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Abstract

This study aimed to investigate the therapeutic responses of lung cancer mice models with

adenocarcinoma HCC827 (gefitinib sensitive) and HCC827R (gefitinib resistant) to the epi-

dermal growth factor receptor-tyrosine kinase inhibitor erlotinib alone and in combination

with the anti-angiogenesis agent bevacizumab using dynamic contrast enhanced (DCE)

and diffusion-weighted MRI. In the HCC827 model, temporal changes in DCE-MRI derived

parameters (Ktrans, kep, and iAUC90) and apparent diffusion coefficient (ADC) were signifi-

cantly correlated with tumor size. Ktrans and iAUC90 significantly decreased at week 2 in

the groups receiving erlotinib alone and in combination with bevacizumab, whereas kep

decreased at week 1 and 2 in both treatment groups. In addition, there was a significant dif-

ference in iAUC90 between the treatment groups at week 1. Compared to the control group

of HCC827, there was a significant reduction in microvessel density and increased tumor

apoptosis in the two treatment group. ADC value increased in the erlotinib alone group at

week 1 and week 2, and in the erlotinib combined with bevacizumab group at week 2.

Enlarged areas of central tumor necrosis were associated with a higher ADC value. How-

ever, progressive enlargement of the tumors but no significant differences in DCE parame-

ters or ADC were noted in the HCC827R model. These results showed that both erlotinib

alone and in combination with bevacizumab could effectively inhibit tumor growth in the gefi-

tinib-sensitive lung cancer mice model, and that this was associated with decreased vascu-

lar perfusion, increased ADC percentage, decreased microvessel density, and increased

tumor apoptosis with a two-week treatment cycle.
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Introduction

Lung cancer is the most common cause of cancer-related death worldwide, and it is a signifi-

cant public health problem associated with a poor prognosis under current therapeutic options

[1]. Recent advances in cancer therapeutics have shown that identifying molecular targets for

lung cancer treatment such as vascular endothelial growth factor (VEGF) and epidermal

growth factor receptor (EGFR) is important to improve patient survival. VEGF is a pro-angio-

genic factor which binds membrane receptors, and its intra-cytoplasm domain presents tyro-

sine kinase activity. Angiogenesis is considered to be important for tumor growth, metastasis

and patient prognosis [2–4]. Targeted therapy against angiogenesis can lead to regression or

normalization of neovascular structures, and the inhibition of new blood vessel growth. Beva-

cizumab (Avastin, Genentech/Roche) is a monoclonal antibody that selectively binds to VEGF

and prevents interactions with its receptor. It was shown to significantly prolong progression-

free survival (PFS) and overall survival when added to doublet chemotherapy in Eastern Coop-

erative Oncology Group (ECOG) study E4599, and to prolong PFS in the Avastin in Lung

(AVAiL) study. Bevacizumab is approved for patients with advanced non-squamous non-

small cell lung cancer (NSCLC) [5–7]. However, responses to bevacizumab alone have been

reported to be transient and susceptible to resistance, so that other targets for the treatment of

patients with NSCLC are needed [8].

Somatic mutations in the EGFR gene have been identified in patients who respond to

EGFR-tyrosine kinase inhibitors (TKIs) [9–11]. The two most common EGFR mutations are

deletions of exon 19 that eliminate a leucine-arginine-glutamate-alanine motif in the tyrosine

kinase domain of EGFR, and L858R point mutations in exon 21 that result in substitution of

arginine for leucine at amino acid 858 [12]. Gefitinib and erlotinib target the EGFR tyrosine

kinase detectable in most cases of NSCLC. Phase II and III trials have shown partial responses

in 8% to 12% of patients with progressive NSCLC after chemotherapy [13–16]. In addition, a

phase II study suggested synergistic activity in first-line treatment with a combination of beva-

cizumab and erlotinib in stage IIIb/IV NSCLC [17], and the addition of bevacizumab to erloti-

nib has been reported to prolong PFS in patients with NSCLC with activating EGFR mutations

compared with erlotinib alone [18]. The phase II trial (BELIEF) also provided evidence of ben-

efit for the combination of erlotinib and bevacizumab in patients with EGFR-mutant NSCLC

[19].

Research into the mechanism and therapeutic response of lung cancer to variable treatment

strategies and the development of new treatment paradigms are of the utmost importance. The

current clinical standard to evaluate tumor response is based on the response evaluation crite-

ria in solid tumors (RECIST), which define the treatment response only in terms of tumor size

[20]. However, using size alone to assess tumor response has limitations, and in particular

when assessing newer cancer therapies aimed at stabilizing the disease [21–23]. It is known

that a change in the size of a tumor may be delayed chronologically, and thus several courses

of treatment are often required before a conclusion can be made regarding a treatment

response [23]. Recent studies have demonstrated that a multi-parametric imaging approach

combining information from different functional imaging techniques such as dynamic con-

trast-enhanced (DCE) magnetic resonance imaging (MRI), diffusion-weighted (DW)-MRI,

susceptibility MRI, and perfusion computed tomography (CT), is a promising approach to

assess treatment response in the early phases of drug development [24–26]. DCE-MRI pro-

vides important pharmacokinetic parameters which can measure sensitive pathophysiological

characteristics and detect changes in tumor vasculature and the peritumoral microenviron-

ment [27–28]. For example, increased tumor angiogenesis may increase tumor perfusion and

blood volume, which can be detected and quantified by using DCE-MRI [29]. In addition,
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tumor necrosis and apoptosis may decrease cellularity and change the peritumoral microenvi-

ronment which can be quantified by using DW-MRI [30]. DW-MRI generates an apparent

diffusion coefficient (ADC) map which has been shown to correlate with cell density measures

in cancer models [31– 32].

A previous study reported a decrease in tumor size and decreased values of all MR-derived

pharmacokinetic parameters in patients receiving the anti-angiogenic agent bevacizumab

in combination with gemcitabine and cisplatin as first-line treatment, and therefore MR

parametric histograms may have the potential to predict an early treatment response to such

treatment [33]. Recently, target therapy alone or in combination with chemotherapy has been

used to treat advanced NSCLC with/without distant metastasis [7, 15, 34–37]. Consequently,

treatment with bevacizumab and erlotinib targeting different tumor growth pathways has

become a new therapeutic option for lung cancer. On the basis of little overlap in their toxic-

effect profiles, the aim of this study was to assess the therapeutic response of lung cancer to

bevacizumab and erlotinib treatment using DCE and DW-MRI in a mice model.

Materials and methods

Lung cancer cell lines, drugs and animal preparation

In NSCLC, mutations in the EGFR tyrosine kinase domain have been associated with sensitiv-

ity to erlotinib and gefitinib [38]. Therefore, in this study we used the gefitinib hypersensitive

NSCLC cell line HCC827 with an exon 19 EGFR deletion, and the acquired resistant cell line

HCC827R (gefitinib resistant) [39]. Erlotinib (oral, 25 mg/kg/day) and bevacizumab (i.p., 5

mg/kg/twice a week) were used to treat lung cancer xenografts on the subcutaneous tissue of

mice.

In vivo tumorigenesis assay in the murine xenograft model

Severe combined immunodeficiency (SCID) mice were purchased at ages 4 to 6 weeks from

the BioLASCO (Taipei, Taiwan) and housed in an isolator and fed with autoclaved food ad
libitum. For tumor growth, cancer cells were trypsinized, washed, centrifuged, and resus-

pended. A total volume of 0.1 mL containing 4×106 cells was subcutaneously injected into the

dorsal region of each mouse. All of the mice were evaluated using DCE and DW-MRI at the

2nd (baseline), 3rd and 4th weeks after tumor implantation. After the final MR study, mice were

anesthetized with intraperitoneal injection of 1.2% Avertin and then sacrificed by intravenous

injection of potassium chloride (2 meq/kg). The tumors were confirmed by histological exami-

nations, and the excised tissues were fixed and embedded in ornithine carbamyl transferase.

From each frozen block, three consecutive sections were obtained for hematoxylin and eosin

(H&E), microvessel and apoptosis staining. All animal experiments were performed in tripli-

cate and all procedures for animal experimental protocols were approved by the Institutional

Animal Care and Use Committee of National Taiwan University College of Medicine.

MR imaging

All animal studies were performed using a 7T animal scanner (BioSpec 70/30 USR, Bruker,

Germany) equipped with a surface coil (Bruker). DCE-MR was performed using the following

parameters: repetition time (TR) 100.1 ms, echo time (TE) 3.8 ms, flip angle 40 degrees, num-

ber of excitations (NEX) 1, 9 slices, field of view 3.5 x 3.5 cm, slice thickness 1 mm, matrix size

256 x 192, resolution 137×182 μm, scan time 14.4 s/acquisition. There were 60 acquisitions

and an intraorbital contrast injection was given from the beginning of the 5th scan (i.e. 72 s

after the first acquisition).

DCE and DW-MRI for targeted therapy of NSCLC
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One b0 image and three DW images in read, phase, and slice gradient directions were

acquired using a pulsed-gradient spin-echo segmented echo-planar imaging sequence with the

following parameters: TR 3000 ms, TE 29.3 ms, in-plane resolution 273×273 μm, slice thick-

ness 1–1.5 mm, no intersection gap, number of segments 4, NEX 5, and b value 700 s/mm2.

ADC maps were generated from the DW images. For DW-MRI, 9 slices were acquired at the

same location as DCE-MRI.

The mean diffusivity (MD) was then calculated as:

MD ¼
1

3

X

i

Di;

where i = read, phase, or slice. Di is the ADC value measured in each direction and calculated

as:

Di ¼
ln S0 � ln Si

b
;

where S0 is the MR signal of the b0 image, Si is the MR signal of DWI measured in a given

direction, and b is the diffusion sensitivity. To measure the MD inside the tumor, the tumor

was first manually selected directly on the MD map by a researcher familiar with the anatomy

of mice. After the region of the tumor had been selected, the core region of the tumor was gen-

erated by applying morphological erosion to manually identify the region of the tumor itera-

tively. The iteration stopped when the ratio area of eroded region of interest to the area of

non-eroded region of interest was equal to or less than 1/4. The peripheral region of the tumor

was defined as the region of the tumor excluding the core region. Mean values of MD in the

whole tumor region, and core and peripheral regions of the tumor were then evaluated.

MR imaging analysis

Analysis of DCE-MRI was carried out using a two-compartment Tofts model [33] and com-

mercial software (Apollo Medical Imaging Technology Pty Ltd, Melbourne, Australia). The

parameters derived from the dynamic data included the volume transfer constant Ktrans

(min-1/1000), rate constant kep (min-1), extracellular extravascular space (EES) volume fraction

(ve) (0 < ve < 1, dimensionless), and plasma volume fraction (vp) (0 < vp < 1, dimensionless)

[27]. In addition, model free curve analysis and parametric histogram analysis [28, 33] were

performed. The parameters of conventional curve analysis included maximum enhancement,

time to peak (min), uptake rate (min-1), and washout rate (min-1) as well as area under the

curve within 90 seconds (iAUC90). The quantitative summary statistics of parametric histo-

grams, including the mean, standard deviation (SD), kurtosis and skewness of these parame-

ters (i.e., Ktrans mean, Ktrans SD, kep mean, kep SD, ve mean, ve SD, vp mean, and vp SD, iAUC90

mean, iAUC90 SD) were calculated to evaluate intratumoral heterogeneity.

Immunohistochemical examinations

After completing the final MR study, the implanted tumors were excised. The specimens were

examined using H&E and CD31 antibody (1:50 dilution, clone MEC13.3, PharMingen, BD

Pharmingen, San Diego, CA) staining of the microvessels. The distribution and morphology

of the microvessels in each tumor were assessed under microscopy. Any separable brown

immunostained endothelial cell cluster was considered to be a single microvessel. Microvessels

in the area of most intense neovascularization were counted in three randomly chosen 200X

magnification fields, and the average of the three readings was defined as the microvessel den-

sity (MVD). For the apoptosis assay, the samples were stained with cleaved Parp (1:100

DCE and DW-MRI for targeted therapy of NSCLC
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dilution, 04–576, Millipore, Billerica, MA). The proportion of positive cells was measured

using the Aperio Color Deconvolution Algorithm (Aperio Technologies Inc, Vista, CA).

Statistical analysis

All statistical analyses were performed using R software version 3.0.2 (R Foundation for Statis-

tical Computing, Vienna, Austria). A two-sided p value� 0.05 was considered to indicate sta-

tistical significance. The distributional properties of continuous variables were expressed by

mean ± standard deviation (SD). The percentage of treatment response was defined as the per-

centage of change in tumor volume (mm3) between baseline and final evaluations. Differences

in treatment responses between each group classified by tumor size and microvessel density

were assessed using the Wilcoxon rank-sum test depending on the result of Shapiro-Wilk test

of normality.

Results

MRI studies of the gefitinib-sensitive (HCC827) and gefitinib-resistant (HCC827R) lung can-

cer mice were carried out weekly according to three different regimens (erlotinib alone, erloti-

nib combined with bevacizumab, and controls without treatment). The average values of DCE

parameters and ADC for each group are listed in Tables 1 and 2. Continuous tumor growth

was observed in the control group, whereas the tumor size decreased in the erlotinib alone and

erlotinib combined with bevacizumab groups in the gefitinib-sensitive tumor model (Fig 1A),

with reductions in tumor volume of 79% and 56%, respectively, after 2 weeks of treatment

(p = 0.008 and 0.006). Rapid tumor growth was noted in both treatment groups in the gefiti-

nib-resistant lung cancer model with no significant differences (Fig 1B).

Interestingly, decreases in the DCE-MR derived parameters (such as Ktrans, kep and iAUC90)

at different time points in the HCC827 mice model (gefitinib sensitive) were found along with

the decreases in tumor size (Fig 2). However, in the gefitinib-sensitive model, no significant

changes in the parameters were noted in the gefitinib-resistant model (data not shown).

Group plots of relative changes in each group from baseline to week 2 are shown in Fig 3.

Ktrans significantly decreased at week 2 in the erlotinib alone and combined with bevacizumab

groups (p = 0.007 and 0.004) and significant decreases in kep in the erlotinib alone and com-

bined with bevacizumab groups were detected even earlier at week 1 (p = 0.008 and 0.03) and

week 2 (p = 0.008 and 0.004). Similarly, significant decreases in iAUC90 were observed at week

2 in the erlotinib alone (p = 0.008) and combined with bevacizumab groups (p = 0.004). In

addition, there was a significant difference in iAUC90 between the erlotinib alone and com-

bined with bevacizumab group at week 1 (p = 0.03), even though no significant difference in

tumor volume was found at this time point in either treatment group. However, no significant

changes in DCE parameters were noted in the gefitinib-resistant model (data not shown).

The response to treatment was evaluated using DW-MRI, and the results of the percentage

change in ADC in group analysis are shown in Fig 4A. The mice in the gefitinib-sensitive lung

cancer model treated with erlotinib had significant increases in ADC at week 1 and week 2

(p = 0.04 and 0.03) and those in the erlotinib combined with bevacizumab group had a signifi-

cant increase at week 2 (p = 0.045), whereas the control group showed a decreased in ADC as

the tumors grew. Normalized histograms of the three groups also indicated a different peak

shift after treatment (Fig 4B), with peak shifts toward higher ADC values at week 1 and then

transiently at week 2 in both treatment groups in the gefitinib-sensitive lung cancer model.

However, in the gefitinib-resistant model, ADC decreased in all treatment groups during the

follow-up period, and there were no consistent peak changes as the tumors grew. In addition,

DCE and DW-MRI for targeted therapy of NSCLC
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there were no significant changes in ADC values in DW-MRI between the treatment groups as

with DCE-MRI in the gefitinib-resistant NSCLC model.

Normalized histograms of ADC showed higher ADC values in the tumors of the treatment

groups compared to the control group, which corresponded to the histologic findings in the

TKI-sensitive tumor model. Percentage reductions in the DCE parameters (Ktrans, kep, and

iAUC90; Figs 1–3) were correlated with the histologic findings of MVD (Fig 5). Significant dif-

ferences in MVD were detected using the endothelial cell marker CD31 in the erlotinib group

versus the control group (p = 0.007) and erlotinib combined with bevacizumab group versus

the control group (p = 0.004) in the gefitinib-sensitive tumor model (Fig 5A). However, there

were no significant differences in MVD between the different regimens in the gefitinib-resis-

tant model (Fig 5B).

A variable degree of tumor necrosis was observed in the histologic staining of the mice in

the HCC827 model that received erlotinib or erlotinib combined with bevacizumab (Fig 5A).

Areas of central tumor necrosis corresponded to higher ADC values within the tumors. The

Table 1. Comparison of the DCE and DW MR parameters among control, erlotinib, and combined erlotinib and bevacizumab (BEV) groups in

HCC827.

HCC 827 Baseline Week 1 Week 2

iAUC90

Ctrl 142.4 ± 28.4 188.1 ± 112.0 323.4 ± 88.7

erlotinib 353.2 ± 103.3 306.6 ± 118.6 196.2 ± 90.5†

erlotinib+BEV 391.4 ± 176.0 180.4 ± 73.7*‡ 122.7 ± 68.6*

Ktrans (min-1)

Ctrl (min-1) 65.4 ± 19.4 85.2 ± 33.6 159.9 ± 37.8

erlotinib 143.7 ± 57.4 115.0 ± 36.1 77.5 ± 49.7†

erlotinib+BEV 101.7 ± 33.4 85.9 ± 39.8 63.5 ± 43.3*

kep (min-1)

Ctrl 172.6 ± 33.4 274.9 ± 138.4 716.6 ± 183.2

erlotinib 580.8 ± 132.9 356.5 ± 127.2† 222.6 ± 132.5†

erlotinib+BEV 300.3 ± 80.9 241.4 ± 108.2* 163.4 ± 81.6*

ADC (×106 mm2)

Ctrl 1432.4 ± 488.8 1342.8 ± 311.8 1194.7 ± 275.9

erlotinib 1170.7 ± 162.7 2071.1 ± 685.9† 2992.5 ± 1595.8†

erlotinib+BEV 1352.9 ± 629.1 1461.9 ± 671.4 1581.4 ± 302.9*

Ve

Ctrl 365.3 ± 137.7 534.5 ± 326.7 267.1 ± 89.3

erlotinib 477.7 ± 313.6 316.4 ± 93.2 263.9 ± 111.1

erlotinib+BEV 362.9 ± 76.0 389.8 ± 173.8 400.6 ± 441.1

Vp

Ctrl 98.8 ± 80.6 76.5 ± 44.1 80.1 ± 52.5

erlotinib 115.9 ± 67.5 89.5 ± 69.8 68.4 ± 69.2

erlotinib+BEV 52.7 ± 25.4 57.3 ± 53.6 98.5 ± 67.8

Ctrl, control (without treatment); BEV, bevacizumab

Data presented were mean absolute value ± standard deviation (S.D.).

The P values were obtained from the paired t-test or Wilcoxon signed-rank test.
†, p <0.05 for comparison between “Ctrl” and “erlotinib”.

*, p < 0.05 for comparison between “Ctrl” and “erlotinib combined with BEV”.
‡, p < 0.05 for comparison between “erlotinib” and “erlotinib combined with BEV”.

https://doi.org/10.1371/journal.pone.0187824.t001
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control group showed prominent tumor vascularity and lower necrotic fractions (Fig 5A). In

addition, we also found significantly increased tumor apoptosis after analyzing the cellular

activity of cleaved Parp, a marker of apoptosis (Fig 6). A statistically significant increase in apo-

ptosis was found with the effect of a therapeutic response in the erlotinib group (p = 0.007)

and erlotinib combined with bevacizumab group (p = 0.004) compared with the control group

in the gefitinib-sensitive lung cancer model.

Discussion

EGFR-TKIs have been shown to have significant clinical therapeutic effects in patients with

lung cancer who harbor EGFR activating mutations [38]. Recently, target therapy alone or

combined with chemotherapy has been used to treat advanced NSCLC, and drugs targeting

the EGFR and VEGF pathways have become new therapeutic options for lung cancer therapy.

In the HCC827 xenograft model of the present study, erlotinib alone and erlotinib combined

with bevacizumab considerably suppressed tumor growth compared with control groups, and

erlotinib in particular elicited an extremely strong tumor inhibition at the dose of 25 mg/kg/

day. The inhibition of erlotinib combined with bevacizumab was as efficient as that of erlotinib

alone may be associated with the high dose of erlotinib. Similar results were reported by Furu-

gaki et al., however, by reducing erlotinib to 5 mg/kg/day, they showed an additive inhibitory

effect of erlotinib and bevacizumab combination compared to erlotinib alone in a 22-day

treatment period in HCC827 xenografts [40]. Therefore, we performed another EGFR TKI-

Table 2. Comparison of the DCE and DW MR parameters among control, erlotinib, and combined erlotinib and bevacizumab (BEV) groups in

HCC827R.

HCC 827R Baseline Week 1 Week 2

iAUC90

Ctrl 245.1 ± 175.9 358.0 ± 151.6 346.0 ± 99.1

erlotinib 212.4 ± 130.4 204.9 ± 73.8 123.6± 67.9

erlotinib+BEV 176.8 ± 90.6 174.3 ± 111.8 215.0 ± 134.3

Ktrans (min-1)

Ctrl 81.2 ± 34.7 123.9 ± 75.9 173.2 ± 101.9

erlotinib 86.4 ± 18.2 98.8 ± 73.3 151.8 ± 48.0

erlotinib+BEV 59.8 ± 20.4 86.8 ± 59.2 96.3 ± 50.7

kep (min-1)

Ctrl 226.3 ± 154.3 612.7 ± 636.1 563.8 ± 363.5

erlotinib 281.2 ± 128.6 359.6 ± 246.3 800.8 ± 737.8

erlotinib+BEV 137.6 ± 66.4 501.4 ± 414.8 455.5 ± 205.2

ADC(×106mm2)

Ctrl 1393.5 ± 414.1 628.1 ± 326.7 387.5 ± 214.9

erlotinib 1537.6 ± 417.5 325.6 ± 133.2 623.0 ± 741.7

erlotinib+BEV 1565.6 ± 420.6 315.2 ± 229.8 239.2 ± 100.3

Ve

Ctrl 472.3 ± 371.3 628.1 ± 326.7 387.5 ± 214.9

erlotinib 411.7 ± 166.5 325.6 ± 133.2 623.0 ± 741.7

erlotinib+BEV 487.8 ± 185.4 315.2 ± 229.8 239.2 ± 100.3

Vp

Ctrl 116.5 ± 84.5 115.2 ± 104.4 92.3 ± 31.3

erlotinib 77.0 ± 30.9 71.2 ± 50.8 67.7 ± 51.8

erlotinib+BEV 94.0 ± 62.8 53.9 ± 36.6 69.1 ± 47.0

https://doi.org/10.1371/journal.pone.0187824.t002
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sensitive PC9 xenograft model and examined the effects of low dose EGFR-TKI (gefitinib, 10

mg/kg/day) and gefitinib plus bevacizumab. The further results indicated that bevacizumab

combination significantly enhanced antitumor activity of gefitinib as shown in the supporting

information (S1 and S4 Figs). DCE and DW MRI derived parameters were also associated

with the therapeutic response in the TKI-sensitive model (S2 and S3 Figs).

The current clinical standard for assessing treatment response is to measure changes in

lesion size [33]. However, the use of changes in size is limited when assessing tumor response,

particularly when assessing newer cancer therapies that can stabilize the disease [21–23]. It is

known that a change in the size of a tumor may be delayed chronologically, and thus several

courses of treatment are often required before a conclusion can be made regarding the

response of a tumor to treatment [23]. DCE-MRI provides important pharmacokinetic param-

eters which can measure sensitive pathophysiological characteristics and detect changes in

tumor vasculature and the peritumoral microenvironment [27–28]. In the current study, the

same inhibitory effects of erlotinib alone and erlotinib combined with bevacizumab groups in

the gefitinib-sensitive tumor model were observed at week 1 as the tumor size decreased

Fig 1. Plots of tumor volume among the control, erlotinib, and combined erlotinib and bevacizumab

(BEV) groups in HCC827 (A) and HCC827R (B) mice before and after treatment. Data are presented as

the mean ± SD from week 0 (baseline) to week 2. *p < 0.05.

https://doi.org/10.1371/journal.pone.0187824.g001
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shown in Fig 1A but no significant differences were detected between the two treatment

groups. However, the value of iAUC90 was reduced more in combination groups than erlotinib

alone at this time point (Table 1). In addition, the relative change of iAUC90 (Fig 3C) between

the two treatment groups at week 1 was significant (p = 0.03). The changes of iAUC90 were

really earlier than that of tumor volume between the two treatment groups in the gefitinib-sen-

sitive model. Imaging the tumor physiology allowed us to detect changes in iAUC90 before vol-

umetric changes between the erlotinib and erlotinib combined with bevacizumab groups.

Therefore, the therapeutic response to the two target treatments could be assessed by MRI in

the early phase of tumor development.

DW-MRI evaluates the diffusion of water molecules, and it has been shown to be correlated

with cell density measurements in cancer models [31, 32, 41]. Using non-invasive MRI imag-

ing with DCE and ADC quantification, early pathological changes could be observed, and the

color mapping provided further information on the internal components and vascular

Fig 2. MR-DCE images and parametric maps from representative mice in the HCC827 model receiving

different treatment regimens. (A) Ktrans, (B) kep and (C) iAUC90 mapping of one representative mouse from

each group before and after treatment.

https://doi.org/10.1371/journal.pone.0187824.g002
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structures of tumors, and this may allow for sensitive and rapid evaluations during tumor

progression.

In this study, the pharmacokinetic analysis of DCE-MRI was significantly correlated with

effective tumor control and vascular inhibition, consistent with previous reports in which

most tumors had a decrease in Ktrans after weeks of treatment, indicating an inhibitory effect

on tumor vasculature [42–43]. These findings support the hypothesis that the more sensitive

imaging tools DCE and DW-MRI should be used when evaluating tumor response. The imag-

ing signals and distribution of the imaging components allowed for the analysis of the thera-

peutic effects from DCE and DW-MRI, and the findings corresponded to the histologic

findings in this study. Among the parameters derived from DCE-MRI in this study, Ktrans, kep

and iAUC90 decreased from week 1 in the treatment groups compared to the control group.

This suggests that a decrease in kep is the result of an expanded extracellular extravascular

space of the treated tumors, and that a decrease in iAUC90 indicates the reduction of total

tumor vascularity and vascular function.

Fig 3. Plots of relative changes in DCE parameters for each group in HCC827 mice. The parameters,

(A) Ktrans, (B) kep and (C) iAUC90 are shown from week 0 (baseline) to week 2.

https://doi.org/10.1371/journal.pone.0187824.g003
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However, no effective tumor control was observed using the TKI even when combined

with anti-angiogenesis therapy in the gefitinib-resistant NSCLC xenografts. Mechanisms of

acquired resistance to EGFR-TKI in NSCLC are secondary mutations in EGFR itself, including

the EGFR T790M mutation (about 50%) and amplification of the MET oncogene (15–20%)

[44–45]. Engelman et al. had found overexpression of MET in HCC827 cells was sufficient to

confer resistance and suggested that MET amplified gefitinib resistant cells (HCC827R) utilize

ERBB3 as the primary adaptor to activate PI3K/Akt signaling in the presence of EGFR TKIs

[39]. The identified resistant mechanisms to EGFR-TKIs may provide specific targets for

development of effective therapeutic strategies.

In DW-MRI, the higher ADC values of the treated mice in the gefitinib-sensitive model

reflected the increased water diffusion that may correspond to loss of tissue and reduction of

vessel density [46]. When tumor cells begin to die, increased water mobility cause a peak shift

of ADC as seen in the regular target therapy of this study. Several previous studies have also

reported that EGFR-TKIs, including gefitinib and erlotinib, induce apoptosis in NSCLC cell

Fig 4. Changes of MR apparent diffusion coefficient parameter: ADC. (A) Relative changes and (B)

normalized histograms of ADC for each group in the HCC827 and HCC827R lung cancer mice.

https://doi.org/10.1371/journal.pone.0187824.g004
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lines through the activation of intrinsic pathways [47–48]. The higher ADC values and signifi-

cant increases in cleaved Parp as shown in the staining results indicate caspase-dependent apo-

ptosis. This provides a more detailed understanding of the mechanisms involved in the

pathways of the EGFR-TKI erlotinib and bevacizumab, and this may provide a more rational

basis for their therapeutic use.

In this study, we demonstrated an early increase in absolute ADC values and decreases in

Ktrans, kep and iAUC90 in treatment with both TKI alone and in combination with an anti-

angiogenesis agent compared to the untreated tumors before apparent changes in tumor size.

This final result was shown by decreased vascularity of the treated tumors as reflected by

decreased MVD. There are two main types of vascular targeting agents, monoclonal antibodies

against VEGF such as bevacizumab as used in the study, and other TKIs such as sunitinib, van-

detanib, and sorafenib [49]. Different kinds of VEGF TKIs have certain unique characteristics

including activity against TK domains of several other receptors involved in tumor prolifera-

tion such as c-Kit, Raf, PDGF, and FGF, and this can lead to the selective inhibition of new

Fig 5. Histological staining of tumor vessels in the HCC827 and HCC827R lung cancer mice tissues.

(A) Representative slides stained with anti-CD31 antibodies for each group (200X). (B) MVD was counted in

three randomly chosen 200X. Columns, mean; Bars, SD. *p < 0.05.

https://doi.org/10.1371/journal.pone.0187824.g005
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vessel growth and decreased vascular perfusion and permeability in tumors. In this study, the

lack of antiangiogenesis efficacy in the combination therapy probably reflects the redundancy

of proangiogenic pathways other than the vascular epidermal growth factor pathway [50] and

the highly heterogeneous nature of NSCLC. In addition, it is necessary to identify predictive

factors of efficacy for bevacizumab and erlotinib. This is probably the real challenge to opti-

mize the use of these drugs. Further studies are needed to investigate whether these findings

can be extended to other antiangiogenesis agents and to elucidate different properties of MRI

parameters, and potentially the development of new management strategies.

Our results suggest the usefulness of early increases in ADC and quantitative changes in the

DCE parameters Ktrans, kep and iAUC90 as pharmacodynamic biomarkers for tumor response

to effective therapy and improvements with the additional therapeutic options. DCE-MRI has

been widely used to assess vascular perfusion and permeability by pharmacokinetic modeling

Fig 6. Samples stained for cParp for each group in the HCC827 and HCC827R lung cancer mice. (A)

The brown staining of cParp images in the treatment groups of the HCC827 mice indicated the positive cells

undergoing apoptosis. (B) Percentage of cParp-positive pixels. cParp, cleaved Poly (ADP-ribose)

polymerase. Columns, mean; Bars, SD. *p < 0.05.

https://doi.org/10.1371/journal.pone.0187824.g006
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of tissues in patients with different cancers [28]. Therefore, further technical advances in arte-

rial input function identification, kinetic model improvement, and new image acquisition

technology are needed before DCE-MRI can be used routinely in clinical oncology. However,

there are several limitations when evaluating DCE-MRI parameters. iAUC90 relies on an accu-

rate T1 map and represents the composition of physiologic processing, but it may not accu-

rately reflect vascular changes. In addition, Ktrans is dependent on determining arterial input

function and may be more physiologically meaningful.

This study confirmed that changes in tumor size after treatment were related to its charac-

teristics, and that selecting the most appropriate target drug can be effective in inhibiting

tumor growth. The intrinsic composition of the tumor, including vascular perfusion and per-

meability characteristics were associated with changes in tumor size, and they could be

obtained by MRI and proven by pathology and immunostaining. These findings provided

basic evidence for clinical studies of lancet oncology in 2014 [18]. Two weeks of treatment may

be too short a time to determine the effects of bevacizumab in this study. Usually, the effects of

bevacizumab take several weeks (more than 21 days) to consolidate, and thus, the initial thera-

peutic response of bevacizumab which have lasted at most two weeks, may be too short to

assess efficacy of additive antitumor activity. In this case, it is reasonable to prolong the treat-

ment period to 3–4 weeks to further evaluate the therapeutic effects of combination and assess

the long-term survival of the animals. Combining the findings of MRI and immunohistochem-

ical quantification, our results confirmed the suppression of tumor growth after treatment

with the two targeted agents. In this study, there was a limitation in observing a longer period

of treatment effect because of the relatively large tumor growth compared to the small body

size of the mice.
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