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ABSTRACT: The nickel catalyzed reductive coupling of aldehydes with sorbate esters and related electron-deficient 1,3-dienes are
known in the literature to occur at the π-bond proximal to the ester to afford aldol-type products. In stark contrast to this established
path, a VAPOL-derived phosphoramidite ligand in combination with a bench-stable nickel precatalyst brokers a regiocomplementary
course in that C−C bond formation proceeds exclusively at the distal alkene site to give deoxypropionate type products carrying an
acrylate handle; they can be made in either anti- or syn-configured form. In addition to this enabling reverse pathway, the reaction is
distinguished by excellent levels of chemo-, diastereo-, and enantioselectivity; moreover, it can be extended to the catalytic formation
of F3C-substituted stereogenic centers. The use of a dienyl pinacolboronate instead of a sorbate ester is also possible, which opens
access to valuable chiral borylated building blocks in optically active form.

The nickel catalyzed reductive coupling of aldehydes with
1,3-dienes mediated by BEt3 or ZnEt2, as pioneered by

the groups of Mori and Tamaru in the early 1990s, is
distinguished by a broad scope with regard to all reaction
partners.1−9 Most notably, variously substituted dienes of
largely different electronic character participate uniformly well
and usually result in excellent levels of regio- and
diastereoselectivity. This aspect is illustrated by the prototype
examples compiled in Scheme 1A:6 isoprene reacts at the more
highly substituted and hence more electron rich alkene site to
give 1, and methyl sorbate affords product 2 exclusively, in
which the new C−C bond was formed α to the ester group in
analogy to an aldol reaction.6 The exquisite anti-selectivity in
both cases is another characteristic trait of reductive
homoallylations of this type.1−8

These chemical virtues, however, are partly offset by the
difficulty of devising enantioselective versions of these
reactions.10,11 Apart from a few special cases,12 1,4-
diphenylbuta-1,3-diene remains the only substrate known to
date for which high levels of induction were reached in
reactions with aromatic aldehydes using the spirocyclic
phosphoramidite L2 as ligand to the nickel catalyst (Scheme
1B);13,14 when applied to an electronically biased dienylester
derivative, however, the resulting product 4 showed a much
more modest ee.13 It is against this backdrop that the dramatic
consequences of the use of the VAPOL-derived phosphor-
amidite L115,16 presented in this Communication have to be
seen (Scheme 1C). Under its auspices, the nickel catalyzed
reactions of sorbate esters or related substrates A follow an
“inverse” regiochemical course: rather than affording aldol-type
products such as 2 and 4, it is the distal double bond that
engages in C−C bond formation, leading to products of type
B. This striking change of the connectivity pattern comes along
with generally excellent levels of asymmetric induction.

The VAPOL-derived phosphoramidite L1, which is made in
one step from commercial materials, had originally been
developed during our study on the nickel catalyzed formation
of predifferentiated diols from aldehydes and electron-rich
dienol ethers or silylethers;15 it was found to be unique among
a set of ≈50 chiral ligands in that it ensured excellent
regiocontrol and respectable asymmetric induction, while
affording meaningful chemical yields. To this end, however,
catalyst loadings of 10 mol % and long reaction times at low
temperature were mandatory in most cases.15 We were
therefore pleased to find that reactivity is much less of an
issue when electron deficient dienes such as methyl sorbate
((E,E)-5) are used as the substrates (Scheme 2). The reaction
works well with the bench-stable Ni(0) stilbene complex
Ni(tBu-stb)3 as precatalyst,17 thus obviating the need to handle
highly air-sensitive Ni(cod)2. With 2.5 mol % each of this
convenient and commercial nickel source and the chiral ligand
L1 in combination with BEt3 as the promoter,18 (E,E)-5 was
coupled with benzaldehyde at ambient temperature to give the
anti-configured alcohol 6a in 90% yield and 94% ee, virtually as
a single regio- and diastereomer (dr ≥ 20:1, rr ≥ 20:1). To the
best of our knowledge, this course is unparalleled in the
literature.19 The stereochemical assignment was based on the
comparison of the spectral and chiroptical properties of the
analogous ethyl ester derivative 6b with the data of its
literature-known antipode (see also below).20 The reaction
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also scales well (see below) and is therefore deemed enabling
and practical alike.

As one might expect, the reductive coupling occurs
stereospecifically: changing the geometry of the reacting distal
double bond of methyl sorbate from E to Z switches of the
product stereostructure from anti to syn, although the level of
asymmetric induction in the resulting products 7 was slightly
lower.

The chemoselectivity profile of this new transformation is
excellent. Aryl aldehydes of largely different electronic
character and steric demand were found to react well (Figure
1A): they range from compounds as electron-rich as 3,4,5-
trimethoxybenzaldehyde or 4-dimethylaminobenzaldehyde to

their electron-deficient cousins bearing a −COOMe, −CN,
−Bpin, or −CF3 substituent on the para-position of the
aromatic ring; all of them furnished the corresponding
products with ee’s ≥ 90%. The compliance of p-trifluoro-
methylbenzaldehyde is particularly noteworthy, as it had been
one of the least selective substrates in our previous study on
the nickel catalyzed reductive diol synthesis.15 The successful
use of 2-methylbenzaldehyde shows that an ortho-substituent
does not bring the reaction to a halt, and furan-2-carbaldehyde
was also well-accommodated. From the chemical point of view,
it is remarkable that the aryl chloride and even aryl bromide
groups in products 13 and 14 proved compatible, suggesting
that this Ni(0)-based catalyst system is poor at undergoing
oxidative addition; to rigorously scrutinize this aspect, the
formation of 14 was repeated on 1 mmol scale without any
serious detriment to yield and optical purity; 4-iodobenzalde-
hyde, however, remained beyond reach. The tolerance of the
−CN and the −NMe2 groups, as manifested in the formation
of 8b and 8e, respectively, is equally noteworthy since these
functionalities are potential ligands to Ni(0) that could either
bring the conversion to a halt and/or could compete with the
chiral phosphoramidite and thus entail a racemic background
reaction; neither problem was encountered. Limitations,
however, are reached with pyridine-3-carbaldehyde, 3-nitro-

Scheme 1. (A) Prototype Nickel-Catalyzed “Tamaru
Reactions”, (B) Enantioselective Variant: State-of-the-Art
(ref 13), and (C) This Work

Scheme 2. Regiospecific “Inverse” Coupling of Sorbate
Esters with Aldehydes Figure 1. Scope of the nickel catalyzed enantioselective reverse

coupling reaction of (E,E)-5 and related α,β,γ,δ-diunsaturated ester
derivatives under the conditions specified in Scheme 2; in all cases,
the dr was >20:1
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benzaldehyde, and enals, which likely block or destroy the
catalyst (for details, see the Supporting Information (SI)).

The standard reaction conditions also apply to aliphatic
aldehydes, all of which afforded “inverse” adducts with ee’s well
above 90% (Figure 1B). Products 15a−c featuring a methyl,
ethyl, or protected hydroxymethyl branch were formed with
uniformly high selectivity; this finding suggests that there is
ample scope with regard to the terminus on the reacting
dienoate; a more systematic exploration of this aspect will
follow.21 X-ray diffraction analysis of an osmate ester derived
from 15b allowed the absolute and relative configuration of
this product to be unambiguously determined (see the SI).22

In the same context, we refer to compound 17, which is
literature-known and hence represents yet another independ-
ent reference point for structure assignment.23 Compound 17
has served in the past as a building block for the synthesis of
the antibiotic (−)-cochleamycin A;23,24 it had been made
starting from L-ascorbic acid in a linear sequence comprising
no less than eight steps, whereas it is now available in a single
operation starting from (tert-butyldiphenylsilyloxy)-
acetaldehyde. Equally facile is the preparation of product 18
(R = Me), again in one step from isobutyraldehyde. The
analogous tert-butyl ester derivative (R = tBu) is a valuable
deoxypropionate synthon that had previously been accessed in
eight steps starting from 2-hydroxy-3-methylbutyrate.25,26

These examples demonstrate the significance of such
“inversely-connected” adducts, not least since their acrylate
subunit provides a valuable handle for downstream function-
alization. At the same time, the comparisons showcase the
advance in step- and atom economy that the new nickel
catalyzed procedure does enable.

The excellent functional group tolerance, which had already
surfaced in the study of differently substituted aldehydes,
suggested that the method should not be limited to sorbate
esters either (Scheme 3). Particularly striking is the
compatibility of the diunsaturated acid fluoride 19, which
reacted with benzaldehyde to give product 20 in good optical
purity. The fact that the acyl fluoride group itself goes
uncompromised is yet another illustration of the striking
chemoselectivity of the active catalyst, which�in contrast to
most other low-valent nickel species�is surprisingly resistant
to oxidative insertion into polarized C−X bonds.27 In view of
the rich chemistry of acyl fluorides in general, this result is
arguably enabling.

The versatility of morpholine amides28 prompted us to test
the corresponding sorbate derivative 21. As expected, this
substrate was fully compliant, providing product 22 with 96%
ee.

Next, the analogous amide 2329 with a terminal trifluoro-
methyl group was made and coupled with hydrocinnamalde-
hyde. In contrast to essentially all examples described above,21

NMR inspection of the crude material showed that the
reaction was not fully regioselective in this case (rr ≈ 6:1),
probably because electron-withdrawing substituents are
present on either end of the 1,3-diene subunit; this pattern
seems to impact on the relative orientation of the reaction
partners in the coordination sphere of the loaded catalyst.
Gratifyingly, however, the resulting regioisomers are very easy
to separate, such that the desired adduct 24a was obtained in
analytically pure form by ordinary flash chromatography in
61% yield with no less than 93% ee. Benzaldehyde gave a
similar outcome, although the reaction had to be performed at
−20 °C to reach a useful level of induction. From the

conceptual point of view, the new method falls into the rare
class of catalytic transformations that allow a −CF3 group to be
introduced into a target compound with concomitant
formation of a stereogenic center in optically active form.30

More specifically, it opens a currently unique catalytic entry
into anti-configured β-trifluoromethyl alcohol derivatives in a
single operation.31 Such compounds represent bioisosteres of
natural products of polyketide origin and as such are highly
valuable building blocks for the life sciences, which are difficult
to make otherwise. Therefore, a more comprehensive
investigation into the scope of this unprecedented reductive
trifluoromethylation is warranted, which will be reported in
due time.32

Finally, an even more profound change was made by
formally replacing the ester (amide) group on the diene by a
pinacolboronate entity. Once again, the preliminary results
obtained with 25 are highly encouraging, not least because of
the apparent versatility of alkenylboronate derivatives such as
26.

Despite the unprecedented regioselective course, the new
reaction is thought to pass through the same elementary steps
as the literature-known nickel-catalyzed reductive couplings
(Scheme 4).6,8 Thus, the formation of π-complex A by the
coordination of the aldehyde and the diene to a monoligated
[LNi0] species precedes oxidative cyclization to form a
nickelacycle B; this critical (but potentially reversible)8 C−C
bond formation benefits from the LUMO-lowering effect of
Et3B bound to the carbonyl O atom.33 Ethyl transfer to the
Ni(+2) center followed by β-hydride elimination affords an
allylnickel hydride intermediate C, which evolves into the
enoate upon reductive coupling. The dissociation of product E
and ethylene from adduct D thus formed regenerates the

Scheme 3. Variation of the Diene
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catalyst. The placement of both the aldehyde substituent and
the methyl terminus of the diene in pseudoequatorial
orientation in the actual coupling step A to B explains the
exquisite 1,2-anti selectivity. The absolute configuration of the
resulting product can be rationalized by embedding the
reactants into the deep chiral binding site of [L1Ni0] as
drawn in A; secondary interactions likely assist in positioning
the partners such that the “inverted” course of the reaction
does ensue (see the SI). Considering the exceptional
complexity and dynamic nature of the system and because of
potential reversibility issues,8 extensive experimental and
computational scrutiny will be necessary to prove or disprove
the validity of this tentative stereochemical model.34−36

In summary, this study shows that the VAPOL-derived
phosphoramidite L1 is a true “game-changer” in the context of
nickel catalyzed reductive coupling of dienes with aldehyde
partners. This particular ligand imparts unique reactivity and
selectivity onto the catalyst generated in situ, leading to a
reaction course that is without precedent in the literature on
related nickel catalyzed transformations. The new Ni(0)/L1
system accommodates various substitution patterns in both
partners and is able to broker reactions of dienes of a largely
different character: they can be as electron-rich as dienyl
silylethers used in the new diol synthesis previously reported
by our group,15 or they can be electron-deficient such as the
sorbate derivatives and dienylboronates described herein. In
addition, the use of a bench-stable Ni(0) stilbene complex in
lieu of Ni(cod)2 as precatalyst marks an important advance in
practical terms. Further explorations of the scope, more
profound studies into the mechanism, and applications of the
reaction to target-oriented synthesis37 are subject to ongoing
investigations in this laboratory.
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