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Introduction: The mechanisms in podocytes that mediate the pathologic effects of the APOL1 high-risk

(HR) variants remain incompletely understood, although various molecular and cellular mechanisms

have been proposed. We previously established conditionally immortalized human urine-derived

podocyte-like epithelial cell (HUPEC) lines to investigate APOL1 HR variant–induced podocytopathy.

Methods: We conducted comprehensive transcriptomic analysis, including mRNA, microRNA (miRNA),

and transfer RNA fragments (tRFs), to characterize the transcriptional profiles in undifferentiated and

differentiated HUPEC with APOL1 HR (G1/G2, 2 cell lines) and APOL1 low-risk (LR) (G0/G0, 2 cell lines)

genotypes. We reanalyzed single-cell RNA-seq data from urinary podocytes from focal segmental glo-

merulosclerosis (FSGS) subjects to characterize the effect of APOL1 genotypes on podocyte

transcriptomes.

Results: Differential expression analysis showed that the ribosomal pathway was one of the most enriched

pathways, suggesting that altered function of the translation initiation machinery may contribute to APOL1
variant–induced podocyte injury. Expression of genes related to the elongation initiation factor 2 pathway

was also enriched in the APOL1 HR urinary podocytes from single-cell RNA-seq, supporting a prior report

on the role of this pathway in APOL1-associated cell injury. Expression of microRNA and tRFs were

analyzed, and the profile of small RNAs differed by both differentiation status and APOL1 genotype.

Conclusion: We have profiled the transcriptomic landscape of human podocytes, including mRNA,

miRNA, and tRF, to characterize the effects of differentiation and of different APOL1 genotypes. The

candidate pathways, miRNAs, and tRFs described here expand understanding of APOL1-associated
podocytopathies.
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P
odocyte injury is a central feature of many primary
glomerular diseases and syndromes, including

minimal change disease, FSGS, HIV-associated ne-
phropathy, and membranous nephropathy. Podocyte
injury may also be present in diverse glomerular dis-
eases associated with systemic disease, including lupus
nephritis and diabetes mellitus. Podocytes isolated
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from humans and mice have a limited replication po-
tential when cultured in vitro. We have previously
established conditionally immortalized HUPECs and
characterized them in 2 states as follows: an undifferen-
tiated state, where podocyte-specific genes were found
not to be expressed, and in a differentiated state, where
podocyte-specific genes were upregulated and corre-
sponding proteins were observed.1 HUPECs have
been used to investigate various mechanisms in podo-
cytes such as endocytosis2,3 and cell death.4

These cells have been further used to investigate
molecular mechanisms of podocyte injury in relation-
ship to APOL1 HR genotype.5-9 Although more than 10
years have passed since the discovery of APOL1 renal
risk variants and many mechanisms for effects have
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been proposed, it remains unclear which mechanisms
in APOL1 HR genotype cells are most important in
driving pathology.10

Here, we report on a comprehensive transcriptomic
analysis including mRNA, miRNA, and tRFs of 4 un-
differentiated and differentiated cell lines in relation-
ship to APOL1 genotypes.

METHODS

Conditionally Immortalized HUPECs

We have previously generated and characterized
HUPECs derived from cells in urine collected from 4
male human subjects as follows1: 2 cell lines were from
subjects with APOL1 G0/G0 genotype (one with
healthy and the other with HIV-associated FSGS),
representing LR genotype, and 2 lines were from
subjects with APOL1 G1/G2 genotype (one with FSGS
and the other with HIV-associated nephropathy), rep-
resenting HR genotype. Urine samples were collected
after subjects provided informed consent, under a
protocol approved in advance by the National Institute
of Diabetes and Digestive and Kidney Disease/National
Institutes of Health Intramural Institutional Review
Board. Four HUPECs, with distinct APOL1 genotypes,
have been transferred to the American Type Culture
Collection (Gaithersburg, MD) and are available to the
research community.

Cell Culture and Sample Collection

Human podocytes were immortalized with a
temperature-sensitive simian virus 40 T antigen. All
cells were studied before passage 15, grown in un-
coated tissue culture plasticware. At 33 �C the cells
divide, and at 37 �C, the cells enter G0 phase and
differentiate.1 Undifferentiated podocytes were
cultured in Roswell Park Memorial Institute 1640 me-
dium (Gibco, ThermoFisher Scientific, Gaithersburg,
MD), supplemented with 10% fetal bovine serum and
insulin/transferrin/selenium (Gibco, Thermo Fisher
Scientific, Gaithersburg, MD) at 33 �C, 95% air and 5%
CO2) for expansion. Podocytes were differentiated by
culturing in the same medium formulation at 37 �C for
14 days, exchanging medium every 2 to 3 days. Four
podocyte cell lines (3 samples of each, in undifferen-
tiated and differentiated state) were resuspended with
QIAzol (QIAGEN, Hilden, Germany) and RNA was
extracted (Direct-zol RNA miniprep kit, Zymo Direct,
Irvine, CA) (Supplementary Figure S1).

Total RNA Sequencing

Total RNA samples originating from each cell line were
sequenced at the Frederick National Laboratory for
Cancer Research sequencing facility, National Cancer
Institute. Total RNA-seq samples (24) were pooled and
Kidney International Reports (2023) 8, 164–178
sequenced on NovaSeq 6000 SP flow cell following
standard workflow (Illumina, San Diego, CA) using
Illumina TruSeq Stranded Total RNA Library Prep
(Illumina, San Diego, CA) and paired-end sequencing.
The samples had 72 to 92 million pass filter reads, with
more than 93% of bases above the quality score of Q30.
Adapters and low-quality bases were trimmed using
Cutadapt v1.18 software11 before alignment with the
human reference genome (hg38 andHIV-1:NC_001802.1)
and GENCODE annotation v30 using STAR 2.7.0f.12 The
average mapping rate of all samples was 94%.

Mapping statistics were calculated using Picard
2.18.26 software (Broad Institute, Cambridge, MA).
Samples had 0.04% ribosomal bases. The proportion of
base categories across all samples were as follows:
coding bases, 23% to 39%; untranslated region bases,
22% to 37%; and mRNA bases, 46% to 77%. Library
complexity was measured in terms of unique fragments
in the mapped reads using Picard’s MarkDuplicates
utility. The samples had 70% to 80% nonduplicate
reads. The sequencing and mapping statistics of total
RNA-seq are provided in Supplementary Table S1.

Total RNA Sequencing Analysis

Gene expression quantification analysis was per-
formed for all samples using RNA-seq by expectation
optimization (RSEM) v1.3.1 (https://github.com/
deweylab/RSEM).13 Raw count files derived from
RSEM were used as input for DESeq2 for differential
gene expression analysis. Differential expression tests
were conducted using cell line and differentiation
status in the analysis. Genes showing differential
expression were analyzed by comparisons between
differentiation statuses and among APOL1 genotypes.
Gene set enrichment analysis (GSEA v4.1.0) (https://
www.gsea-msigdb.org/gsea/license_terms_list.jsp)14,15

was conducted for 2 comparisons: (i) differentiated
APOL1 LR genotype (G0/G0) podocytes versus undif-
ferentiated APOL1 LR genotype (G0/G0) podocytes and
(ii) differentiated APOL1 HR genotype (G1/G2) podo-
cytes versus differentiated APOL1 LR genotype (G0/G0)
podocytes. The numbers of enriched gene ontology
molecular function pathways (adjusted P value <0.05)
were identified. VennDiagram and ggplot2 packages in R
were used to generate figures by GSEA v4.1.0.

Small RNA Sequencing

Small RNA libraries for Illumina sequencing were
prepared as described.16 In brief, 30 ligation and 50

linker-ligation. cDNA generated with Superscript IV
reverse transcriptase was amplified with Q5 Polymerase
(NEB) in a low cycle PCR (12 cycles), and size-selected
libraries were prepared. Pippin Prep (Sage Science,
Beverly, MA) was used to remove ligated linker-linker
165
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Figure 1. Total RNA-seq of human podocytes compared by differentiation status and APOL1 genotype. (a) Principal component analysis plot of
total RNA-seq results. (b) Venn diagram of differentially expressed genes (FDR q-value < 0.05) comparing differentiation status (D vs. UD) and
APOL1 genotype (HR, G1/G2 vs. LR, G0/G0). (c) Volcano plot of differentially expressed genes by differentiation status. (d) Volcano plot of
differential expressed genes by APOL1 genotype comparison including both differentiation status. (Continued)
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(143–185 bp). Pilot PCR using 10% of Pippin-prepped
cDNA was performed to determine appropriate number
of PCR cycles. TapeStation (Agilent, Santa Clara, CA)
was used to determine quality and concentration of the
resulting libraries. The samples were sequenced on a
HiSeq2500 sequencing system (Illumina, San Diego,
CA). The sequencing and mapping statistics of small
RNA-seq are provided in Supplementary Table S2.

Small RNA Sequencing Analysis

Mapping statistics are provided in Supplementary
Data. Adapter and barcode sequences were removed
using Cutadapt v1.16.11 miRge3.0 was used to count
miRNAs and tRFs from small RNA-seq FASTQ files
with default parameters.17 We extracted miR.Counts
and tRF.Counts files and used these data for subse-
quent analysis by DESeq2. Differential expression
tests were conducted considering cell line and dif-
ferentiation status. Differential expression tests were
conducted by comparison between differentiation
166
status and APOL1 genotype using stringent threshold
of miRNA and tRFs >100 reads per million. tRF an-
notations were conducted as described.18 VennDia-
gram and ggplot2 packages in R were used to generate
figures.

mRNA-miRNA Combined Analysis

GSEA analysis of total RNA-seq data using the miRNA
target prediction database module was conducted to
identify candidate miRNAs that might regulate gene
expression levels for transcripts identified by total
RNA-seq. GSEA analysis was performed using
normalized count data from total RNA-seq analysis by
DESeq2, with Micro RNA Target Prediction Database
microRNA targets as Gene Symbols (c3.mir.-
mirdb.v7.4.symbols.gmt). Candidate miRNA lists were
made by pairwise comparisons by the threshold of false
discovery rate q-value <0.05, as follows: between
differentiated APOL1 LR genotype HUPEC and undif-
ferentiated APOL1 LR genotype HUPEC, between
Kidney International Reports (2023) 8, 164–178
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Figure 1. (Continued) (e) Venn diagram of enriched GOMF pathways (FDR q-value < 0.05) by GSEA showing 2 comparisons: differentiated
APOL1 LR genotype (G0/G0) podocytes versus undifferentiated APOL1 LR genotype (G0/G0) podocytes, differentiated APOL1 HR genotype (G1/
G2) podocytes vs. differentiated APOL1 LR genotype (G0/G0) podocytes. (f) Enrichment plot of primary FSGS pathway (WP:2572). (g) Heatmap of
expressed genes in the primary FSGS pathway (n ¼ 70). (h) Enriched GOMF pathways by GSEA comparing differentiated and undifferentiated
APOL1 LR podocytes. (i) Enriched GOMF pathways by GSEA comparing differentiated APOL1 HR and differentiated APOL1 LR podocytes. Shown
are normalized enrichment scores; red color indicates higher gene expression levels and blue color indicates lower gene expression levels. D,
differentiated; FDR, false discovery rate; FSGS, focal segmental glomerulosclerosis; GOMF, gene ontology molecular function; GSEA, gene set
enrichment analysis; HR, high-risk; LR, low-risk; UD, undifferentiated.
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differentiated APOL1 HR genotype HUPEC and un-
differentiated APOL1 HR genotype HUPEC, and be-
tween differentiated APOL1 LR genotype HUPEC and
differentiated APOL1 HR genotype HUPEC. Candidate
miRNAs on all lists were compared with differentially
expressed miRNAs found by small RNA-seq analysis
without stringent filtering threshold of miRNA <100
reads per million, so that all miRNAs were included.
Kidney International Reports (2023) 8, 164–178
Single-Cell RNA Sequencing Data of Urinary

Podocytes From FSGS Subjects

We used single-cell gene expression data from the
podocyte cluster from published urine single-cell RNA-
seq data19 (GEO accession number GSE176465) to
compare podocyte transcriptomes between APOL1 HR
and LR genotype cells. We compared podocyte
expression profiles from 7 HR samples (containing a
167



Figure 2. miRNA-seq of human podocytes compared by differentiation and APOL1 genotype. (a) Principal component analysis plot of miRNA-
seq results. (b) Venn diagram of differentially expressed miRNAs (FDR q-value < 0.05), comparing differentiation status (D vs. UD) and APOL1
genotype (HR vs. LR). (c) Volcano plot of differential expressed miRNAs by differentiation status. (d) Volcano plot of differential expressed
miRNAs by APOL1 genotype. (e) Heatmap of 12 miRNAs that were downregulated by undifferentiated status and APOL1 HR. D, differentiated;
FDR, false discovery rate; HR, high-risk; LR, low-risk; UD, undifferentiated.
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total of 226 cells) with those from podocytes from 4 LR
samples (103 cells). Differential expression testing was
performed in Seurat (v2.3.4). Ingenuity Pathway Ana-
lyses (IPA, QIAGEN, Hilden, Germany) were con-
ducted using differentially expressed genes (P < 0.05,
without correction for multiple testing) as an input.

Network Analysis

Differentially expressed genes, comparing between
differentiated APOL1 HR HUPEC and differentiated
APOL1 LR HUPEC by total RNA-seq (adjusted P< 0.05),
were used as input data (HUPEC gene list). Differentially
expressed genes, comparing podocytes from APOL1 HR
168
subjectswith those fromAPOL1 LR subjects by single-cell
RNA-seq (adjusted P < 0.05) were used as the other
input data (urinary podocytes gene list). Gene names
and log2-fold change values were prepared and analyzed
by NetworkAnalyst 3.0 (https://networkanalyst.ca/)
and ExpressAnalyst (https://www.expressanalyst.ca/).20

Network building and visualization of 2 gene lists were
conducted by NetworkAnalyst 3.0. Intersection of lists
were mapped on STRING Interactome (900 Confidence
score with experimental evidence) with “Minimum
Network” option. Enrichment network analysis was con-
ducted for 2 data sets separately by ExpressAnalyst with
over-representation analysis on KEGG database.
Kidney International Reports (2023) 8, 164–178
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Figure 3. miRNA-mRNA combination analysis. (a) Venn diagram of differentially expressed miRNA candidates by total RNA-seq (FDR q-value <
0.05), comparing differentiation status (D vs. UD) in both APOL1-LR and APOL1-HR podocytes, APOL1 genotype (HR vs. LR) in differentiated
podocytes. (b) List of 15 miRNAs upregulated in undifferentiated and APOL1-HR podocytes by miRNA-seq data, and 2 miRNAs matched with
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Figure 6. Enrichment network analysis to connect differentially expressed genes comparing APOL1 HR versus LR from total RNA-seq of human
podocytes and from single-cell RNA-seq of urinary podocytes from FSGS subjects. (a) Shown is network visualization of both sets of differ-
entially expressed genes by total RNA-seq comparing differentiated APOL1 HR human podocytes with differentiated APOL1 LR human podo-
cytes and by single-cell RNA-seq comparing urinary podocytes from APOL1 HR subjects with those from APOL1 LR subjects. The ribosomal and
mitochondrial modules are enlarged for better visualization. (b) Shown is enrichment network visualization of differentially expressed genes by
total RNA-seq comparing differentiated APOL1 HR human podocytes with differentiated APOL1 LR human podocytes. (c) Shown is enrichment
network visualization of differentially expressed genes by single-cell RNA-seq comparing urinary podocytes from APOL1 HR subjects with those
from APOL1 LR subjects. HR, high-risk; LR, low-risk.
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Reverse Transcriptase PCR and Quantitative

Real-Time PCR

A 0.4-mg aliquot of RNA was used for cDNA synthesis
by Superscript II reverse transcriptase for mRNA. Ten
nanogram aliquot of RNA was used for cDNA synthesis
by miRCURY LNA RT Kit (#339340, QIAGEN, Hilden,
Germany) for miRNA. Samples were analyzed by
quantitative RT-PCR (qRT-PCR) using FastStart Uni-
versal SYBR Green Master (Rox) (#04913850001, Sigma-
Aldrich, St. Louis, MO) for mRNA and by miRCURY
LNA SYBR Green PCR Kit (#339346, QIAGEN) for
miRNA. Relative RNA expression levels in each sample
were calculated as ratios relative to the endogenous
control RNA (GAPDH for mRNA, U6 for miRNA).
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Primer pairs and miRCURY LNA miRNA PCR Assays
(#339306, QIAGEN) are listed in Supplementary
Table S3.
RESULTS

Total RNA-Seq Demonstrated Substantial

Transcriptomic Effects of Podocyte

Differentiation and APOL1 Genotype

Principal component analysis plots of total RNA-seq
data showed robust clustering and clear separation of
global transcriptomic signatures by differentiation
status and by APOL1 genotype (Figure 1a). The
numbers of differentially expressed genes (adjusted P
Kidney International Reports (2023) 8, 164–178
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value <0.05) from comparisons based on the differen-
tiation status was 13,766 and based on APOL1 geno-
types was 5213 (Figure 1b–d; Supplementary Tables S4
and S5).

To understand specific signatures from each differ-
entiation status and APOL1 genotype, GSEA analysis
was conducted for 2 comparisons: (i) differentiated
APOL1 LR genotype (G0/G0) podocytes versus undif-
ferentiated APOL1 LR genotype (G0/G0) podocytes and
(ii) differentiated APOL1 HR genotype (G1/G2) podo-
cytes versus differentiated APOL1 LR genotype (G0/
G0) podocytes. The numbers of enriched gene ontology
molecular function pathways (adjusted P value <0.05)
from each comparison were 251 and 43 with 28 over-
laps (Figure 1e; Supplementary Tables S6 and S7).

The first comparison showed that HUPEC differen-
tiation was associated with higher expression of
podocyte marker genes that are included in the list of
primary FSGS pathway genes (WikiPathways, WP
2572) than in undifferentiated HUPECs (Figure 1f and
g), candidate podocyte marker genes were quantified
by RT-qPCR (Supplementary Figure S2). Extracellular
matrix related pathway genes were also highly
enriched in differentiated podocytes (Figure 1h). This
observation suggests an important role for interactions
between podocytes and extracellular matrix compo-
nents and that this interaction could be compromised
by podocyte dedifferentiation and loss. This would
be consistent with the clinical observation that in
progressive glomerular diseases, injured podocytes
are lost from the glomerular capillary tuft, into the
urinary space.21

We next compared expression profiles of the second
comparison, differentiated APOL1 HR genotype (G1/
G2) with differentiated APOL1 LR genotype (G0/G0);
we found enriched pathways, including ribosomal and
translation-related pathways (Figure 1i). Expression of
ribosomal protein coding genes was quantified by RT-
qPCR, showing compatible results with RNA-seq, the
higher expression levels in differentiated APOL1 HR
genotype (G1/G2) podocytes compared with differen-
tiated APOL1 LR genotype (G0/G0) podocytes
(Supplementary Figure S3). These findings suggest that
ribosomal and translation-related pathways may
contribute to pathologic mechanisms of APOL1 HR
podocyte upon differentiation in vitro.22

miRNA Landscape: the Effect of Podocyte

Differentiation

Principal component analysis plots of miRNA-seq data
showed distinct separation by differentiation status,
indicating that differentiation had a robust effect on
the miRNA landscape (Figure 2a). The number of
differentially expressed miRNAs (selected using an
Kidney International Reports (2023) 8, 164–178
adjusted P value <0.05) comparing among differenti-
ation status and by APOL1 genotypes, was 112 miR-
NAs and 31 miRNAs, respectively, as shown in
Figure 2b–d and Supplementary Tables S8 and S9. We
found 17 miRNAs that were differentially expressed by
either dedifferentiation or by HR APOL1 genotype. Of
those, 12 miRNAs were downregulated by the combi-
nation of dedifferentiation and APOL1 HR genotype
(Figure 2e).

mRNA-miRNA Combined Analysis Showed

Potential Interactions

Because each miRNA may reduce expression of multi-
ple mRNA targets, we analyzed both mRNA and
miRNA sequencing data together to identify candidate
miRNAs specific to differentiation and to APOL1 ge-
notype. GSEA of total RNA-seq data using the miRNA
target prediction database targets module-identified
candidate miRNAs that might regulate gene expres-
sion for transcripts identified by total RNA-seq. These
candidates included 1408 miRNAs, 240 miRNAs, and
170 miRNAs (adjusted P value <0.05), when
comparing differentiation status in APOL1 LR, differ-
entiation status in APOL1 HR, and APOL1 genotype in
differentiated podocytes, respectively (Figure 3a;
Supplementary Tables S10–S12).

To validate these candidate miRNAs identified from
total RNA-seq data, we matched these candidates with
the miRNA-seq data. We identified 15 miRNAs that
were downregulated by both differentiation status and
by APOL1 LR genotype (compared with HR), without
filtering out miRNA. Of these, 14 miRNAs had less than
100 reads per million mapped reads, except for miR-
424-3p (which had 155 reads per million). Of these 15
miRNAs, 10 were among the 1408 miRNAs identified
above, which correlated with differentiation of APOL1
LR podocytes (Figure 3b). In particular, miR-629-3p
expression correlated with APOL1 genotype in differ-
entiated podocytes (and had higher expression in HR
podocytes). Furthermore, miR-1285-3p appeared in all
3 GSEA analyses, indicating differential expression and
potential regulation of mRNA levels by both differen-
tiation status and APOL1 genotype (Figure 3c–h). miR-
486-5p, miR-629-3p, and miR-1285-3p were quantified
by RT-qPCR (Supplementary Figure S4). These candi-
date miRNAs may be subjects for further studies to
determine their functionality in podocytes.

TransferRNA Fragments: Potential Markers for

Podocyte Biology

tRNAs represent one of the most abundant classes of
cellular RNA transcripts. Processed tRNA fragments
represent a recently recognized and growing class of
regulatory noncoding RNAs. tRFs exert miRNA-like
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functions, including posttranscriptional regulation.23,24

Taking advantage of miRge3.0 readouts of tRFs, we also
conducted differential expression analysis of tRFs to
see the effect of differentiation status and APOL1
genotype.

Principal component analysis plots of tRFs showed
separation by HUPEC differentiation status, indicating
that cellular differentiation affects tRFs levels
(Figure 4a). We defined differentially expressed tRFs
as those whose expression levels varied with cell
differentiation status or by APOL1 genotype, with
an adjusted P value <0.05. This approach identified
106 tRFs whose expression varied by differentiation
status and 46 tRFs whose expression varied by
APOL1 genotype (Figure 4b–d; Supplementary
Tables S13 and S14).

We categorized differentially expressed tRFs into
structural groups according to their origin.18,24 We
noted that tRF-3 was upregulated both with differen-
tiation and with APOL1-HR genotype, whereas tRF-1
was downregulated with differentiation (Figure 4e
and f). Because tRF-1 derives from cleaved pre-tRNA,
tRF-1 downregulation with cell differentiation may
indicate reduced proliferation and reduced trans-
lational activity in differentiated podocytes, as re-
ported for tRF-1 in prostate cancer cell lines.25

Furthermore, we categorized differentially
expressed tRFs according to tRNA type. We found
that leucine tRFs and methionine (Met) tRFs were
downregulated in undifferentiated and APOL1 HR
podocytes (Figure 4g and h). As leucine tRFs regulate
translation activity through transcriptional regulation
of ribosomal protein mRNA and ribosomal biogen-
esis,26,27 and Met tRFs inhibit translation initiation,28

these differentially expressed tRFs indicate possible
translational activity changes in podocytes in
response to differentiation status and/or APOL1 ge-
notype. In contrast, initiator Met tRFs were upre-
gulated in undifferentiated and APOL1 HR
podocytes, suggesting increased proliferation and
translational activation. These findings were sup-
ported by the comprehensive RNA-seq analysis re-
sults presented above, showing translational
downregulation in differentiated podocytes and
podocytes with APOL1 LR variant.

Urinary Single-Cell RNA-Seq Data of Podocytes

From FSGS Subjects

We previously described the immune signatures of uri-
nary monocytes from FSGS subjects, using single-cell
RNA-seq.19 Here, we investigated the single-cell tran-
scriptomic data of the untransformed podocyte cluster
from that study to compare gene expression in cultured
transformed HUPECs with HR and LR genotypes
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(Figure 5a). We plotted the most differentially expressed
genes between APOL1 HR and LR samples by log-fold
change and observed a matching polarity in the expres-
sion of these genes in the podocyte cluster (Figure 5b),
suggesting that APOL1 genotype difference is driving
this polarity. Using differential gene expression analysis
of podocytes, comparing APOL1 HR and LR podocytes,
we identified 158 genes differentially expressed by
APOL1 genotype (Figure 5c). Ingenuity pathway anal-
ysis suggested thatAPOL1HR status was associatedwith
activation of elongation initiation factor 2–related and
protein kinase R–related pathways (Figure 5d), as we
have previously observed in HUPECs.7

Furthermore, we performed network building and
visualization to connect differentially expressed genes
from comparison between differentiated APOL1 HR
HUPECs and differentiated APOL1 LR HUPECs with
differentially expressed genes from urinary single-cell
RNA-seq data, comparing APOL1 HR and LR podo-
cytes. We used both differentially expressed gene sets
as input and visualized on STRING human interactome
(Figure 6a). We found the ribosomal module and
mitochondrial module as distinct modules. STAT1, a
known upstream regulator of APOL1 expression, was
found to be a highly connected hub gene, possibly
mediating the dysregulation of these pathways.5,29 In
addition, we conducted enrichment network analysis
to compare differentially expressed genes from RNA-
seq from HUPECs with those from single-cell RNA-
seq from urinary podocytes. We found that the ribo-
somal pathway was a common network shared with
both data sets (Figure 6b and c).
DISCUSSION

In this study, total RNA-seq, small RNA-seq analyses,
and tRF characterizations were applied to 4 HUPECs
with known APOL1 genotype in differentiated and
undifferentiated status. We compared the findings with
results from urinary single-cell RNA-seq data of
podocytes from FSGS subjects. We used the GSEA
module to analyze total RNA-seq and small RNA-seq
data together. There are several methods available for
integrative analysis30; we chose GSEA to obtain
expression ranking of all genes from total RNA-seq
data and matched selected genes with miRNA lists
from small RNA-seq data. This approach enabled us to
select miRNAs that were likely associated with differ-
entiation status and APOL1 genotype. Using data from
total RNA-seq, we found that APOL1 HR genotypes
(compared with the LR variant) had higher gene
expression in ribosomal and translational initiation
pathways. Those genes and pathways were also upre-
gulated in undifferentiated podocytes, suggesting that
Kidney International Reports (2023) 8, 164–178
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APOL1 HR genotypes might promote podocyte
dedifferentiation.

We also used single-cell RNA-seq data from urinary
podocytes obtained from FSGS patients, as recently
described.19 Differential expression analysis showed
that the elongation initiation factor 2 pathway was one
of the most enriched pathways identified by IPA. This
finding suggests enhanced translational activity may
contribute to APOL1 HR genotype-induced podocyte
injury. In support of this hypothesis, the elongation
initiation factor 2 pathway is one of the pathways
dysregulated by APOL1 HR genotype variant pro-
teins.7,31 We also found that the protein kinase R–
related pathway was one of the enriched pathways,
supporting previous finding which showed that
APOL1 HR genotype contributes to protein kinase R
activation.7 We observed that the mitochondrial
dysfunction pathway was also one of the dysregulated
pathways in APOL1 HR genotype urinary podocytes
compared with the LR genotype. Similarly, previous
reports showed mitochondrial dysfunction as one of
the mechanisms induced by APOL1 HR genotype.32-34

We reported dysregulation of miRNAs in relation to
HUPEC differentiation status, APOL1 genotype, and
candidate miRNAs that may be markers of APOL1 risk-
allele–driven dedifferentiation. Podocyte miRNAs have
been studied in primary podocytopathy35 and in the
context of APOL1 variants. Several groups have
investigated the role of miR-193a,36-39 for which we
have observed higher expression in differentiated
podocytes compared with undifferentiated podocytes.
APOL1 is a predicted target gene for both miR-629-3p
and miR-1285-3p, according to the TargetScanHuman
8.0 application.40 Considering lower APOL1 expression
levels in undifferentiated APOL1 HR genotype podo-
cyte (Supplementary Figure S5), these 2 miRNAs may
be involved in regulating APOL1 expression levels.

Podocyte tRFs have been recently described in a
mouse podocyte cell line.41,42 The investigators re-
ported that differentiation and doxorubicin exposure
induced distinct patterns of differentially expressed
tRFs. Here, we characterized differentially expressed
tRFs by HUPEC differentiation status and APOL1 ge-
notype. Our findings suggest that tRF-1 may be a
biomarker for differentiation. tRF-1 has been reported
to correlate positively with proliferation25 and to
function as a sponge for small RNAs.43

Findings from this work concerning downregulation
of leucine tRFs and Met tRFs and upregulation of
initiator Met tRFs in undifferentiated and APOL1 HR
HUPECs are compatible with prior reports that leucine
tRFs regulate translational activity through regulation
of ribosomal biogenesis26,27 and that Met tRFs inhibit
translational initiation.28 Small RNA-seq has been
Kidney International Reports (2023) 8, 164–178
conducted recently on microdissected healthy kidneys
and FSGS kidneys, including glomerular samples,44 but
cellular resolution when quantifying small RNA levels
in kidney tissue has not been achieved.

The candidate miRNAs and tRFs reported here will
require further studies to understand their functions
and the potential utility as disease biomarkers. Some
molecules may then become biomarkers and/or thera-
peutic targets for podocyte diseases, including APOL1
kidney diseases. To understand small RNA function in
podocytes, further investigations with techniques
allowing cellular resolution are warranted.

This study has limitations. First, it involved an in vitro
differentiation system using transformed human podo-
cytes that may not recapitulate all aspects of podocyte
injury in human diseases. SV40 may not completely be
inactivated at 37 �C because the nonpermissive tempera-
ture is 39 �C.45,46 The protein becomes inactive at a lower
temperature (37 �C) as our group1 and another group47

have shown. This can be the reason for modest level of
increased podocyte gene expression and undetectable
NPHS2 RNA expression on differentiation at 37 �C. Sec-
ond, although we have characterized 4 different podocyte
lines with particular APOL1 genotypes, their origins from
individual human subjects are potential confounding
factors. We do not have whole-genome sequencing data
on these subjects. Third, all cells are from male subjects
because we encountered frequent squamous cell contam-
ination in female subjects, which hindered sample anal-
ysis. This limits the generalizability of findings in this
study and is an important technical problem to be over-
come. Fourth, we compared APOL1 G0/G0 genotype and
G1/G2 genotype, but HUPECs with other genotypes such
as G1/G1 and G2/G2, were not available. Although we
acknowledge these limitations, this study demonstrated
consistent transcriptomic changes of human podocyte cell
lines by differentiation and by APOL1 genotype. In
conclusion, we have profiled the transcriptomic landscape
of human podocytes, including total RNA, miRNA, and
tRF, to characterize the effects of differentiation and
APOL1 genotype. Translation-related pathways were
identified as pathways likely to be dysregulated by
dedifferentiation and APOL1 HR variants. Further
assessment and characterization of the candidate path-
ways, miRNAs, and tRFs identified here may contribute
to better understanding of podocytopathies.
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