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According to recent surveys, the current ways of diabetics trying to estimate their insulin need based on experience and conjecture
are sometimes inefficient in practice. ,is paper proposes a prediction algorithm and presents the validation of the model in
outpatient care. ,e algorithm consists of two state-of-the-art models that calculate nutrition absorption and glycaemia including
insulin evolution. ,e combined model is extended with personalized parameter training including genetic algorithm and
Nelder–Mead method, and a more realistic, diurnal parameter profile as a representation of the natural biorhythm. ,is method
implemented in a user-friendly application can help diabetics calculate their insulin need. ,e tests were performed on a data set
including a clinical trial involving more than 20 diabetic patients. We experienced 55% improvement in the results due to model
training compared to the tests based on literature parameters. In the best case, 92.5% of the predicted blood glucose level values
were in the range of clinically acceptable errors, which means around 2.8mmol/l root mean square error. ,e results of the
validation based on outpatient data are promising compared to others found in the literature. Handling other important factors
such as physical activity and stress remains a challenge for future research.

1. Introduction

Diabetes mellitus, a metabolic disease, is a crucial problem in
modern health care, since it currently hits more than 8% of
the adult population (age 20–79 years) [1]. Recent pre-
dictions report that this number can increase by 55% within
2 decades [1], which could also increase the mortality rate
and the incidence of further complications caused by the
disease. ,is underlines the importance of treatment of
diabetics and finding new ways of diabetic lifestyle support.

As the current state of the art in medical science does not
provide a full cure of the disease, the patients have to adopt
a special lifestyle with a slightly different treatment for each
type of diabetes; for some patients, it is enough to pay at-
tention to the food intake while others need subcutaneous
insulin injections to compensate the insufficient insulin
production in their body. ,e two main types of the disease

are type 1 diabetes (T1D) characterized by absolute de-
ficiency of endogenous insulin production and type 2 di-
abetes (T2D) characterized by partial deficiency of
endogenous insulin production and insulin resistance. ,is
work concentrates on the daily life support of type 1 and type
2 diabetes outpatients treated with subcutaneous insulin
injections. Subcutaneous insulin products have long-acting
(or basal) types with a day-long effect, typically administered
once a day in the morning or in the evening, and short-
acting (or bolus) types administered separately for each
main meal in order to control blood glucose level (BGL).,e
little mistakes in choosing the right dose of these injections
can lead to a critically low BGL, that is, hypoglycemia, which
may present an instant medical emergency, or a sustained,
excessively high BGL, that is, hyperglycemia, which results
in severe complications (e.g., cardiovascular diseases, kidney
disease, and diabetic retinopathy) in the long run.
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Estimating insulin needs before every meal and other
activities is a daily task for each diabetic. ,ese decisions are
usually based on experience and conjecture, which is
sometimes rather inefficient in practice, resulting in high
glycated hemoglobin (HbA1c) values [2, 3]. ,ese obser-
vations justify the idea of developing blood glucose pre-
diction algorithms and lifestyle support applications that
help diabetics in their everyday life [4, 5].

2. Materials and Methods

2.1. Objective. ,e aim of our work is to create an algorithm
that is able to predict blood glucose evolution based on the
personal nutrient intake and subcutaneous insulin injections
data of diabetic patients using mathematical modeling. ,e
final result would be a lifestyle mirror app including meal,
medication, and other logging services with BGL prediction
based on the log. Such a mobile application could help
diabetics in their self-control, working for better HbA1c
values. A lifestyle log application has been already developed
by the Medical Informatics Research and Development
Centre (MIRDC) of the University of Pannonia [6, 7], which
can be the future host of the prediction module presented in
this paper.

,e main topic of this study is to combine, train, and
extend BGL prediction models found in the literature. While
most of these methods are developed for inpatient care, our
aim is to make the models available for outpatient care by
combining them with digestion modeling and new training
techniques for a better parameter identification. In the
current development phase of the prediction algorithms, the
time span of the prediction is within a few hours (1–6 hours),
and the input comes from a lifestyle log including meal
intake and insulin dosing.

,e BGL prediction model to be constructed should
yield an accurate prediction close to the margin of error of
the main stream BGL measurement devices and reliably
predict hypo- or hyperglycaemia, that is, critically low or
high BGL. Considering measurement device inaccuracy and
previous results reported in the literature, a prediction
method with an error range of 1–2mmol/l root mean square
error (RMSE) for short term, that is, 30–60 minutes, and
4–5mmol/l for longer term, that is, 6-hour prediction, could
already be potentially useful in practice.

2.2. State of the Art. ,ere are several methods for BGL
prediction found in the literature using different types of
mathematical models and parameter identification methods
[8], but a lot of these solutions ignore the effect of some
important factors such as nutrient absorption variations or
biorhythm. ,is section sums up the most recent and
successful works that can be compared to our results.

,e system used by Stahl and Johansson [9] consists of
three parts that are separately modeled with compartment
and linear black-box models. ,e system proposed by the
authors does not model the digestion, but instead the car-
bohydrate intake dynamics was estimated for predefined
meals. ,e BGL input data came from a type 1 diabetic

patient using MiniMed Continuous Glucose Monitoring
System (CGMS) during a 6-month period. In one of their
other works [10], they used finite impulse response models
on 18 patients to estimate postprandial plasma glucose level.
For the evaluation, they used Clarke’s Error Grid Analysis
(EGA) [11].

Robertson et al. [12] demonstrated Elman’s recurrent
artificial neural network (ANN) based on meal and insulin
intake. ,e data set originated from a free, artificial math-
ematical diabetes simulator called AIDA that modeled 28
days of measurements of a T1D patient. Regarding the meal
intake, only carbohydrate quantities were considered, and
the results are based on the quite limited food absorption
modeling capabilities of AIDA [12].

Another, neural network-based solution is presented by
Shanthi and Kumar [13]. ,e difference between their work
and the previously mentioned ANN-based tests is that in this
case, the validation data history included real patients in
a hospital setting with different insulin therapies using
Medtronic’s CGMS.

,e aim of the study reported by Plis et al. [14] is to avoid
hypoglycemia during 30 minutes with BGL prediction. ,ey
used the support vector regression (SVR) and ARIMA
models. ,e parameter identification was performed with an
extended Kalman filter [15].

,e method and the validation by Khaled et al. [8]
carried out a 30-minute (short term) BGL prediction using
genetic algorithms. ,e training data set was 1-hour long,
and the training-validation ratio of the data is 2:1. ,e input
of the validation came part from the AIDA simulator and
part from volunteers. ,e meal intake for outpatients was
modeled as a bolus injection of glucose.

,ere are other methods reported in the literature as well
[16, 17], but they usually havemore shortcomings as they use
simulated input data or simple models that are less usable in
outpatient care. ,e biggest shortage of the mentioned
models is the lack of handling complex nutrient intake and
glucose absorption. ,us, although there are promising
solutions, the optimal setting is not yet found, and therefore
our vision is to find or get closer to an even better model.

2.3. Proposed Method. Our method relies solely on nutrient
consumption and insulin administration as input. Other
factors like physical activity or stress are not included as
input data in the model as no reliable algorithmic method
was found in the literature that could handle their effects on
BGL.

Human metabolism can be divided into two major parts
as shown in Figure 1. One of them is the main glucose
control process including insulin appearance in the blood
and the reaction mechanism to the changing BGL (α-,
β-cell). ,is part is matched with the second subsystem
including nutrient uptake and handling the resulting glucose
absorption. ,ese processes have slightly different charac-
teristics for everybody, especially for diabetics. As the figure
shows, the metabolism is a complicated process; therefore,
we need complex models and a big parameter set to simulate
real-life systems. Most of the previously published models
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are designed for inpatient care, usually with only glucose as
meal input, so they need training and additional learning
techniques to be applicable in outpatient care.,ismotivates
us to prefer such models that have a big parameter set to
effectively simulate each individual patient.

,e proposed algorithm combines two published, state-
of-the-art models to simulate the whole metabolism process
[18, 19]. ,e fact that we use a complex model for the meal
absorption and an advanced model of the glucose control
system with many parameters makes our method applicable
in outpatient care, which is a considerable advantage over
other methods presented in the Introduction.

2.3.1. Glucose Absorption Model. ,ere are several methods
that model the glucose absorption from meal intake [20].
Some of these models—such as the Diabetes Advisory
System (DIAS) [21], which is a solid base of many oth-
ers—include one-compartment algorithms modeling solely
stomach absorption and taking some important components
(e.g., lipids and proteins) out of consideration. Other, more
complex and improved, two-compartment algorithms, like
the one we chose [18], give a better representation of the real
body processes with added features, more parameters, and
introducing the intestine compartment.

,e overview of the chosen model [18] is shown in
Figure 2.,e choice was motivated by this method having an
extended parameter set including lipids, proteins, fibers,
monosaccharides and starch with different glycemic indices
(GI) [22]. ,is feature ensures the correct representation of
mixed meals as it can distinguish meals with different ab-
sorption characteristics taken at the same time. ,e big
parameter set helps manage the complex nutrients close to
reality. Another important feature of this model is its
support for overlapping nutrient evolutions that happen
when the absorption caused by the first meal is still in
progress at the time of the following meal intake. ,e model
uses simple mass balance equations to simulate the whole
digestion system divided into two compartments. A detailed

description of the equations can be found in the original
article [18].

2.3.2. Glucose Control and Insulin Absorption System.
,e other important part of the combined model is the
glucose control system that calculates the insulin evolution.
A great overview about these methods is presented in [23].
Many of these algorithms are based on the original minimal
model [24], which is a stable base of BGL estimation, but
lacks in parameter set and model complexity, resulting in
weaker prediction force. Other, more sophisticated methods
include integro-differential [25], partial differential [26], and
delay differential equations (DDE) [19]. A common feature
of these models is that they have been validated and de-
veloped for inpatient care, while this study validates them in
outpatient care with many other factors that the solutions do
not take into consideration. Some of the very sophisticated,
complex models give a good representation of the insulin
evolution process, but due to their overly extensive pa-
rameter set, they are very hard to identify and, therefore, to
apply, in practice.

,e chosen model is created by Palumbo et al. [19] and
based on DDE. ,e choice was motivated on the relatively
small set of parameters and the still powerful descriptive
capabilities (e.g., support for two subcutaneous depots)
compared to the very simple models like the Minimal. ,e
main equations of the model (1–4) are as follows:
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Figure 1: ,e process of metabolism.
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dS1

dt
� −

1
tmax,I

∗ S1(t)− u(t). (4)

,e first equation calculates the BGL (G (mmol/l)), while
the second one models the insulin evolution in the body (I
(pmol/l)). Equations (3) and (4) describe the two sub-
cutaneous depots that simulate the real insulin absorption
process after subcutaneous insulin injection. Function u(t)
describes the insulin input, while the f(G(t − τG)) function
used in Equation (2) represents the endogenous insulin
production (Equation (5)):

f(G) �
(G/G)c

1 +(G/G)c. (5)

To combine this model with the glucose absorption
algorithm, a little change had to be made in Equation (1). As
a result, Equation (6) contains the monosaccharide ab-
sorption through the intestine wall (∆aMonosac(t)) calcu-
lated by the digestion model.

dG

dt
� −Kxgi ∗G(t)∗ I(t) +

TGH

VG

+ ΔaMonosac(t). (6)

,e description and optimized values of the parameters
are shown in Table 1. For a more detailed description of the
model, see [27].

2.3.3. Parameter Identification. Table 1 shows the typical
values of the model parameters. However, the personal
variations can significantly differ from the above values.
,oughmost of the personalized values could be determined
by a CGMS-based clinical glucose tolerance test [27], such
a test is not typically performed in outpatient care due to its
high costs, and only a single measurement is taken at 90 or
120 minutes. Since such significant uncertainties would
make the model outcome practically useless, we need per-
sonalization, that is, parameter training. Obrączka and
Mitkowski present a great overview of the parameter
identificationmethods in [28].We compared several of these
methods to find the right combination that best matches our
problem domain.

Since diabetes is not correlated with digestion disorders,
we can assume that the absorption model parameters are the
same for everybody and we focus on the 9 parameters of the

glucose control system shown in Table 1. In order to find the
most important parameters, we made a one-factor-at-a-time
(OFAT) sensitivity analysis using 15 data sets including
more than 200 meals and around 80 days of diverse out-
patient data.

,e first parameter identificationmethod that we used to
train the model is the simple brute force (BF) method. A
setup of 7 steps for each parameter has been used with 20%
step size, which has 343 iteration for the 3 main parameters
(Kxgi, Kxi, and Vi).

,e other method that we used is the genetic algorithm
(GA) [29, 30], which is a stochastic algorithm; hence,
subsequent runs have different outcomes with the same
options and input data, which is why other numerical
trainingmethods are usually employed to refine the solution.
,e parameters of the genetic algorithm include mutation
and crossover probability, population size, and generation
(iteration) number.

Finally, we implemented a simplex method to fine-tune
the trained parameter set delivered by the GA. ,e
Nelder–Mead downhill simplex method has been used,
which is an ideal method to minimize functions with more
variables [31]. We did not use this as a separate training
method because it proved to be much less effective than the
GA or the BF method.

2.3.4. Support for Diurnal Parameter Variations. ,e char-
acteristics of the human glucose system are known to change
according to a diurnal pattern [32]. Both insulin sensitivity and
secretion is supposed to change in the evening [33], but di-
abetics may also experience differences between early morning
and afternoon hours. As Figure 3 shows an example model
outcome versus measured BGL for two days of a patient, the
most severe errors, shaded in grey in the figure, occur typically
during nighttime due to a change in insulin sensitivity not
handled by the model. ,is effect may combine with the basal
insulin administered at bedtime. ,ough none of the models
presented in the literature overview support this variation, we
implemented the above parameter identification scheme such
that we find the personalized parameter values for each distinct
period of the day. ,e diurnal parameter profiles are then
computed from the values found for the periods interpolated
by spline interpolation to form a smooth curve.
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Insulin sensitivity is of course just one of the parameters
of the model, and, theoretically, other parameters could also
have a systematic diurnal variation. However, it was the
relevant clinical literature [32] and our own practical ex-
perience regarding the varying effects of a certain dose of
insulin during the day, which suggested us focusing solely on
this single parameter.

2.3.5. An Overview of the Validation Clinical Study. Our
model was validated with a clinical study, performed at the
Cardiac Rehabilitation Institute of the Military Hospital,
Balatonfüred, Hungary. ,e study included insulin-
dependent type 2 diabetes patients taking part in 3-week
courses of rehabilitation with daily activities similar to ev-
eryday life, yet under continuous medical supervision, which

presented an ideal environment for testing the model. ,e
patients logged every meal and applied dose of insulin and
every value of self-measured blood glucose along with any
physical training activity performed in the Lavinia Lifestyle
Mirror mobile application running on mobile phone (Nexus
5, LG Electronics, Seoul, South Korea), or tablet (Nexus 7,
AsusTek Computer Incorporation, Taipei, Taiwan) during
their 21-day hospitalization period. Blood glucose self-
control was performed with fingertip devices as clinically
indicated and the patient’s metabolic status was performed
by a CGMS (Guardian Pro, Medtronic, Northridge, CA).
,e tests were run between 14 January 2015 and 5 April 2015.

2.3.6. Ethical Considerations. ,e study protocol was ap-
proved on 18 October 2013 by the institutional ethical
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Figure 3: Nightly prediction error patterns for a patient. Measured BGL are shown as a dashed line, and night periods are shaded in grey.

Table 1: Glucose control model parameters (kgBW � body weight in kilograms).

Name Description Unit Value∗

Kxgi Rate of glucose uptake by insulin-dependent tissues 1/(min∗ pM) 3.11∗ 10−5

TGH

Net balance between hepatic glucose output and
insulin-independent zero-order glucose uptake by

brain
mmol/(min∗ kgBW) 0.003

VG Apparent distribution volume for glucose L/kgBW 0.187

Kxi

Apparent first-order disappearance rate constant for
insulin 1/min 1.211∗ 10−2

TiGmax Maximal rate of second-phase insulin release pmol/(min∗ kgBW) 0.1
Vi Apparent distribution volume for insulin L/kgBW 0.236

τG

Apparent delay with which the pancreas varies
secondary insulin release in response to varying

plasma glucose concentrations
min 24

tmax,I Time-to-maximum insulin absorption min Insulin product dependent

G∗
,e glycaemia at which the insulin release is half of its

maximal rate mmol/l 9

c
,e progressivity with which the pancreas reacts to

circulating glucose concentrations — 3.205

∗Optimized values from [27].
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committee of the Military Hospital, Budapest, Hungary,
chaired by Dr. László Kovács, under the submission number
II/20-265-2013. ,e protocol was designed and imple-
mented in compliance with the World Medical Association
Declaration of Helsinki on Ethical Principles for Medical
Research Involving Human Subjects.

2.4. Data Used for Validation. ,e input data consisted of
the lifestyle logs (meals and insulins) and CGMS BGL
readings sampled at 5 minutes of 26 type 1 and type 2
diabetic patients (15 men and 11 women, average age of
62.85). ,e full data set consisted of 30 different data files
including 142 days of nutrition, medication logs, and BGL
measurements with each log consisting of at least 3 days of
logging. ,ere were 3 patients who had more than 6 days of
data file; these were divided into 7 new ones in total. ,is
means almost 600 meals and subcutaneous insulin inputs
with 8 types of popular bolus and 6 types of basal insulin
types, and a total of around 40000 CGMS or manual BGL
measurement values.

2.4.1. Data Processing Methods. For the logging of the meals
and insulin administration of patients, paper-based forms
and the Lavinia Lifestyle Mirror mobile application were
used [7]. All data were stored in a Postgres 9.4 database and
analyzed with a custom-built client tool written in the C++
language. Electronic logs were manually compared to paper
logs and were classified according to the type and quantity
of errors. From the original 34 data files, 4 had to be
discarded due to fully inconsistent logging, using insulin
pumps or oral medication instead of insulin injections.

3. Results and Discussion

,e validation process consisted of several phases that
probed the parameter training methods described above.
In this section, we specify the results of each phase. In
order to assess the quality of the prediction, we used
several figures of merit. Besides the absolute total, average,
maximal error, variance, and RMSE, we also used Clarke’s
Error Grid Analysis (EGA) as a popular BGL prediction
algorithm validation method [11]. ,e EGA classification
of a BGL prediction uses A, B, C, D, and E classes, based on
the severity of the expected clinical effect of a clinical
decision, for example, insulin dosing, based on a predicted
BGL (Figure 4). In this respect, the most severe error with
the worst classification of D or E is an overly high BGL
prediction in the <4mmol/l actual range, for example,
a predicted 7mmol/l versus an actual (real) BGL of
3mmol/l because it can lead to hypoglycaemia. ,e same
4mmol/l error is classified in the “clinically acceptable” A
or B class if a BGL of 12mmol/l is underestimated as
8mmol/l. In short, while RMSE is an indicator of the
achieved precision of the model, EGA shows the clinical
applicability of the result. ,e improvement in the results
was supported by the two-sample t-test with a significance
level of 5%.

3.1. Identifying the Most Sensitive Model Parameters. ,e
OFAT test showed that the 3 parameters Kxgi, Kxi, and Vi
have the biggest impact on the BGL predicted by the model,
and there are 3 more parameters that have remarkable
connection with the outcome of the model; these are TGH,
VG, and TiGmax (Figure 5).,e remaining 3 variables (G∗, τG,
c) have only a minor effect on the results.

3.2. Diurnal Parameter Profiles. In order to implement the
diurnal parameter profiles, we first had to define the time
periods of the profile. Practicing diabetologist experts
recommended us at least three distinct sections of the
day. After trying several algorithmic setups and con-
sulting with a diabetologist, we found that the best
prediction is ensured when we use four equal-length
distinct periods of the day, that is, those of 0:00–6:00,
6:00–12:00, 12:00–18:00, and 18:00–0:00. Figure 6 shows
a concrete example of a patient’s Kxi parameter profile
with the four trained values smoothed with a spline.

3.3.Model Restart for Realistic Evaluation. A diabetic patient
on an insulin regime routinely measures her BGL with
a fingerstick device before each main meal before setting the
bolus insulin dose for the meal. We had access to these
manual measurement data in the patient’s log. In a realistic
scenario, a lifestyle support application can also deploy this
information to correct the cumulative errors of the BGL
prediction by restarting the underlying model at each
manual measurement. As a first step of the validation, we
implemented a model restarting scheme in the prediction
algorithm such that we set the current BGL to the measured
value, but we do not change other state variables like the S1,
S2, and I. In this way, we still correctly model digestion and
insulin evolution processes that overlap between two con-
secutive meals. As Figure 7 shows with data taken from a log,
a restart can effectively decrease the error of the model.
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Table 2 shows numeric test results with and without
restart and without any parameter training or diurnal
profiling. ,e table also shows the 1-, 2-, 4-, and 6-hour
“meal-wise” test results in the first columns. During these
meal-wise tests, the model was started at meal times and run
for 1, 2, 4, and 6 hours without considering any previous
insulin inputs or meal intakes. ,erefore, the unhandled
effect of overlapping digestion and insulin evolution is

expected to cause significant errors. ,e “full data” set in
Table 2 refers to all logs of all 26 patients. For an analysis of
the results in the tables, see Discussion.

3.4. Parameter Training Methods. ,e BF method was used
with 7 steps and 20% step size. ,ough this is not the closest
setting to reach optimal results, further refinement (more
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steps with smaller step size) do not result in significantly
better outcome compared to the negative effect of consid-
erably longer running time.

Regarding the GA, we performed an extended test on the
same 15 data sets that were used for the model sensitivity
analysis (Figure 8) and reached the limit of this algorithm
with population size and generation number of 50, crossover
probability of 90%, andmutation probability of 20%,making
this method a slower but more efficient alternative of the
brute force search algorithm. An interesting observation is
that increasing the population size to 100 (continuous line)
has not produced better results after 50 generations, which
marked a reasonable bound for these parameters. In the
followings, we used two different parameterizations of the
algorithm, that is, the original version with a population and
generation number of 10, a crossover probability of 90%, and

a mutation probability of 1% and the algorithmic setup
described before. From Table 3 on, we will refer to the
original version as the “Fast GA” and the version with the
increased population sizes as the “Slow GA.”

,e main parameter identification methods were vali-
dated in Phase 2, in which several running scenarios were
tested with different fitness functions. ,e brute force and
genetic algorithm methods were used to train the 3 main
parameters (Kxgi, Kxi, and Vi). Table 3 shows the three main
figures of merit for the full data set.

3.5. Diurnal Profiling and Extended GA Parameter Set.
After these steps, we introduced the diurnal profiles and
measured the effects of the GA refinement, that is, slower,
but more efficient parameterization version of the GA with
population size and a generation number of 50, crossover
probability of 90%, and mutation probability of 20%. ,e
results are shown in Table 4.

3.6. Extended Model Parameter Set and Downhill Simplex
Method. In Phase 4, we examined the result of increasing
the set of trained model parameters from 3 up to 6 and 9
parameters. As we got the best results with 6 parameters
(Kxgi, Kxi,Vi, TGH,VG, and TiGmax), this scenario was used for
the test of downhill simplex method together with GA. ,e
iteration number of the Nelder–Meadmethod was set to 100,
which resulted in a running time similar to the GA itself.
Results are summarized in Table 5.

3.7. Using the Trained Model for Prediction. ,e practical
application of the trainedmodel is to provide reliable short-time
predictions in a lifestyle support application. In order to assess
the predictive power of the model, we finally used a 3-day-long
sample of each patient’s log to implement a cross-validation
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Figure 6: An example parameter profile with four trained pa-
rameter values. ,e solid line shows the implemented profile.
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Figure 7: ,e effect of restarting the model at fingerstick BGL
measurements (continuous line: model prediction; dashed line:
CGMS measured value). Arrows point at model restart events.

Table 2: Validation results with literature parameters (values in
mmol/l).

Tests with parameters
from the literature

Meal-wise test Full data test

1 h 2 h 4 h 6 h Without
restart

With
restart

Average error 2.22 5.47 7.80 8.00 5.09 4.37
RMSE 3.00 6.79 9.10 9.44 6.54 5.72
EGA − A + B
(acceptable) 89% 67% 56% 57% 73% 78%
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Figure 8: Algorithm parameter test. ,e 5 different parameteri-
zations are shown as how they affect the sum of errors of the model
prediction using the trained model parameters.
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scheme. A 1-day wide sliding window was used to train the
personalized parameters with our best algorithmic setup, that is,
GA with 6 parameters, downhill simplex plus diurnal profiles,
and the rest of the data were used to validate the model. By
sliding the window to 10 distinct positions with a 3-hour step
size, we performed 10 such validations and took the average of
the computed 1-hour meal-wise RMSEs. ,en, we repeated the
test with a 2-day wide sliding window for training data. ,e 1-
day and 2-day results are shown in the first and second row of
Table 6, respectively.

4. Discussion

First of all, it is important to note that according to clinical
tests, the CGMS has an error range with a median average
difference of 1.4mmol/l and a relative average difference of
17% in outpatient care [34]. ,ese values, measured on
young type 1 diabetics, are close to those published in the
manual of the device. Moreover, according to the graphs of
the manual, the CGMS has difficulties measuring high and
low peaks, often resulting in significant over- and un-
derestimations that are getting worse towards the end of the
six-day lifetime of a CGMS sensor. ,ese factors should be
considered when assessing the outcome of the model as the
correction of this phenomenon is yet a plan for the future.

,e test on the full data with model restart delivers
around 10–15% improvement depending on the figure of
merit (Table 2). ,e average error has decreased to
4.37mmol/l from 5.09mmol/l, which is caused by the
elimination of cumulative errors. Comparing the meal-wise
tests with the long-time data runs, the advantage is clear for
the good of the full test with restart (20+%), excluding the 1-
hour prediction, where the prediction resulted in 3mmol/l
RMSE. ,is shows that for longer term, the handling of the

overlapping glucose and insulin absorption processes, and
also the effect of the long-acting insulin evolution is very
important regarding the outcome of the model.

,e parameter identification methods (Table 3) result in
almost 20% improvement. ,e fact that the two training
methods delivered nearly the same results shows the power
of the genetic algorithm as it had a faster running time than
the brute force method. Based on the numbers, besides the
3.64mmol/l average error, we can state that with the model
training, in 83% of the time, the GA gives clinically ac-
ceptable results. Regarding the diurnal parameter profile
(Table 4), we observed a significant improvement of 5–10%,
resulting in a 3.3mmol/l average error, which shows the
importance of representing the changing biorhythm in the
model.

,e biggest improvement was achieved by the extension
of the training parameter set (Table 5) and by using more
effective parameterization of the GA. Compared to the faster
version of GA, the slower version of the algorithm delivers
ca. 10–15% improvement as the average error decreases
under 3mmol/l. ,e extension from 3 to 6 parameters
brought a huge improvement of 25–30%; however, the set
with 9 parameters resulted in worse numbers. ,is shows

Table 6: Prediction model errors, RMSE values in mmol/l for 1-
hour prediction.

Prediction model (RMSE,
meal-wise)

Without
training

Brute
force

Slow
GA

(1) day training cross
validation 2.57 2.57 2.26

(2) days training cross
validation 2.29 2.19 1.62

Table 3: Validation results for the full time period with various algorithmic setups as indicated (values in mmol/l).

Model training (full data test with restart) Without training Brute force Fast GA Fast GA + diurnal parameter profile
Average error 4.37 3.57 3.64 3.30
RMSE 5.72 4.74 4.82 4.43
EGA − A + B (acceptable) 78% 84% 83% 85%
,e error is the difference of the CGMS reading and the model outcome.

Table 4: Results for the full time period with diurnal profile and various GA versions (values in mmol/l).

Diurnal profile and GA test with 3 model parameters
(full data with restart) Average error RMSE EGA − A + B (acceptable)

Fast GA without diurnal profile 3.64 4.82 83.2%
Fast GA with diurnal profile 3.25 4.54 86.5%
Slow GA with diurnal profile 2.94 4.09 88.6%

Table 5: Results for the full time period with extendedmodel parameter set and Nelder–Mead downhill simplex method (values in mmol/l).

Extended parameter set and Nelder–Mead algorithm
test (full data with restart) Average error RMSE EGA − A + B (acceptable)

Slow GA with 3 parameters 2.94 4.09 88.6%
Slow GA with 6 parameters 2.11 2.96 92.2%
Slow GA with 9 parameters 2.16 3.05 92.1%
Slow GA with 6 parameters + Nelder–Mead method 1.98 2.76 92.5%
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that the best solution is to use 6 parameters for the iden-
tification (Kxgi, Kxi, Vi, TGH, VG, and TiGmax), and the other
parameters are better be used with the optimized literature
values. Introducing the Nelder–Mead algorithm, the average
error decreased with an additional 5%, reaching our best
results, where the prediction is clinically acceptable in 92.5%
of the time with 1.98mmol/l average error and 2.76mmol/l
RMSE for a continuous, multiple-day time interval. ,is
improvement by the Nelder–Mead method is not too ef-
fective considering the long running time, but other nu-
merical methods that use derivatives could mean an upgrade
in the future.

Finally, the prediction model validation showed that the
most effective GA trained on a 2-day sample can predict BGL
for 1 hour with an error of 1.62mmol/l RMSE.

4.1. Evaluation. Comparing our results with others found
in the literature, the model seems promising as the
numbers are close or sometimes even better than the
outcome of other models developed for, and tested in,
inpatient care. Stahl et al. [9] used CGM and stayed in the
A error zone of EGA in 75% of the time for 1-hour
prediction, while we reached around 60% for the same
time period.

At the same time, Robertson et al. [12] performed a 1-
hour prediction resulting in errors under 0.27mmol/l with
0.15mmol/l RMSE.,ese figures seem really convincing, but
wemust keep in mind that the validation was based on a data
set provided by a simulator that does not model personal
variations of the BGL control system and other important
factors of real life such as stress or physical activity.

,e validation by Shanthi and Kumar [13] that includes
real patient input data in a hospital setting shows a slightly
worse outcome as the best result of their method is
0.78mmol/l RMSE during a 60-minute-long prediction. ,e
disadvantage is that the ANN was trained only using the
BGL curve without meal absorption. Plis et al. [14] reached
1.99mmol/l RMSE for the same period with similar input
data and validation process. As we reached 1.62mmol/l
RMSE for the 1-hour prediction with 2 days training data
set using real data, it shows there is still room for im-
provement, but we should not forget that although these
presented models took meal absorption into account, they
only rely on carbohydrate input.

,e method and the validation by Khaled et al. [8] is the
most relevant article to compare with the results of this
paper regarding the prediction method as they carried out
a 30-minute (short term) BGL prediction using genetic
algorithms. ,e input of their validation, however, came
partly from the AIDA simulator, which is a little setback in
regards of a good comparison with our results as they
worked with virtual patients in more than half of the cases.
Another shortcoming is that the meal intake for outpatients
was modeled as a bolus injection of glucose.,e RMSE value
was 0.5mmol/l during the 30-minute validation with the 1-
hour training set. It should be considered that this is a really
short-term prediction without a wide nutrient operational
range.

A known limitation of our approach is the selected BGL
control model itself, as it may oversimplify the very
complex mechanisms of the BGL control system. More
elaborate models that are closer to the clinical reality are
also available, but at the expense of a much higher number
of parameters, making the model very hard to train for
a certain patient. ,e parameters of the model applied in
our work all have a concrete physiological meaning and
(theoretically) they could all be measured for a certain
patient in a clinical setting, via complex medical protocols.
In our clinical trial, we did not have access to such
facilities, so while we excluded clinically impossible
parameter values, the only proof on that we found the
“right” values is that the identified parameter set was found
to minimize the error of the prediction. ,is note also
refers to the credibility of the postulated diurnal variations,
exemplified in Figure 6—while variations of such mag-
nitude are clinically possible, the actual values could be
verified only in a clinical setting.

It should also be noted that even the best RMSE
1.62mmol/l achieved in our work means no guarantee on
that the predicted value always leads to clinically acceptable
(EGA A or B) decisions, not even for predicted values above
5mmol/l since the distribution of the error being close to the
normal distribution with zero mean, even an error in the
range of 3mmol/l may occur in a low number (>2%) of the
cases. ,e interpretation of EGA is quite different because
unlike the RMSE, it is not symmetrical, it penalizes certain
types of errors more, and, therefore, we cannot compute an
equivalent RMSE value for an EGA percentage measured on
a certain data set.

5. Conclusions

,e paper presented a BGL predicting method that is based
on the combination of accepted absorption and BGL control
models, thus allowing its application for diabetic outpatients
keeping a mobile lifestyle log. We trained the parameter set
of the BGL control model in order to provide a reliable,
personalized prediction. ,e results show that 6 parameters
trained with genetic algorithms in diurnal profiles using 2
days of CGMS training data deliver an RMSE as low as
1.62mml/l in 1-hour predictions and clinically acceptable
results in more than 90% of the cases. ,is proves the
practical applicability of the method if the results of our
small-scale validation trial could be verified in a larger study.

,ere are several open questions for future research. ,e
personalized parameters may change over time, or sea-
sonally, but we cannot expect to have access to CGMS
training data all the time, so the model should be retrained
adaptively using the logged fingertip records. ,e known
errors and dynamics of the CGMS device could be integrated
in the training process. Also, the model itself could be re-
fined to properly handle the action of basal insulin, which is
now implemented as a bolus insulin with a long action. We
feel that these extensions together with the proper handling
of the physical activity and stress factor could be tracked
easier with a model-less control method (such as deep neural
networks). Treating these as additional input parameters
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could be a quick and efficient solution if the training data set
grows sufficiently large.
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findings of this study may be released upon application to
the Institutional Ethical Committee of the Military Hospital,
which can be contacted at Magyar Honvédség Egészségügyi
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