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Abstract

Researchers, parents and educators consistently observe a stark mismatch between biologically preferred and socially
imposed sleep–wake hours in adolescents, fueling debate about high school start times. We contribute neural evidence to
this debate with electroencephalogram data collected from high school students during their regular morning, mid-morning
and afternoon classes. Overall, student alpha power was lower when class content was taught via videos than through lec-
tures. Students’ resting state alpha brain activity decreased as the day progressed, consistent with adolescents being least
attentive early in themorning. During the lessons, students showed consistently worse performance and higher alpha power
for early morning classes than for mid-morning classes, while afternoon quiz scores and alpha levels varied. Together, our
findings demonstrate that both class activity and class time are reflected in adolescents’ brain states in a real-world setting,
and corroborate educational research suggesting that mid-morning may be the best time to learn.
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Introduction

Among all the ups and downs associated with the high school
experience, most readerswill distinctly recall trying (and failing)
to make it to school on time, especially during the winter

season. Most younger kids are early risers, but something
drastic happens to sleep/wake patterns around the onset of
puberty (Wolfson and Carskadon, 1998; Roenneberg et al., 2004;
Crowley et al., 2007): as children enter adolescence, they tend
to shift toward later bedtimes. While variations in chronotypes
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exist across all ages, this sharp change in circadian rhythms
toward ‘eveningness’ is so consistent and distinct that it is often
regarded as a reliable biomarker for the onset of adolescence
(Carskadon et al., 1998, 2006; Dewald et al., 2010; Preckel et al.,
2011; Crowley et al., 2014), resulting in a starkmismatch between
biologically preferred and socially imposed sleep–wake hours
(Crowley et al., 2007; Dewald et al., 2010; Wahlstrom et al., 2014;
Kelley et al., 2017) for most teenagers. In fact, chronically inad-
equate sleep in adolescents is now considered a public health
epidemic (Wheaton et al., 2016).

It is well known that low levels of alertness resulting from
sleep-related factors are associated with a reduction in the
ability to focus, which, in turn, affects learning and task
performance (Chee and Choo, 2004; Lim and Dinges, 2010;
Sievertsen et al., 2016). To highlight just one example, perfor-
mance accuracy in adults on certain basic cognitive and neu-
robehavioral tasks is more impaired after mild sleep deprivation
than after alcohol intake that exceeds the levels for legal intox-
ication (Lamond and Dawson, 1999). For teenagers, various fac-
tors connected to sleep (e.g. sleep time, circadian rhythms and
sleep loss) are shown to influence levels of focus, alertness and
mood, both within and outside of laboratory contexts (Wolfson
andCarskadon, 1998; Preckel et al., 2011; Short et al., 2013; Goldin
et al., 2020).

Although it can be difficult to disentangle whether low lev-
els of alertness in the morning in high schoolers are due to
sleep loss or chronotype (i.e. either adolescents go to bed late
and have slept only a few hours by the time they have to wake
up, or they are woken up at a bad moment in their natural
sleep cycle), the overall observation is that adolescents are less
alert in the morning than other age groups and that this lack of
alertness leads to a reduction in (cognitive) performance in the
morning. Perhaps most strikingly, it has been reported that car
accidents in 16–19-year-olds decreased by 65–70% when school
start time was delayed from 7:55 to 8:25 am (Wahlstrom et al.,
2014).

In light of these findings, it is unsurprising that studies con-
sistently find that age-dependent circadian rhythms (as well
as chronotype) predict school experience and academic per-
formance (Dewald et al., 2010; Preckel et al., 2011; Short et al.,
2013; Vollmer et al., 2013; Wahlstrom et al., 2014). For example,
research has shown that sleep-restricted adolescents exhibit
poorer cognitive performance and higher levels of sleepiness
in the early morning (Short et al., 2013; Lo et al., 2016). As a
rather unfortunate coincidence, adolescents spend a sizeable
chunk of their mornings attempting to retain information. This
has sparked an ongoing public debate about high school start
times. In fact, delaying school start times by even 50min appears
to have a significant positive effect on student achievement
(Carrell et al., 2011; also see Minges and Redeker, 2016; Bow-
ers and Moyer, 2017). However, effect sizes in these data are
often small, and results are largely dependent on explicit self-
report measures (including parental reports; Dewald et al., 2010),
which are not always reliable. One possible additional source of
information may come from (neuro)physiological data, which
has been suggested to constitute a better predictor of behav-
ior than self-report in some cases (Berkman and Falk, 2012;
Thorson et al., 2018). With the advance of wearable technology,
researchers are now able to collect implicit biophysiological data
during everyday activities (Debener et al., 2012), including sleep
(de Zambotti et al., 2016). For example, a recent study used wear-
able activity trackers to assess the relationship between sleep
patterns and academic performance in college students (Okano
et al., 2019).

Here, we extend on this body of work by focusing on
neurophysiological data collected from teenagers as an implicit,
real-timemeasure of their alertness during naturalistic daytime
activities. Specifically, we recorded electroencephalogram (EEG)
from high school students during their regular classes (consist-
ing of a combination of teacher-led lectures and educational
videos) throughout the school day (early morning, mid-morning
and afternoon) in two different New York City high schools
(Figure 1; Bevilacqua et al., 2019; Dikker et al., 2017).

Although EEG is often employed as a measure of focus/
alertness (Corsi-Cabrera et al., 1992; Cajochen et al., 1995; Horne
and Baulk, 2004; Lockley et al., 2006), to our knowledge, we
are the first to do so in a real-world school environment. This
approach uniquely positioned us to investigate how student
brain activity varies as a function of class time and how such
neural changesmight relate to self-reported focus and academic
performance. We focused our analysis on students’ brain activ-
ity in the alpha frequency range (∼10Hz). The alpha rhythm, tra-
ditionally associated with cortical idling (Adrian and Matthews,
1934; Pfurtscheller et al., 1996), is typically negatively correlated
with selective attention and is thought to reflect amechanism of
active inhibition, such that increased alpha activity functions to
suppress (distracting) input whereas decreased alpha facilitates
processing (Klimesch et al., 2007; Jensen and Mazaheri, 2010;
Haegens et al., 2011a 2011b). In addition to reflecting local task-
related focus, a person’s global alpha power is strongly related
to overall vigilance or attentiveness (Haslum and Gale, 1973;
Linkenkaer-Hansen et al., 2004; Lakatos et al., 2016; Crunelli et al.,
2018). We studied how alpha power varied over the course
of the day and during different class activities at the group
level, comparing alpha activity during teacher-led activities (lec-
tures), educational videos and rest (silently looking at the wall
for 2 min).

Furthermore, we linked brain activity to both self-reported
attentiveness (‘how focused are you right now?’) and quiz scores.
We hypothesized that alpha power would be highest early in
the morning and inversely related to students’ quiz scores
(Preckel et al., 2011). In addition, following previous findings that
reported that students aremore engaged during videos than lec-
tures (Dikker et al., 2017; Bevilacqua et al., 2019), we predicted
that students would exhibit higher alpha power during lectures
than videos.

Methods

We collected EEG and behavioral data from 22 students at two
New York City high schools in their senior biology class set-
ting. Here we briefly describe the approach; a more extensive
description of the experimental design, recording procedures
and preprocessing steps can be found in a previous publication
(Dikker et al., 2017).

Participants

Subjects were 22 healthy high school students (age 17–18 years;
10 students fromSchool 1: 7 females and 3males, 12 fromSchool
2: 7 females and 5 males) with no known history of neurologi-
cal disease. All participants provided written informed consent
after receiving a detailed explanation of the experimental pro-
cedures. For those students who were under 18-years old at the
time of data collection, informed consent was also obtained
from their legal guardian. The Institutional Review Board of
New York University approved all experimental procedures, and
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Fig. 1. Experimental setup. (A) Study timeline. EEG activity was recorded from 2 groups of 12 students at 2 separate high schools. Seventeen recording days were

scheduled throughout the semester (school 1, 11 recording days; school 2, 6 recording days). Recording sessions were equally distributed across three different class

times: early morning, mid-morning and mid-afternoon (AM1, AM2, PM). (B) Experimental procedure of a typical recording day. EEG activity was recorded during four

teaching blocks in addition to a resting state segment where students were facing the wall. Lecture and video teaching activities were consistently administered during

all 17 recording days across both schools; other tasks varied between days (see, for details, Dikker et al., 2017; Bevilacqua et al., 2019). Student alpha power activity was

averaged for each student during each class activity separately (marked in red). (C) Illustration of experimental setup in the classroom with 12 students wearing the

EMOTIV EPOC headset. These portable devices offer a rich opportunity to involve students both as participants and as experimenters (Dikker et al., 2017; Bevilacqua

et al., 2019).

all methods were carried out in accordance with the relevant
guidelines and regulations.

Procedure

EEG data were recorded during students’ regular biology classes
over the course of 17 days during the 2014–2015 school year
(School 1: 11 classes) and the 2015–2016 school year (School 2:
6 recording days), respectively. Classes were taught at three dif-
ferent class times: early morning (AM1 classes; School 1 start
time: 8:30 am, School 2 start time: 9:00 am), mid-morning
(AM2 classes; School 1 start time: 10:30 am, School 2 start
time: 10:40 am) and mid-afternoon (PM classes; School 1 start
time: 2:20 pm, School 2 start time: 2:00 pm). Each class at
each school was subdivided into different recording blocks
(Figure 1). This included a pre-class rest period where students
looked at the wall in silence for 2 min, followed by four teaching
blocks (School 1: teacher reads aloud, students watch educa-
tional video, teacher lectures and group discussion Dikker et al.,
2017; School 2: teacher lectures, students watch educational

video, teacher lectures and students watch educational video
Bevilacqua et al., 2019), followed by a post-class rest period
where students again looked at the wall in silence for 2 min.
In both schools, students’ self-reported focus level was recorded
both before and after class (‘How focused do you feel right now?’
on a 1–7 scale), and in School 2, students additionally com-
pleted amultiple-choice quiz after each class, on content taught
during that session. Each quiz consisted of 20 multiple choice
questions, with an equal number of questions probing content
presented in each of the four teaching blocks (i.e. 5 questions for
the first lecture, five questions for the first video, five questions
for the second lecture and five questions for the second video).
Recordings at different class times never took place on the
same day.

Data acquisition

We used 14-electrode EMOTIV EPOC wireless EEG headsets
(mastoid reference locations) to record simultaneous EEG
activity from the students in their regular classroom. We used
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custom software based on the OpenFrameworks C++ library
(openframe works.com) to simultaneously record the data from
all students (Dikker et al., 2017).

Data analysis

The datawere analyzed using custom-built Matlab code, in addi-
tion to the EEGLAB (Delorme and Makeig, 2004) and FieldTrip
toolboxes (Oostenveld et al., 2011). Continuous recordings were
band-pass filtered between 0.5 and 35 Hz and then segmented
into 1 s epochs. Bad channels and data segments were rejected
upon visual inspection. The analysis included on average 15min
of data during rest (s.d.=6 min), 23 min for lecture (s.d.=8 min)
and 20 min for video conditions (s.d.=8 min) per subject. For
SNR purposes, here we exclusively focused on data recorded
with the two occipital electrodes.

Spectral analysis

Power spectra (4–30 Hz) were computed using a fast Fourier
transform approach. The 1 s epochs were padded with 0–10 s
length and multiplied with a Hanning taper, to improve alpha
peak frequency detection. For each subject, we computed the
average power across all frequencies per recording day (i.e. all
conditions combined), per electrode. In order to normalize the
data, we divided the single-epoch spectra of the respective
day/electrode by this average power value, resulting in relative
power values. This procedure reduces variability in the power
estimates across electrodes, recording days and subjects. Sub-
sequently, the power spectra were averaged per condition of
interest.

Alpha peak detection

To determine the subject’s peak occipital alpha frequency, we
detected the highest local maximum within the 7–14 Hz band
with a 0.1 Hz step size (Haegens et al., 2014), in the average
spectrum for that subject (i.e. all occipital electrodes, all record-
ing days, all conditions combined). All subsequent alpha power
analysis was performed using a 1 Hz band centered at this indi-
vidual peak frequency. As a control analysis, we verified that
there were no significant differences in alpha peak frequency
across conditions (repeated measures ANOVA with factor class
condition: F(2, 42)=0.657, P=0.523) or time of day (F=0.765,
P=0.472).

Statistical analysis

To analyze students’ alpha power and focus over the course
of the day, data from both schools were combined (N=22).
To adjust for non-independence over repeated measures, par-
ticipants’ pre- and post-session resting state alpha power was
compared to self-reported focus scores using multilevel model-
ing, using the MIXED procedure in SPSS, specifying an unstruc-
tured correlation structure (inwhich variances for each repeated
measure and all possible covariances are estimated). The ‘time’
repeated measure factor was analyzed in two ways. First, the
‘pre/post’ time factor evaluated resting state relative alpha
power and focus ratings before and after lessons, regardless of
time of day. Second, the time factorwas analyzed as ‘time of day’
for alpha power, focus ratings and quiz scores per teaching style
for the sessions’ time of day occurrence (i.e. AM1 vs AM2 vs PM).

For the second school (N=12), we analyzed students’ alpha
power in relation to performance via post-lesson quizzes for

both teaching methods (i.e. lectures and videos; this informa-
tion was not collected for the first school). In this analysis,
we adjusted for non-independence of repeated observations
nested within students using GEE (Ballinger, 2004). The distri-
bution of the response variable was specified as normal, and
an unstructured correlation matrix was specified (in which all
possible correlations between within-subjects’ responses are
estimated (Fitzmaurice et al., 1993). Commonly, this special-
ized model applies to complex data structures that account
for missing data, multiple regression parameters and repeated
measure within-subject correlations (Westgate and Burchett,
2017). This model was computed via the GENLIN command
in SPSS.

Results

We recorded students’ EEG before class (‘resting state’ or no
task), during class (lectures and videos) and after class (post-
class resting state; see Figure 1). In addition, we collected behav-
ioral measures from the students, including self-reported focus
scores and quiz performance for each class. We determined
each student’s individual alpha peak frequency (based on over-
all power spectra for occipital electrodes;M=9.56 Hz, s.d.=0.85;
Figure 2A), and used this for all power analyses described below.

Alpha power varies by class activity

As an initial step, we asked whether students’ alpha power var-
ied as a function of class activity (pre- and post-class resting
states, lectures and videos). We found that alpha power was
significantly decreased during class compared to resting state,
with lower alpha power during videos compared to lectures
(repeated measures analysis of variance (ANOVA) with factor
class condition: F(2, 42)=27.94, P<0.001, post-hoc correct pairwise
comparisons all P<0.01; Figure 2B–C).

Theta power does not vary by class activity

For the purpose of this study, we were specifically interested in
posterior alpha activity. However, frontal theta activity (4–7 Hz)
would make another obvious focus of interest, since it has pre-
viously been associated with focus/attention (Cajochen et al.,
1995). While the power spectra showed no discernible theta
modulation, neither on the single subject level nor averaged
across subjects (in contrast to the very clear alpha peaks;
Figure 2), as a sanity check, we nevertheless repeated our main
effect analysis for frontal theta activity. We found no signifi-
cant modulation of theta power by class activity (F(2, 42)=0.693,
P=0.51), suggesting specificity of our results to the alpha band.

Alpha power during rest decreases throughout the day

To evaluate whether students’ occipital alpha power varied as a
function of class time, we first looked at students’ EEG activity
in the absence of a learning task (i.e. pre- and post-class resting
states). All statistics reported below were derived using multi-
level modeling in SPSS using the MIXED procedure to adjust for
non-independence in repeated measures of alpha measures
within student over time (see Hox et al., 2018; we note that
the MIXED procedure can yield fractional degrees of freedom
because they are computed using the Satterthwaite method
(Fitzmaurice et al., 2004)). Given that each student provided
data for three time points, we included the random effect of
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Fig. 2. Alpha power per condition. (A) Power spectra (averaged over occipital sensors, see inset in panel B) of three representative example subjects for each of the

conditions of interest (resting state in gray, lecture in pink and video in blue), showing clear peaks in the alpha band. (B) Similar as in A, averaged over all subjects

(N=22), including all available recording sessions per subject. (C) A significant (P<0.001) decrease of posterior alpha power over conditions (computed in 1 Hz band

centered at individual alpha peak frequency for each subject, normalized with average power in the spectrum per channel). Error bars indicate standard error of the

mean (SEM; N=22).

each time point early morning, mid-morning and afternoon
and all covariances between time points, resulting in a satu-
rated random effects model (AM1 with AM2, AM1 with PM and
AM2 with PM); all random effects, Ps<0.001). We found that stu-
dents’ alpha power significantly differed across class times for
resting state recordings with the highest alpha power during
early morning classes (all MIXED procedure SPSS; AM1 vs AM2
vs PM: F(2, 21.16)=4.34, P=0.026). Alpha power declined as the
day progressed, with the highest alpha power for pre-class rest-
ing state during early morning classes (AM1>PM; Figure 3). In
addition, alpha power was significantly lower during post-class
resting state recordings than pre-class resting state record-
ings, independent of class time (pre vs post: F(1, 16.88)=19.99,
P<0.001). Students’ self-reported focus did not vary significantly
as a function of class time (AM1 vs AM2 vs PM: F(2, 20.55)= 0.50,
P=0.61).

Lowest alpha power and highest quiz scores for
mid-morning classes

Next, we turned to student learning as a function of class
time. Since quiz scores were not available for School 1, all

data reported below pertain to School 2. Data were analyzed
using Generalized Estimating Equations (GEE), an approach
suited for testing repeatedmeasures within subjects across time
(Ballinger, 2004). GEE was developed by Zeger and Liang (1986)
as a means of testing hypotheses regarding data that are col-
lected within subjects across repeated measures. GEE model
the mean response and the within-subject response separately;
thus, the interpretation of the regression parameters is not
altered by assumptions made about the nature and magnitude
of the within-subject association.

In our GEE analysis, we specified a continuous outcome
variable (quiz score), and an unstructured correlation matrix,
in which all possible correlations between within-subjects’
responses are adjusted for (ideal here because quiz scores
are likely correlated within subject, across different quizzes;
Fitzmaurice et al., 1993). A main effect of time of day (AM1,
AM2, PM) was found (Wald χ2(2)=23.377, P<0.001; Figure 4A).
As seen in Figure 4A, the average quiz score at AM2 was signifi-
cantly higher than the average score at AM1 (Wald χ2(1)=17.79,
P<0.001) and afternoon classes(Wald χ2(1)=10.07, P=0.002).
The average score at AM1 did not differ from the average score
at PM (Wald χ2(1)= 0.088, P= 0.766).
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Fig. 3. Alpha power and focus over the course of the day. Resting state posterior alpha power, measured bot10 before and after class (computed in 1 Hz band centered at

individual alpha peak frequency for each subject, normalized with average power in the spectrum per channel) significantly decreased with later class times (P<0.001):

we observed the highest alpha power at the beginning of the early morning classes and the lowest alpha power at the end of the afternoon classes. Showing data for

all subjects combined (N=22). [AM1: early morning session, AM2: mid-morning session, PM: afternoon session. Error bars indicate SEM.].

Fig. 4. Alpha power and performance. (A) Quiz scores were highest for mid-morning classes. (B) Alpha power was highest for early-morning classes (P=0.05).

[AM1: early morning session, AM2: mid-morning session, PM: afternoon session. Error bars indicate SEM.].

For alpha power, a main effect of time of day was also found
(Wald χ2(2)=6.073, P=0.048; Figure 4B). As seen in Figure 4B,
students exhibited significantly lower alpha power in the early
morning classes relative to mid-morning (Wald χ2(1)=5.985,
P<0.001) and afternoon classes (Wald χ2(1)=10.07, P=0.002).
Similar to the quiz score results, alpha power in the early morn-
ing was not significantly different from alpha power in the after-
noon (Wald χ2(1)=0.971, P=0.324). In addition, alpha power in
the early morning did not significantly differ from alpha power
in the afternoon (Wald χ2(1)=1.490, P=0.222).

In sum, quiz scores and student alpha power both varied by
class time. Alpha power was consistently highest during early
morning classes. Quiz scores were highest, and alpha activity
was lowest, during mid-morning classes. Resting state alpha
power (when students were facing the wall without a task)
continued to drop in the afternoon. During class activities, in
contrast, alpha rose up again in the afternoon compared to mid-
morning. Exploratory analyses assessing alpha power effects by
class activity and by individual differences are discussed in the
Supplemental Materials.
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Discussion

We collected EEG data from two classes of high school seniors
at two different New York City schools during their regular
biology lessons. Classes were taught at three different times
of day: early morning, mid-morning and afternoon (17 record-
ing days total). To investigate student attentiveness at school,
we examined group-level changes in power in the alpha fre-
quency band (∼7–14 Hz), a well-known correlate of atten-
tional state (Klimesch et al., 2007; Jensen and Mazaheri, 2010;
Haegens et al., 2011b), where higher alpha power is typically
linked to lower focus and decreased performance (Thut et al.,
2006; Haegens et al., 2011a).

Alpha varies with lesson activity

First and foremost, we observed a robust difference in alpha
power during different class activities: student’s alpha activity
was lowest while they were watching educational videos, sig-
nificantly higher during lectures, and highest during rest.
This matches the well-known effect of alpha power gener-
ally decreasing with engagement (Adrian and Matthews, 1934;
Pfurtscheller et al., 1996). Quiz scores as well as student engage-
ment ratings were also higher for videos than lectures (reported
in Dikker et al., 2017; Bevilacqua et al., 2019). Together, these
findings are consistent with an account whereby highly engag-
ing stimuli increase shared attention among viewers, which in
turn reduces alpha power at the group level. (See Dikker et al.
(2017) for data and a discussion pertaining to how a decrease
in alpha power as a function of classroom engagement may be
coupledwith an increase in EEG similarity, or brain-to-brain syn-
chrony, between classmates.) These effects are likely driven by
a combination of low-level stimulus features (Cohen and Parra,
2016; Ki et al., 2016; Poulsen et al., 2017) as well as high-level
(social/discourse-related) factors (Stephens et al., 2010; Koike
et al., 2016): processing attended stimuli reduces alpha activity
(Ward, 2003; Klimesch et al., 2007) and increases entrainment
(Zion Golumbic et al., 2013).

Before concluding that students should just be passively
watching videos all day however (Freeman et al., 2014; Hew Khe,
2014) it is important to note that the lectures were not necessar-
ily a fair representation of the richness of the typical face-to-face
teaching experience. For example, teachers in both schools were
instructed to keep movement to a minimum, to remain seated
and to refrain from using visual support for their lectures. Fur-
thermore, students were asked to keep questions about the
material to themselves until the lecture portionwas finished. All
in all, then, the lectures were perhaps more dull than what the
students would have experienced in their day-to- day classes.

At first glance, the reduction in alpha power after class (lower
post-class resting state alpha than pre-class resting state alpha)
seems incompatible with an attention explanation (in typical
laboratory experiments, alpha increases over the course of a
task; Benwell et al., 2017). Although we can only speculate why
this was the case, one possible explanation is task-related. It
is not unlikely that during the post-class rest period, students
were rehearsing content they had just been presented during
classes, in preparation for the post-class survey where they
would be asked to recall and/or reflect on the class content and
their class experience. Some indirect support for this explana-
tion comes from findings suggesting that spontaneous thinking
during resting states engages similar neural networks activated
in problem-solving states (Kounios et al., 2008).

Alpha varies with class time

Now let’s turn to the main focus of this study—student alpha
power in relation to class time. First, students’ alpha power
during rest periods decreased as the time of day progressed,
in line with prior work suggesting that students become more
alert and less sleepy throughout the day (at least until the mid-
afternoon). When students were presented with class content,
however, a slightly different pattern emerged: student alpha
power was lowest during the mid-morning classes, which mir-
rored their performance: retention was highest for materials
learned in mid-morning classes. This finding is consistent with
previous research on student performance that also shows such
a ‘U-shaped’ relationship to time of day. This seemingly inter-
nally contradictory finding may well result from a combination
of circadian factors and fatigue: early morning performance is
found to be low because of circadian reasons (Preckel et al., 2011),
whereas performance on tests taken at the end of a school day
is argued to be low because of fatigue/saturation (Dewald et al.,
2010; Short et al., 2013).

This relates to the fact that both global alpha power and self-
reported focus both lack specificity: they likely reflect multiple
mental states, closely related yet distinct. First, as noted in the
Introduction and discussed above, alpha power is associated
not only with local (or selective) task-related attention alloca-
tion (stimulus engagement) but also with global attentiveness
(brain states)—in both cases lower alpha corresponds to higher
levels of attention. (Note that increased local alpha is thought
to be associated with active selective suppression of distract-
ing inputs—i.e. the counterpart of attention; however, with the
alpha measures, we are reporting here, we are likely not picking
up on such more nuanced effects). Thus, our findings may very
well reflect a combination of both local and global processes.

Most prior research investigating effects of circadian
rhythms on school performance, motivation and engagement
has targeted individual variation among adolescents in terms of
e.g. their chronotype and/or hours of sleep (Curcio et al., 2006;
Dewald et al., 2010; Preckel et al., 2011; Roeser et al., 2013; Short
et al., 2013; Vollmer et al., 2013; Okano et al., 2019; Goldin et al.,
2020). Unfortunately, we did not have access to this informa-
tion from the students. In lieu, we had to rely on a fairly crude
measure of self-reported focus, for which students received no
additional instructions beyond the question ‘how focused do you
feel right now?’. While our supplementary analyses tentatively
support prior findings that individual variation may differen-
tially affect alertness, mood and academic performance (Roeser
et al., 2013; Short et al., 2013; Vollmer et al., 2013), we observed
no main effect of class time on self-reported focus. One of vari-
ous possible explanations is that in the early morning, students
equated lack of focus with sleepiness (i.e. global states of atten-
tiveness), while in the afternoon they associated it more often
with distractibility (i.e. local stimulus engagement): maybe they
just broke up with a boyfriend, they may have heard back from
their college applications, perhaps they just finished a difficult
chemistry test, etc. Whichever the underlying cause, this null
result underscores the relevance of implicit measures such as
brain imaging in conjunction with self-report and behavioral
metrics (see e.g. Thorson et al., 2018 for amore general argument
about the problematic nature of self-report).

Finally, we did not replicate previous findings showing that
frontal theta activity is associated with sustained wakefulness
(Cajochen et al., 1995). Note, however, that the lack of frontal
theta activity in our data could simply be a result of low signal-
to-noise ratio, possibly because the recording setup might be
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more sensitive to the prominent posterior alpha rhythm; hence,
this does not allow us to draw any conclusions about the poten-
tial relevance or role of frontal theta in classroom engagement.

Conclusion

Together, our findings demonstrate that class time is reflected
in adolescents’ brain state and suggest that mid-morning may
be the best time to learn. Perhaps most importantly, we val-
idated that non-invasive neurophysiological measures can be
employed as an implicit, continuous measure of attentiveness
during real-world classroom learning.
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