.81)

is satisfied with the probability Pr
v
 such that

                                        Pr .cT
v Z>                                         (4.82)

For ε
0
 defined by (4.75). one has

                         1 1( ) ( )exp( / 2).j jc cQ T T Q T b T+ ≥ δ

Now repeating the same arguments that in the end of the proof 
of Theorem 3.1, and taking into account asymptotics (4.77),  
we obtain the conclusion of Theorem 3.2.

5 Discussion
In this paper, we proposed a model for fitness landscape learn-
ing, which extends earlier work by 7–9 in two ways. First, we 

use hybrid circuits involving two kinds of variables. The first 
class of variables are real valued in the interval (0, 1) and can 
be interpreted as relative levels of phenotypic traits, other vari-
ables are Boolean and can be interpreted as genes. Second, 
we use a threshold scheme of regulation, which is inspired by 
ideas of the paper by 20. All variables are involved in gene  
regulation via thresholds.

The work presented here is a major extension of a long term 
effort to explicitly model the effects of phenotypic buffering in 
evolution by considering a class of Boolean and mixed Boolean-
continuous models in which the phenotype is represented  
explicitly and the degree of phenotypic buffering can be control-
led in various ways. For example, we have demonstrated that 
the idea of an “evolutionary capacitor”42,43 can be implemented 
by explicit control of phenotypic buffering in a hub-and-spokes  
architecture23 and that in a more general class of genetic 
architecture numerical simulations show that an intermedi-
ate level of buffering is optimal for evolution in a changing  
environment31.

The results reported here are very promising, since they are  
consistent with the results of recent experiments by 44 and 45 
on heat shock stress. The essential mechanism is that the explo-
ration of the fitness landscape by the genetic network in such a 
way that future mutations are more likely to be adaptive. We have 
shown that, at least for some fitness landscapes, rapid evolution-
ary changes—perhaps instances of the “hopeful monsters” of  
Goldschmidt46—can be created by a combination of ran-
dom small mutations and epigenetic effects. The main idea 
is that small mutations pave the way for large epigenetic or 
genetic changes. The hypothetical mechanism, which we  
propose, can be outlined as follows (see Figure 4, Figure 5).

This network modifies the thresholds by a simple feedback  
mechanism. Although we are not aware of clear experimental 
evidence for the existence of such a mechanism, we nevertheless 
think that such a mechanism can be connected with regulations 
via enhancers47,48, where enhancer action is described by deep  
network models based on thermodynamics, and chemical kinet-
ics, and those models contain threshold parameters. Alterna-
tive variants involve modifications of weights. To some extent, 
both mechanisms are mathematically equivalent. However, the 
regulation via thresholds has an important advantage: it makes  
phenotypes robust with respect to mutations. In this second ver-
sion of the paper we included a subsection about regulation 
and two pictures, which show results of numerical simulations  
based on the “strong selection weak mutation” (SSWM) algo-
rithm. As is the case for threshold signs, they of course should have  
different signs. The key question is how an individual obtains 
information about the fitness landscape. In our model that infor-
mation is the sign of bj. If the bj is positive the corresponding  
threshold must be negative, otherwise, it should be negative.  
Actually, we think that the gene of individuals have that  
information! According to the main theorems proved in this 
paper, the fact that a mutated individual survives for a sufficient 
long period of time gives us that information. The very fact of the  
existence of the individual carries the most important information.  
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Figure 4. This graph illustrates Goldshmidt’s leaps. At the initial moment the trait expressions take the values x = 0.5, y = 0.5. According 
to Fisher’s ideas, random large mutations decrease the fitness F = KF exp(W). (Changes of x = F1, y = f2, which are induced by mutations, are 
shown by red vectors.) Thus such mutations produce non-viable organisms.

Figure 5. This plot illustrates the main ideas of evolution based on the fitness landscape learning. At the initial time the trait expressions 
take the values x = 0.5, y = 0.5. Evolutionary changes go in two stages. First we make small random mutations (shown by red vectors), which 
explore the fitness landscape. If such a mutation is not eliminated from the population, this means that a correct evolution direction is found, 
and gene regulation system makes a big leap (shown by the green vector) in the direction of that small mutation. Such a two step model can 
be called clever Goldshmidt leaps. Note that evolution is gradual, and the existence of clusters of almost identical genes involved in the same 
QTL increases the chances to create a clever Goldschmidt hopeful monster.
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Look at the mutations of its genotype and you will know  
where evolution should go!

As is described in Subsection 2.5, we assume that expression of 
genes involved in the expression of phenotypic traits depends 
on threshold parameters h

j
, which take three values: a large  

negative one, a neutral value close to zero and a large positive 
one. First the threshold parameter h

j
 is small and thus the phe-

notypic trait is sensitive with respect to even small mutations. 
Those mutations play a fundamental role working as scouts 
exploring environments (see Figure 4). If a mutation occurred 
and the corresponding mutant has survived within T

c
  1  

generations then according to Theorem 3.1 and Theorem 3.2  
these events mean that that mutation increases the fitness that 
allows the network to estimate the correct direction of evolu-
tion. Then gene regulation detects that increase to change the  
threshold according to simple rules. Namely, if the trait 
is less expressed in that mutant with respect to wild type  
parent, the gene regulation system decreases the threshold 
up to the large negative value. On the contrary, if the trait is 
strongly expressed in the mutant, the gene regulation system 
increases the threshold up to the large positive value. This simple  
regulation control not only sharply reduces the number of muta-
tions needed for adaptation, but also canalizes the phenotype 
since for large thresholds the trait expression level becomes 
insensitive with respect to mutations. We suppose that these  
threshold modifications can be inherited.

So, we propose the mechanism: small mutations serve as 
scouts finding the way for large epigenetic or genetic changes,  
which can be performed by gene regulatory system.

The mechanism may also explain the results of 4 on prediction 
of environmental changes. In fact, let us suppose that environ-
ment varies in time. The first, perhaps relatively small, variations 
can trigger the threshold mechanism described above. As a 
result, the population will be adapted to the subsequent changes  
in advance.

Our results show that evolution can proceed rapidly because it 
reduces the number of mutations required for adaptive change.

The primary limitation of our results is that the representa-
tion of the evolving genetic network is limited to the network 
of gene controlling phenotype, represented here by the Boolean 
strings s. Other model variables represent the coarse-grained 
activities of genes. One class is the terminal differentiation 
genes represented by w

ij
, and another are the genes or epige-

netic factors controlling the thresholds h and their associated 
learning rules. A more careful consideration of the relationship 
of these moieties to observable molecular entities is an impor-
tant objective of future work. At the mathematical level, the 
key analytical results were obtained in a simplified context 
that falls short of a realistic level of pleiotropy and thus of  
the level of NP-hard complexity exhibited by fully pleo-
tropic forms of our model. We believe that our analytical 
results can be generalized, which we plan to address in future  
work.

Data availability
All data underlying the results are available as part of the article  
and no additional source data are required.
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In the current work the authors study a population genetics model in which fitness is a linear function of a
set of phenotypic traits, and where the genotype-to-phenotype map is given by a linear transformation
composed with sigmoidal functions. Despite the seeming simplicity of the fitness function, the authors
make the case that optimizing fitness is a hard, NP-complete, problem. Under this model, they study the
extent to which the fitness landscape (that is, the question of which phenotypic traits contribute positively
to fitness, and which contribute negatively) can be inferred from the distribution of these traits in the
population after being subject to evolution for a moderate span of time. They then connect this question
with that of whether learning algorithms (potentially epigenetic in nature) can help optimize and speed up
evolution by learning the fitness landscape.

Toward the goal of inferring the fitness landscape, the authors prove two theorems. Theorem 3.1
concerns a simplified model of an infinite population with no mutations, while Theorem 3.2 concerns a
more complex model of a finite population with mutation, stochastic number of descendants and a culling
process. In either case, the result is that under certain assumptions, if a mutant genotype is present in the
population with high enough frequency after a long enough period of elapsed time, then we can
confidently infer that any phenotypic trait differential between the wildtype and the mutant is associated
with a higher fitness.

While Theorem 3.1 ignores mutation, even Theorem 3.2 seems at odds with mutation-selection balance.
Even a mutant with lower fitness will be present in the population at a frequency that is on the order of the
rate of mutation, while the theorem seems to claim that the frequency of such a mutant will be
exponentially small with high probability. The authors should resolve this apparent discrepancy. In
addition, the main ideas of the proof would be more clearly communicated if the authors would include a
treatment of the intermediate model of an infinite population with mutation.

As for the discussion of the way learning can speed up the evolutionary process, this part of the paper
remains unclear and underdeveloped. The authors discuss a two-step evolutionary process in which the
first step consists of small mutations in order to explore the fitness landscape, and the next step involves

changing the thresholds involved in the genotype-to-phenotype map in a way that promotes phenotypic

Page 21 of 25

F1000Research 2019, 8:358 Last updated: 16 OCT 2019

https://doi.org/10.5256/f1000research.20332.r48858
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 

changing the thresholds involved in the genotype-to-phenotype map in a way that promotes phenotypic
traits associated with higher fitness. While this idea is interesting and worth exploring, a few issues arise.
A conceptual issue remaining to be addressed is whether the threshold h is part of the genotype and what
mechanism are needed to alter its value. According to the authors, the h ’s can be modified genetically or
epigenetically. If epigenetically, it is not apparent what are the environmental cues that will lead to such
learning let alone the actual mechanism of modifying them.  If genetically, it is similarly unclear in what
way the learning of the fitness landscape is being stored, if at all, in the genotype, and what is the
connection to the Theorems of chapter 3. The theorems in chapter 3 rely on observing the frequency of a
genotype in the population, but such information is not stored in individual genotypes.  Additionally, if the
thresholds are understood to be variable and subject to selection, then the fitness-maximization problem
in fact becomes easy (in contrast to the prior analysis of it as NP-complete), unless we impose restrictions
on the range of the threshold. Indeed, one can set the thresholds at positive or negative infinity depending
on whether the corresponding trait is positive or negative in order to effectively keep the trait on or off
regardless of genotype. 

Finally, as this manuscript addresses the relation between learning and the rate of evolution, it would
benefit from including a reference to one of the most relevant and intuitive articles written in the late 80’s
by Geoffrey E. Hinton & Steven J. Nowlan, “How Learning Can Guide Evolution”  , 1,Complex Systems
495-502 . In it, Hinton and Nowlan showed how learning alters the shape of the fitness landscape and
thereby provides easier evolutionary paths towards sets of co-adapted alleles. Hinton and Nowlan
demonstrated that this effect allows learning individuals to evolve faster than non-learners. Though the
learning model presented by Hinton and Nowlan operates at “somatic” timescale, the analogy to
mutations at the evolutionary timescale can be drawn.
 
To conclude, though it can be improved by the above suggestions, this article touches upon very
interesting and important issues in the field of evolutionary biology which are still only lightly investigated,
and highlight what might be a fruitful path towards better understanding.
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There are many technical details in the paper that most biologists will find difficult to follow – I would put at
least some of these items into an Appendix. Also, I am wondering how many (even theoretical) biologists
would readily grasp the meaning of the K-SAT problem as defined. A more accessible formulation (in
addition to the strictly technical one) could do a lot for easier understanding (one of the papers by the
authors contains a didactive figure, for example).
I consider this paper a serious attempt at broadening our views of the role of learning dynamics in
evolution, but I think the message could be made a lot clearer. The punch line in a way is in the
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First, as it is portrayed in this paper, the effect of genes is filtered through a genetic regulatory network. It
seems that, just like in Ref 40 , that this filter itself does not evolve, or at least the dynamics is not given.
In other words, how do the weights in the network evolve? Note that in the Watson-Wagner paper in 

 it was the evolution of the weights that was related to Hebbian dynamics. So, how do we standEvolution
on this?
Second, in this paper the genetic control of the thresholds in also kept implicit, but the evolution of
threshold values does play an important role in the Goldschmidtian argument. Is the change in thresholds
genetic or epigenetic? If the latter, then it ought to be part of the regulatory network. I guess this is what
the statement “gene regulation detects that increase to change the threshold according to simple rules”.
How these rules would be implemented in mechanistic terms remains obscure. And how would they arise
in evolution? The simple rule implies feedback from expression levels to threshold values.
Third, do I understand it correctly that here, in contrast to Ref 40 , thresholds can be negative? But a large
negative threshold value would mean that expression levels will increase, since negative times negative is
positive (Eq. 2.4). If the statement “take three values: a large negative one, a neutral value close to zero
and a large positive one” instead refers to gene expression levels rather than threshold values (the latter

would in this case be nonnegative) then I do not understand the thought example. Increasing the
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would in this case be nonnegative) then I do not understand the thought example. Increasing the
threshold would reduce the expression level that was selected to go up in the first place!
These points seem to me crucial, so their clarification is badly needed. I would appreciate a few numerical
examples along with at least hints to answers to the more conceptual questions on the dynamics.
Also, according to the cited Nagylaki dynamics  the population evolves almost as if it were in linkage
equilibrium – which cannot hold for the asexual population considered by the authors.
There are also some minor issues in the paper: in Eq. 2.4 “s” should be replaced by a sigma, and there
are also examples where plurals and singulars in the same sentence do not match.
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