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SUMMARY

In population-based cancer studies, net survival is a crucial measure for population comparison purposes.
However, alternative measures, namely the crude probability of death (CPr) and the number of life years
lost (LYL) due to death according to different causes, are useful as complementary measures for reflecting
different dimensions in terms of prognosis, treatment choice, or development of a control strategy.When the
cause of death (COD) information is available, both measures can be estimated in competing risks setting
using either cause-specific or subdistribution hazard regression models or with the pseudo-observation
approach through direct modeling. We extended the pseudo-observation approach in order to model the
CPr and the LYL due to different causes when information on COD is unavailable or unreliable (i.e., in
relative survival setting). In a simulation study, we assessed the performance of the proposed approach in
estimating regression parameters and examined models with different link functions that can provide an
easier interpretation of the parameters. We showed that the pseudo-observation approach performs well
for both measures and we illustrated their use on cervical cancer data from the England population-based
cancer registry. A tutorial showing how to implement the method in R software is also provided.
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1. INTRODUCTION

When aiming to describe the survival experience of a group of individuals, the estimation of the overall
survival is usually of primary interest. However, when the goal is to describe the probabilities of dying
from different causes, a further step is required in order to account for competing risks. Competing risks
methods aim to identify covariates which not only affect the rate at which specific events occur but also
the probability of occurrence of a specific event over time (Austin and Fine, 2017).

To perform a competing risks analysis with two events, say cancer death and death from other causes,
we often rely on the cause of death (COD) information attributed to each individual, assuming that this
is available and reliable. Two types of hazards, namely the cause-specific and the subdistribution hazard,
may be used. Unlike cause-specific hazard, subdistribution hazard is useful for estimating covariate effects
on the event-specific probability since it quantifies the effect of a covariate attributed to the direct effect of
making the event more or less likely to occur or because of the indirect effect caused by the occurrence of
other events (Dignam and Zhang, 2012). However, this leads to a complicated interpretation thus, working
with cause-specific hazard might be preferred even though it does not directly describe the covariate effect
on the probabilities (Andersen and Keiding, 2012).

Nevertheless, the use of routinely collected population-based registry data involves additional method-
ological challenges due to the absence of reliable information on individual COD, calling for methods
defined within the relative survival setting (Pohar Perme and others, 2016). In this setting, the observed
mortality hazard is split into two mortality hazards: the expected or population mortality hazard (assumed
known and provided by population life tables) and the excess mortality hazard, which is the main quantity
of interest. The excess mortality hazard in the relative survival setting is the equivalent of cause-specific
(here cancer-specific) hazard in classical competing risks setting. The most frequently used indicator
derived from the excess mortality hazard is net survival (Pohar Perme and others, 2012), which describes
the probability of surviving when assuming that the cancer under study is the only possible COD. Net
survival is of interest when making comparisons between populations since it is independent of the com-
peting risks of death, which may differ between these populations (Allemani and others, 2018; De Angelis
and others, 2014).

Despite the usefulness of net survival, communicating survival statistics is complicated and must
involve various indicators, as to reflect different dimensions in terms of prognosis, treatment choice, or
development of a control strategy.Towards this direction alternative indicators like (i) the Crude Probability
of Death (CPr) from a given cause (Cronin and Feuer, 2000; Mariotto and others, 2014; Pfeiffer and Gail,
2017), also called cause-specific cumulative incidence function, and (ii) the number of Life Years Lost
(LYL) due to a given cause (Andersen, 2013), can be used as complementary tools in order to provide a
multi-perspective approach (Belot and others, 2019).

Crude probabilities can be estimated nonparametrically using theAalen–Johansen estimator (Satagopan
and others, 2004; Geskus, 2015), or modeled in cause-specific setting with regression models on the cause-
specific hazards (Pfeiffer and Gail, 2017; Kipourou and others, 2019) or on the subdistribution hazards
(Fine and Gray, 1999; Geskus, 2015; Mozumder and others, 2018) or modeled in relative survival setting
using regression models on the excess hazard (Lambert and others, 2010; Eloranta and others, 2013;
Charvat and others, 2013, 2016). In cause-specific setting, the pseudo-observation approach is another
option (Andersen and others, 2003; Klein andAndersen, 2005;Andersen and Pohar Perme, 2010) allowing
for the direct modeling of probabilities. In relative survival setting, CPr can be estimated nonparametrically
or indirectly via regression modeling of the excess hazard but not through direct modeling. Similarly,
although estimation and modeling of LYL can be implemented in cause-specific setting (Andersen, 2013),
modeling them in relative survival setting has yet to be implemented.

The scope of this article is to present a way of modeling directly the CPr and LYL due to the disease of
interest and other causes in relative survival setting (i.e., when COD is not available) according to some
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covariates of interest. We chose to extend the most general method, i.e., the pseudo-observation method
(Andersen and others, 2003; Klein and Andersen, 2005; Andersen and Pohar Perme, 2010; Andersen,
2013), which can be applied to both measures. The main idea is based on the fact that when there is
censoring we do not always observe the random variable (e.g., time to event). By generating pseudo-
observations at specific time points, we replace the whole set of incompletely observed random variables
with a complete set of their pseudo-observations. These are later modeled with standard methods like
generalized linear models (GLM) or generalized estimating equations (GEE) in order to quantify covariate
effects directly on the indicators of interest.

The remainder of the article is organized as follows: Section 2 provides a general description of the
pseudo-observation approach and details how this can be adapted in relative survival setting in order to
model directly the CPr and LYL. In Section 3, we assessed the performance of the method in its ability
to estimate the regression parameters of interest and examined models with different link functions using
simulations. In Section 4, we applied the new method on population-based cancer registry data of women
diagnosed with cervical cancer in England between 2008 and 2010, and discussed the useful interpretation
that can be gained from these models. Lastly, Section 5 summarizes the results and presents ideas for further
research.

2. METHODS

2.1. Pseudo-observations

The method based on pseudo-observations provides a general framework that enables the direct modeling
of a given statistical measure (e.g., survival probability) as a function of some covariates of interest.
Pseudo-observations (also called pseudo-values) were first described for multistate models (Andersen
and others, 2003), and since then many extensions were proposed [e.g., for cause-specific cumulative
probabilities within the classical competing risks setting (Klein and Andersen, 2005; Moreno-Betancur
and Latouche, 2013) or for the restricted mean survival time (Andersen and others, 2004)]. This approach
requires the existence of an (approximately) unbiased estimator of the measure of interest (Andersen
and Pohar Perme, 2010). While its usefulness goes beyond modeling [as it can be extended to providing
goodness-of-fit methods (Andersen and Pohar Perme, 2010; Pavlič and others, 2018)], we focus on the
modeling part here, and summarize the main steps for their use when analyzing time to event data.

For an individual i = 1, . . . , n, let Yi be independent and identically distributed random variables (e.g.,
time since diagnosis up to death), and X i a p-dimensional vector of (time-fixed) covariates. As it is often
the case with time to event data analysis, Yi is not always observed due to censoring. Pseudo-observations
are useful when information on Yi is not available, and our interest lies on modeling the E [f (Yi)|X i] for
a given function f .

The main idea of pseudo-observations relies on the fact that even with incomplete (censored) data we can
still derive the marginal expectation E [f (Y )]. Assuming that a consistent and (approximately) unbiased
estimator θ̂ exists for θ = E [f (Y )] [e.g., the Kaplan–Meier estimator for the survival probability, or the
Aalen–Johansen estimator for the cause-specific cumulative incidence function (Geskus, 2015)], then the
possibly unknown f (Yi) could be replaced by its pseudo-observation (Andersen and Pohar Perme, 2010).

Pseudo-observations are computed for every individual regardless of the availability of the f (Yi) at
specific times. Thus, the pseudo-observation for f (Yi) is defined for individual i = 1, . . . , n at a given time
t as

θ̃i = n · θ̂ − (n − 1) · θ̂−i, (2.1)

where θ̂ is the estimator at time t based on the whole sample and θ̂−i is the estimator at time t based on
the sample of size (n − 1), obtained by eliminating individual i from the whole sample. Intuitively, the
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pseudo-observation θ̃i can be seen as the “contribution” of the individual i to the E [f (Yi)|X i], estimated
on the basis of the full sample at time t (Andersen and Pohar Perme, 2010).

Pseudo-observations may be calculated at several time points. In this case, the pseudo-observation θ̃ i

is m-dimensional (i.e., (θ̃ i)j = θ̃ij, j = 1, . . . , m) and represents the vector f (Y i) (Y i = (Yi1, · · · , Yim))

with entries f (Yij). These pseudo-observations may be used as the outcome variables in a generalized
linear regression model in order to derive the covariate effects on the outcome of interest as

g{E[f (Yij)|X i]} = αj + γ �X i = β�X ∗
ij, i = 1, . . . , n j = 1, . . . , m, (2.2)

where g is a monotone differentiable link function and X ∗
ij is a (m + p dimensional) vector including the

indicators of the time points and the covariates X i, X ∗
ij = (e�

j , X �
i )�, where ej is the m-dimensional vector

with 1 on the jth entry and 0 otherwise (Andersen and Pohar Perme, 2010). Adding interaction terms
(between covariates and time terms) would make X ∗

ij higher dimensional.
Because the pseudo-observations for a given subject could not be considered as independent random

variables, estimating the (m + p) regression parameters β is based on the GEE method (Liang and Zeger,
1986). The estimating equations to be solved are

n∑
i=1

(
∂

∂β
g−1(β�X ∗

i )

)�
V −1

i

{
θ̃ i − g−1(β�X ∗

i )
}

= 0, (2.3)

where g−1(β�X ∗
i ) is an m-dimensional vector (g−1(β�X ∗

i1), · · · , g−1(β�X ∗
im)) and Vi is a working

covariance matrix with a pre-defined structure.
In order for the pseudo-observation approach to work, it has been shown that censoring should not

depend on covariates (Graw and others, 2009), alternatively modified pseudo-observations should be
applied (Binder and others, 2014). For the variance of the estimated regression parameters β̂, a sandwich
estimator could be used (Andersen and others, 2003). Even if it has been shown that this might lead to
inconsistent and upward biased results (especially in the case of large samples), this has an insignificant
impact in practical applications (Jacobsen and Martinussen, 2016; Overgaard and others, 2017, 2018).

The user has various choices with respect to the link function g and the structure of the working
covariance matrix V . A clever choice of the latter may increase efficiency (Andersen, 2013), but we do
not explore this further in this study.

2.2. The relative survival setting and the excess mortality hazard approach

The relative survival setting is a specific competing risks setting where, although the COD information
is either missing or is unreliable, inference about the event/disease of interest can still be drawn under
specific assumptions and conditions (detailed below). In this article, the disease of interest is a specific
cancer and the time scale used for measuring the time to event is the time since cancer diagnosis.

In relative survival setting, we consider two sets of data: (i) data on time to death (but without COD
information) from a cohort of patients with the specific cancer of interest and (ii) life tables of the general
population in which all-cause hazard functions (stratified by some sociodemographic variables z) are
available (Pohar Perme and others, 2012). The main assumption we make here is that for an individual
i, the observed hazard λC(t; X i) described by the covariates X i can be decomposed as the sum of the
cancer-specific mortality hazard λC(t; X i) and the hazard related to other causes λP(t; zi) (with zi ⊂ X i):

λO(t; X i) = λC(t; X i) + λP(t; zi). (2.4)
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We further assume that λP is equal to all-cause hazard of the general population within levels of z. For
this assumption to hold, the following conditions must be met:

• the specific cancer of interest is considered a negligible COD in the general population (Ederer,
1961). This is especially true when prevalence is low (i.e., rare cancers and younger age groups),
but it might be unreasonable when focusing for example on older people with common cancers
(e.g., prostate cancer) or when all cancer sites are combined (Hinchliffe and others, 2012; Talbäck
and Dickman, 2011).

• the other-cause hazard of the general population is equal to the other-cause hazard of the study
population within levels of z. Moreover, within levels of z, the other-cause hazard does not further
depend on X nor on any (unmeasured) covariates. This latter condition may not be realistic for
some cancers, and an adaptation of the method might be needed (Rubio and others, 2019).

In most situations, the minimum set of sociodemographic covariates z stratifying life tables (and
therefore λP) is sex, age (in 1-year age-group), calendar year and geographical level. In some countries,
additional stratifying variables may be available, such as deprivation level or ethnicity.

A discussion of the assumptions and related conditions that should be met for the relative survival
setting to be valid can be found in Pavlič and Pohar Perme (2018).

2.3. Measures of interest in the relative survival setting

2.3.1. CPr from a specific cause. In the classical competing risks setting where the COD is available,
the (cause k)-specific probability of death Fk(t) (also called cumulative incidence function) represents the
probability of dying from cause-k before or at time t, and can be expressed as Fk(t) = ∫ t

0 S(u−)d�k(u),
where S is the all-cause survival function and �k is the cumulative (cause k)-specific hazard.

In the relative survival framework, the CPr from cancer FC(t) is expressed as FC(t) = ∫ t
0 S(u−)d�C(u)

(Cronin and Feuer, 2000; Lambert and others, 2010; Charvat and others, 2013). It may be estimated using
the marginal cancer-specific hazard λC(t), this latter being defined as the combination of the individual
cancer-specific hazards, λC(t, X ) [see equations (5) and (6) in (Pohar Perme and others, 2012), while more
details can be found in (Belot and others, 2019; Pohar Perme and Pavlic, 2018)]. Thus, it holds that

F̂C(t) =
∫ t

0
Ŝ(u−)d�̂C(u), (2.5)

where Ŝ(u−) is the Kaplan–Meier estimator of the overall survival and the estimator of the cancer-specific
cumulative hazard is calculated as

d�̂C(t) =
dN (t) −

n∑
i=1

Yi(t)d�P(t, zi)

Y (t)
.

Similarly, the CPr from other causes can be estimated as

F̂P(t) =
∫ t

0
Ŝ(u−)d�̂P(u), (2.6)
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where

d�̂P(t) =

n∑
i=1

Yi(t)d�P(t, zi)

Y (t)

In both formulae, d�P is obtained through λP, which is the population mortality hazard that an individual
i with covariates zi, i = 1, . . . , n, is exposed to at time t. N (t) and Y (t) are counting processes, where N (t)
is the number of individuals who have experienced an event of any type in [0, t], and Y (t) is the number
of individuals who are still at risk at time t, obtained as the sum of indicators whether a person is still
at risk, Y (t) = ∑

Yi(t) (Klein and Andersen, 2005; Andersen and Pohar Perme, 2010; Pohar Perme and
Pavlic, 2018).

This method of estimation is already provided in the R-package relsurv (Pohar Perme, 2018).

2.3.2. Number of LYL due to a specific cause. The expected LYL due to a specific cause (for a given
time window) is a useful complementary indicator (Andersen, 2013), allowing for an easier interpretation
of the results, which is expressed with time units. In clinical setting this indicator provides an interesting
insight on prognosis, treatment choice, or the development of a control strategy.

Without distinguishing death from different causes, the LYL before time τ [compared to an immortal
cohort (Andersen, 2013), i.e., where nobody dies before time τ ], may be expressed as

L(0, τ) = τ −
∫ τ

0
S(u)du.

The total LYL can be further decomposed according to COD in the classical competing risks setting
as Lk(0, τ) = ∫ τ

0 Fk(u)du, where Fk(t) is the cause k-specific cumulative probability of death (Andersen,
2013). Therefore, following the same analogy as before, this decomposition can be extended to relative
survival setting for the LYL due to cancer LC and due to other causes LP (Belot and others, 2019):

LC(0, τ) =
∫ τ

0
FC(u)du, LP(0, τ) =

∫ τ

0
FP(u)du. (2.7)

Finally, by plugging into equation (2.7) the estimators (2.5) and (2.6) we can estimate the L̂C(0, τ) and
L̂P(0, τ), respectively.

2.4. Pseudo-observations in the relative survival setting for estimating covariates effects on the CPr and
the LYL due to different causes

The pseudo-observation for the CPr due to cancer for an individual i at time t, F̃C,it is calculated [based
on the equations (2.1) and (2.5)] as

F̃C,it = n · F̂C(t) − (n − 1) · F̂−i
C (t). (2.8)

This pseudo-observation is defined at m timepoints with m varying between 5 and 10 different time-
points, which can be either equally spread or chosen based on quantiles of the overall survival time
distribution (Klein and Andersen, 2005). The pseudo-observations for the CPr of death due to other causes
are defined in the same way.
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For the LYL due to cancer LC,i(0, τ) (respectively other cause, LP,i(0, τ) ), we compute only m=1
pseudo-observation at time τ for each individual [based on the equations (2.1), (2.7)] as

L̃C,i(0, τ) = n · L̂C(0, τ) − (n − 1) · L̂C(0, τ)−i. (2.9)

For both indicators, after calculating these pseudo-observations we generate a new data set in which
every individual is assigned with m pseudo-observations (corresponding to the m time-points), which later
will be used as the main outcome in a regression model (Andersen and others, 2003). A GEE model of
the form g(E[Y |X i]) = β�X ∗

ij is typically used, where g is a link function, β is the corresponding vector
of m + p regression parameters, and X ∗

ij is a vector including the covariates for the individual i (X i) as
well as the intercept and the indicator functions of the (m − 1) remaining timepoints.

2.4.1. User choices: link function and working covariance matrix. Interpretation of regression coef-
ficients varies according to the link function used. For the CPr, most common g link functions are the
cloglog, log, and identity.

A cloglog link function on FC(t) defined as log(− log(1 − FC)) leads to similar regression coefficient
estimates to those obtained with Fine and Gray model (Fine and Gray, 1999). In this case, the exp(β) is a
hazard ratio which is related to the subdistribution hazard, i.e., the instantaneous rate of failure per time
unit from cause j among those who are either alive or have had a competing event at time t. Due to the
complicated nature of this type of hazard ratios, the regression coefficients are interpreted in a qualitative
(higher or lower than 1) rather than quantitative way (Andersen and others, 2012). Nonetheless, a test of
statistical significance of a subdistribution hazard ratio provides a test of the covariate effect on the CPr
(Austin and Fine, 2017).

A log link function provides regression coefficients with less complicated interpretation. The exp(β)

obtained from a model with log link function gives an estimate of the relative risks (Overgaard and others,
2015) allowing for quantitative interpretations. However, constraining probabilities between [0,1] might
be problematic in situations with high absolute risks or when extrapolating outside the data range (Lambert
and others, 2017).

Additionally, an identity link function can be applied to CPr leading to regression coefficients that
are interpreted as risk differences (Klein, 2006; Hansen and others, 2014). The identity link function is
usually the link function of choice for models on LYL as well. In this case, the interpretation shows the
additional life years that are lost due to a given cause. In both cases though, results might go beyond the
admissible range which is set for each indicator and thus, one must be careful of predictions outside the
observed limits.

The logit link function (not explored here) would be another option giving also convenient interpreta-
tions, i.e., odds ratios. This choice also suffers from certain drawbacks such as numerical instabilities for
small values of time t (Gerds and others, 2012).

We account for the correlation in the pseudo-observation data through the use of a specific structure of
the working covariance matrix (Pekár and Brabec, 2018). The choice of a covariance matrix structure might
vary between independence, exchangeable, autoregressive, and unstructured, although it is suggested that
even the independence working covariance matrix is adequate (Klein and Andersen, 2005).

3. SIMULATION STUDY

In this study we conjecture that the pseudo-observation approach for the relative survival setting will work
in a similar way as in the classical competing risks setting and GEE would be a reasonable approach to
yield both regression parameter and variance estimates. With a simulation study, we examine the validity
of the method in practice. Simulations were performed in order to evaluate the frequentist properties of
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the proposed method based on pseudo-observations in its ability to estimate regression parameters of
covariates associated to CPr and LYL due to death from cancer and from other causes.

3.1. Data generation and simulation design

We simulated nsim = 500 data sets with sample size of N = {300, 1000}. Each individual was assigned
with a vector of three covariates which includes information about sex, year of diagnosis, and age at
diagnosis. Sex was simulated as binary drawn from a Bernoulli distribution with probability 0.5. Year of
diagnosis was simulated as a continuous variable and sampled from a uniform distribution ranging from
2000 to 2003. Age at diagnosis was simulated as a continuous variable by first selecting an age class
according to predefined probabilities [0.25 for age class [30,65), 0.35 for age class [65,75) and 0.4 for age
class [75,80)] and then sampling from a class-specific uniform distribution (Belot and others, 2010).

This scenario tried to mimic what could be observed in real situations for colon cancer patients. We
used a Generalized Weibull distribution with parameters (κ , ρ, α) to model the subdistribution hazard
(SDH). For individual i, the SDH related to cancer γC was defined as

γC(t,Agei, Sexi,Yeari) = γ0(t) exp
{
βAgeAgei + βSexSexi + βYearYeari

}
,

where

γ0(t) = κρκ tκ−1

1 + (ρt)κ

α

.

The parameters used for the baseline hazard, namely {κ , ρ, α}, were set to {2, 1.6, 0.05}. The values used
for the covariate regression parameters were βAge = 0.2 (for 1 year increase), βSex = 0.3, and βYear = 0,
accounting for different strength in effect sizes; a very strong effect (age), a weak effect (sex), and a
null effect (year). In this way, simulations include the most common covariates used in relative survival
analyses.

We obtained the expected mortality λP from UK life tables based on some demographic characteristics,
namely year, age, and sex (Danieli and others, 2012). The λP changed annually for a given age and sex
and remained constant during a year hence, following a piecewise exponential distribution.

Using γC and λP, we obtained the cancer-specific hazard λC by adapting the approach described in
Haller and Ulm (2014). The individual survival time (from any cause) was obtained using the inverse
probability transform method (Bender and others, 2005; Belot and others, 2010). More information on
the simulation algorithm is provided in Section 1 of Supplementary Material available at Biostatistics
online.

We set the administrative censoring time (C) at 10 years and allowed for a separate distribution to
account for drop outs, which followed an exponential distribution (λd = 0.035). This results in approxi-
mately 8% loss to follow-up, while the total amount of censoring in each data set was on average around
42%. A vital status indicator δ was created, δ = 0 for individual censored at T and δ = 1 for those being
dead at time T (irrespective of COD).

3.2. Analysis of simulated data

For CPr from cancer and other causes, we tested three GEE models for the pseudo-observations: (a)
a model with log link function, (b) a model with cloglog link function, and (c) a model with identity
link function. All models were assuming independence working correlation and included the explanatory
variables age at diagnosis, sex, and year of diagnosis.
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To model LYL within 10 years from death caused by cancer or other causes, we fitted a GEE model with
identity link function, explanatory variables: age at diagnosis, sex, and year of diagnosis, and independence
covariance structure.

We calculated the following performance measures:

(1) bias, defined as the difference between the average of the nsim = 500 estimated values and the true
value β∗

0 : 1
nsim

∑nsim
i=1 β̂i − β∗

0 ,

(2) empirical standard error
√

1
nsim−1

∑nsim
i=1 (β̂i − β̄)2, where β̄ = 1

nsim

∑nsim
i=1 β̂i,

(3) model standard error
√

1
nsim

∑nsim
i=1 [V̂ar(β̂i)],

(4) root mean squared error
√

1
nsim

∑nsim
i=1 (β̂i − β∗

0 )2, and

(5) the coverage which is the proportion of samples in which the 95% confidence interval included β∗
0 .

Using a cancer-specific subdistribution hazard model allows us to directly assess only the cancer-
specific estimates provided by the model with the cloglog link function. For the other two link functions
and the other causes with cloglog (where real population hazards were taken), the performance was
assessed indirectly with the least false parameters (LFP) (Hjort, 1992; Beyersmann and others, 2009).
The LFP were obtained after applying the same models described previously to a data set of 100 000
individuals, which was generated using the same simulation algorithm but without considering any drop
outs (for more details please see Section 2 of Supplementary Material available at Biostatistics online).
Both true and LFP were available for the cloglog, so by comparing those two we were able to evaluate
the sensibility of the LFP as proxies of the true values. The LFP for model (b) for the cancer case were
(0.199, 0.299, 0.005) whereas the true (simulated) were (0.2, 0.3, 0), validating this way of comparison.

Our computations were performed in R 3.2.0. We used the nonparametric method for the CPr provided
by the R-package relsurv [version 2.1.1, function cmp.rel (Pohar Perme, 2018)], while GEE models
were fitted with the R-package geepack (version 3.2.5, function geese).

3.3. Simulation results

3.3.1. CPr of death from colon cancer and other causes. Results shown in Table 1 suggested that
regardless of the link function used, the regression parameter estimates of the covariate effects were
almost unbiased with most of the coverage probabilities lying within the acceptable coverage range
([0.931, 0.969]) for all parameter estimates and for any cause (cancer or other causes). Results were
similar for both sample sizes although, for model (c) results seem to be slightly better when N = 1000
due to a smaller bias in the larger sample size. In general, standard error was found to be adequately
estimated with the models based on how close the empirical standard errors compared to model standard
errors are. RMSEs were also reasonably low proving also good model performance.

The only exception to that is the regression parameter estimates in model (c) in the case of age (for
cancer) and year (for both causes) when N = 300. In all cases, standard error seemed to be well estimated
thus, indicating that the bias in the estimator should be probably the reason for the problematic coverage
probability.A different choice of working correlation structure would change both the regression parameter
estimate and its variance, leading to a possibly better coverage probability, while model misspecification
might be an additional issue which may be considered.

3.3.2. Life years lost. The regression parameters were well estimated when modeling the number of LYL
due to each cause, with a very small bias and a good coverage (see Table 2). Only exception to that was the
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estimated regression parameter for the effect of sex and year in the case of other causes when N = 1000.
An overestimation of the standard error by the model might have inflated the coverage probability in case
of sex, while bias seems to be the source of problem in the case of year. Another specification of the model
including a change of the working covariance matrix would be additional things to consider.

4. ILLUSTRATIVE EXAMPLE

We illustrated our approach using a data set of 7351 women diagnosed in England with cervical cancer
between 2008 and 2010, obtained from the national population-based cancer registry. We limited the
sample to those aged between 15 and 89 years, the end of follow-up was set at the 31st of December of
2015 and all individuals had a minimum potential follow-up of 5 years. In this data set, 2255 (30.7%)
deaths were observed (all causes considered as the exact COD was not available) while 186 (2.5%) were
lost to follow-up. We applied the nonparametric method and the pseudo-observations approach defined in
the relative survival setting, and we used the UK life tables stratified by sex, age, calendar year, government
office region, and deprivation quintiles.

The covariates of interest for studying their association with the CPr or with the number of LYL due to
each cause were: age at diagnosis defined as a continuous variable, and the deprivation quintiles. For the
latter, patients were categorized in five socioeconomic groups (from the least deprived group, level 1, to
the most deprived group, level 5) using national categories of the income domain of the Index of Multiple
Deprivation score (IMD 2004) which is a score defined at the lower super output area level in England.

In this illustration, our aim was to obtain and interpret the regression parameter estimates which quantify
the effect of covariates on CPr and LYL due to cancer and other causes. We show how the interpretation
changes based on the choice of link function, while we demonstrate in practice the advantages and
limitations that were described in Section 2.4.1.

4.1. Crude probabilities of death from cancer and other causes

We started with the estimation of the pseudo-observations for CPr from cancer and other causes. Pseudo-
observations for each cause (cervical cancer and other causes) were computed at 5 timepoints, which were
decided based on the quantiles of the survival time distribution.

We modeled the CPr from cancer and other causes using three different models.All models were simply
specified accounting for time-dependent terms (i.e., indicator functions for the four last timepoints at which
pseudo-observations were calculated) and two main variables, namely age at diagnosis and deprivation
group included as linear terms. Models differed with respect to link functions (cloglog, log, identity)
allowing for different interpretations. The working covariance matrix was the same in all models where
independence structure was applied. The regression parameter estimates for each model can be seen in
Table 3.

In the case of cloglog model, the reported β̂ estimates correspond to log subdistribution hazard ratios
associated with 1 unit change of a covariate X in the instantaneous rate of the occurrence of an event
among those who are event-free or have experienced a competing event (i.e., the subdistribution hazard
function). Following the reasoning in Section 2.4.1, we provided only a qualitative description of the
results. Age coefficient is positive (0.452), which can be translated to an increase in subdistribution
hazard and subsequently, in the probability of dying from cancer with the increase of age. Similarly, the
regression parameter for age in the case of other causes was also positive (0.702), indicating an increase in
the subdistribution hazard of other causes. Moreover, irrespective of the COD, the most deprived people
were associated with a bigger increase in CPr compared to the least deprived, with the only exception
being those from deprivation group 2 in the cancer event. Lastly, we can say that for example people from
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Table 3. Regression parameter estimates (standard errors) for the direct modeling of the crude probabilities
of death from cancer and other causes, as obtained with three models using pseudo-observations with
link functions: cloglog, identity, and log, and assuming an independence working covariance structure.

cloglog Log Identity

Cancer Other causes Cancer Other causes Cancer Other causes

(Intercept) −2.313(0.072) −5.835(0.149) −2.178(0.055) −5.743(0.14) 0.099(0.01) 0.002(0.001)

t = 969 days 0.626(0.028) 0.721(0.018) 0.477(0.023) 0.702(0.017) 0.098(0.004) 0.008(0)

t = 1826 days 0.845(0.031) 1.207(0.032) 0.612(0.025) 1.163(0.029) 0.14(0.004) 0.017(0.001)

t = 2132 days 0.881(0.032) 1.339(0.036) 0.633(0.026) 1.286(0.033) 0.147(0.004) 0.021(0.001)

t = 2487 days 0.927(0.033) 1.474(0.04) 0.659(0.026) 1.41(0.036) 0.156(0.005) 0.025(0.001)

Age† 0.452(0.014) 0.702(0.034) 0.33(0.009) 0.67(0.032) 0.101(0.003) 0.017(0.001)

Deprivation 2 −0.025(0.091) 0.158(0.147) −0.016(0.067) 0.151(0.141) −0.001(0.014) 0.002(0.002)

Deprivation 3 0.134(0.087) 0.099(0.137) 0.085(0.063) 0.094(0.131) 0.031(0.014) 0.003(0.002)

Deprivation 4 0.2(0.083) 0.135(0.126) 0.125(0.06) 0.125(0.121) 0.047(0.014) 0.005(0.002)

Deprivation 5 0.186(0.082) 0.223(0.129) 0.12(0.06) 0.203(0.124) 0.043(0.013) 0.008(0.002)

†(Age at diagnosis-47 (mean age in the data set))/10

deprivation group 4 who had a larger regression coefficient than those from deprivation 3, had a higher
relative change in the incidence of cancer death [see Proof from Ref. (Austin and Fine, 2017)].

Although this interpretation was informative, the model with log link function provided additionally
a quantitative interpretation expressed as relative risk. The effect of age was quantified as exp(0.33),
meaning that a 10-year increase in age at diagnosis was associated with an increase in probability of
death from cancer by 39% (95% CI 37–42), for a given deprivation group at a given time-point. With
respect to other causes, the regression parameter for the effect of a 10-year increase in age indicated an
1.95-fold (95% CI 1.84–2.08) increase in the risk of dying from other causes. Regarding deprivation, by
exponentiating the results shown in Table 3, we observed that the most deprived group (deprivation 5)
had approximately 1.12 (95% CI 1–1.27) times higher risk of dying from cancer compared to the least
deprived group (deprivation 1) at a given time-point after adjusting for age at diagnosis. The corresponding
effect on the other causes was 1.23 (95% CI 0.97–1.61).

The identity link model has also the advantage of simple interpretation of the coefficient parameters,
providing estimates of risk differences. Therefore, we observed that a 10-year increase in age at diagnosis
was associated with an increase in the risk of cancer death (0.101, 95% CI 0.095–0.107) for a given
deprivation group at a given time-point [the corresponding estimates for other causes is 0.017 (95%
CI 0.015–0.019)]. Furthermore, we observed that for the most deprived group (deprivation 5) the risk
difference related to death from cancer was estimated as 0.043 (95% CI 0.02–0.07) compared to the least
deprived group (deprivation 1) at a given time-point after adjusting for age. The analogous effect on the
other causes was 0.008 (95% CI 0.004–0.012). As we already mentioned in Section 2.4.1, one must be
aware of inappropriate predictions when using this model which is true even here, e.g., when trying to
predict the probabilities for cancer for someone with an age below 38 years at the 1st time-point.

4.2. LYL due to cancer and other causes

The pseudo-observations for LYL from cancer or other causes were estimated within the time period 5
years. A GEE model with identity link function and independence working covariance matrix was applied
with age at diagnosis and deprivation group as explanatory variables.According to the model estimates (see
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Table 4. Regression parameter estimates
(standard errors) for the direct modeling
of the number of LYL due to cancer and
due to other causes, as obtained with a
model for pseudo-observations with iden-
tity link function and independence working
covariance structure.

Cancer Other causes

(Intercept) 0.841 0.051
Age† 0.443 0.055
Deprivation 2 0.002 0.005
Deprivation 3 0.144 0.011
Deprivation 4 0.216 0.017
Deprivation 5 0.188 0.025

†(Age at diagnosis-47 (mean age in the data set))/10

Table 4), a 10-year increase in age at diagnosis led to approximately 0.44 (95% CI 0.42–0.47) additional
years being lost due to cancer and 0.055 (95% CI 0.051–0.059) due to other causes in the first 5 years.
Moreover, people who were more deprived had an increased number of LYL compared to people who
were less deprived in the first 5 years, with those in the most deprived group losing around 0.188 (95%
CI 0.08–0.3) additional years due to cancer compared to the least deprived.

5. DISCUSSION

Alternative survival indicators such as CPr and LYL attributed to different causes can prove very useful
when communicating survival statistics. That is especially true in the case where the event of interest is
cancer whose complexity requires a multi-perspective approach. CPr and LYL are both defined in “real
world” and quantify the impact of a covariate on a given event in the presence of other competing events
thus, useful to inform about a patient’s prognosis, a treatment choice, or even the development of a control
strategy (Charvat and others, 2013; Mariotto and others, 2014; Pohar Perme and others, 2016). The LYL
indicator has the additional advantage of being expressed on a time scale, making it easier to communicate
the results of analysis to a non-scientific audience (Belot and others, 2019).Although these indicators have
been well defined and modeled in cause-specific setting, i.e., when the information on COD is available
and reliable, a direct modeling of those measures in the relative survival setting was yet unavailable.

In this article, we explored the use of pseudo-observations in modeling these alternative survival
measures in relative survival setting with GLMs using the GEE method. This approach enables the user
to choose between different link functions and various structures of working covariance matrix.

We evaluated the new approach using simulations and we showed that it performs well for both
measures. Regarding CPr, assessment of different models through regression parameters showed good
performance regardless of the choice of link function and whilst assuming a simple independence working
covariance structure (Klein and Andersen, 2005; Pekár and Brabec, 2018). Regarding LYL, the simulation
results displayed good performance for that indicator too, when applying an identity link function and an
independence covariance matrix.

The application of the new method to cervical cancer data showed how the covariate effects on the
indicators of interest can be derived and interpreted. The models used in the illustration were simple and
model misspecification cannot be excluded yet, this study stresses on the interpretation rather than on
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model building strategies. One interesting further step would be to use goodness of fit tests as recently
proposed (Pavlič and others, 2018), in order to assess the choice of link function and the functional form
of continuous covariates.

In general, this approach offers a useful alternative, especially when considering how the interpretation
simplifies when using a model for CPr with a log and identity link function (compared to one with a cloglog
function). Although a cloglog link function would give similar interpretations to Fine & Gray model, we
advocate the use of log link function with which exp(β) gives an estimate of relative risk (Overgaard
and others, 2015), and of identity link function which would yield risk differences. This would avoid the
pitfalls of interpreting subdistribution hazard ratios (Andersen and others, 2012; Austin and Fine, 2017)
with the additional advantage of quantitative interpretation of covariate effects on the indicator of interest.
However, one must be careful when choosing these link functions as to avoid predictions that go beyond
the acceptable range (i.e., [0,1] for probabilities and (0,+∞) for time).

Time-dependent and nonlinear effects can also be easily introduced into the model (Klein andAndersen,
2005). However, inclusion of a time-dependent covariate needs careful consideration, mostly in terms of
interpretation due to the fact that the CPr is not a functional of the sole intensity when (nondeterministic)
time-dependent covariates are considered (Andersen and others, 2003). Knowing the future evolution
of such covariates is therefore needed, yet this cannot be practically done when the observed COD
is a competing event. Studies that deal with that include a landmarking approach using direct binomial
modeling (Grand and others, 2018) or a synthesis of separate cause-specific hazard analyses (Beyersmann
and Schumacher, 2008) etc., but more research in that direction will be needed in the context of pseudo-
observation approach.

There are also other issues in our work which were not explored here, but which could be of possible
interest. Firstly, until this point we presented a way to model the pseudo-observations separately for one
cause at a time. An alternative choice would be to model them jointly and use a working covariance matrix
that reflects the correlation between pseudo-observations of the same cause that would enable the joint
estimation of parameters (Andersen, 2013). Secondly, the goal of this article was to show the sensible
behavior of the method in practice. This was well confirmed with our simulations, yet more work is
needed to derive theoretically the asymptotic properties of the estimators. Thirdly, even though modeling
pseudo-observations constitutes a simple and general approach that can simplify survival analysis, it is
usually less efficient compared to other methods developed specifically for one indicator of interest. An
additional consideration in this approach before applying it to any data, is the assumptions behind relative
survival setting (Pavlič and Pohar Perme, 2018), violation of which might result in biased estimators of
pseudo-observations and subsequently, an invalid analysis. Lastly, in this study we did not investigate
the performance using different covariance matrix structures but we used the independence structure
throughout as has been suggested by Klein and Andersen (2005). Impact of other structures on the results
would be an interesting further methodological development.

In summary, our approach based on pseudo-observations in relative survival setting demonstrated nice
frequentist properties on estimating the crude probabilities of death and the LYL from different causes in
realistic situations. These two indicators along with other frequently reported measures like net survival
can improve the understanding of the nature and mechanism of competing events. Their computation in
relative survival setting is quite important as routinely collected population-based data often suffer from
unreliable or unavailable information of the COD. The advantage of the pseudo-observation approach to
provide covariate effects directly affecting the indicators of interest in the relative survival setting, makes
the method appealing to the user. However, one should be aware that this approach might be prone to a
longer computational time (especially in the case of big data sets) compared to conventional methods. A
guide that provides the code for applying the method in R-software is also provided.
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SOFTWARE

The implementation R-code simulation code, and sample data are available at https://github.com/pseudorel/
supp_material.git.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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M., JOHNSON, C. J., ESTÈVE, J. and others. (2018). Global surveillance of trends in cancer survival 2000–14
(concord-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322
population-based registries in 71 countries. The Lancet 391, 1023–1075.

ANDERSEN, P. K. (2013). Decomposition of number of life years lost according to causes of death. Statistics in
Medicine 32, 5278–5285.

ANDERSEN, P. K., GESKUS, R. B., DE WITTE, T. AND PUTTER, H. (2012). Competing risks in epidemiology: possibilities
and pitfalls. International Journal of Epidemiology 41, 861–870.

ANDERSEN, P. K., HANSEN, M. G. AND KLEIN, J. P. (2004). Regression analysis of restricted mean survival time based
on pseudo-observations. Lifetime Data Analysis 10, 335–350.

ANDERSEN, P. K. AND KEIDING, N. (2012). Interpretability and importance of functionals in competing risks and
multistate models. Statistics in Medicine 31(11-12), 1074–1088.

ANDERSEN, P. K., KLEIN, J. P. and ROSTHØJ, S. (2003). Generalised linear models for correlated pseudo-observations,
with applications to multi-state models. Biometrika 90, 15–27.

ANDERSEN, P. K. AND POHAR PERME, M. (2010). Pseudo-observations in survival analysis. Statistical Methods in
Medical Research 19, 71–99.

AUSTIN, P. C. AND FINE, J. P. (2017). Practical recommendations for reporting fine-gray model analyses for competing
risk data. Statistics in Medicine 36, 4391–4400.

BELOT, A., ABRAHAMOWICZ, M., REMONTET, L. AND GIORGI, R. (2010). Flexible modeling of competing risks in
survival analysis. Statistics in Medicine 29, 2453–2468.

BELOT, A., NDIAYE, A., LUQUE-FERNANDEZ, M. A., KIPOUROU, D. K., MARINGE, C., RUBIO, F. J. AND RACHET,
B. (2019). Summarizing and communicating on survival data according to the audience: a tutorial on different
measures illustrated with population-based cancer registry data. Clinical Epidemiology 11, 53.

BENDER, R., AUGUSTIN, T. AND BLETTNER, M. (2005). Generating survival times to simulate cox proportional hazards
models. Statistics in Medicine 24, 1713–1723.

https://github.com/pseudorel/supp_material.git
https://github.com/pseudorel/supp_material.git
http://biostatistics.oxfordjournals.org


Using pseudo-observations for modeling in relative survival setting 117

BEYERSMANN, J., LATOUCHE, A., BUCHHOLZ, A. AND SCHUMACHER, M. (2009). Simulating competing risks data in
survival analysis. Statistics in Medicine 28, 956–971.

BEYERSMANN, J. AND SCHUMACHER, M. (2008). Time-dependent covariates in the proportional subdistribution
hazards model for competing risks. Biostatistics 9, 765–776.

BINDER, N., GERDS, T. A. AND ANDERSEN, P. K. (2014). Pseudo-observations for competing risks with covariate
dependent censoring. Lifetime Data Analysis 20, 303–315.

CHARVAT, H., BOSSARD, N., DAUBISSE, L., BINDER, F., BELOT, A. AND REMONTET, L. (2013). Probabilities of dying
from cancer and other causes in French cancer patients based on an unbiased estimator of net survival: a study of
five common cancers. Cancer Epidemiology 37, 857–863.

CHARVAT, H., REMONTET, L., BOSSARD, NE, ROCHE, L., DEJARDIN, O., RACHET, B., LAUNOY, G. AND BELOT, A.
(2016). A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and
non-proportional effects of covariates. Statistics in Medicine 35, 3066–3084.

CRONIN, K. A. AND FEUER, E. J. (2000). Cumulative cause-specific mortality for cancer patients in the presence of
other causes: a crude analogue of relative survival. Statistics in Medicine 19, 1729–1740.

DANIELI, C., REMONTET, L., BOSSARD, N., ROCHE, L AND BELOT, A. (2012). Estimating net survival: the importance
of allowing for informative censoring. Statistics in Medicine 31, 775–786.

DE ANGELIS, R., SANT, M., COLEMAN, M. P., FRANCISCI, S., BAILI, P., PIERANNUNZIO, D., TRAMA, A., VISSER, O.,
BRENNER, H., ARDANAZ, E. and others. (2014). Cancer survival in europe 1999–2007 by country and age: results
of eurocare-5a population-based study. The Lancet Oncology 15, 23–34.

DIGNAM, J. J. AND ZHANG, M. Q. AND KOCHERGINSKY. (2012). The use and interpretation of competing risks
regression models. Clinical Cancer Research 18, 2301–2308.

EDERER, F. (1961). The relative survival rate: a statistical methodology. NCI Monograph 6, 101–121.

ELORANTA, S., ADOLFSSON, J., LAMBERT, P. C., STATTIN, P., AKRE, O., ANDERSSON, T. M. L. AND DICKMAN, P. W.
(2013). How can we make cancer survival statistics more useful for patients and clinicians: an illustration using
localized prostate cancer in Sweden. Cancer Causes & Control 24, 505–515.

FINE, J. P. AND GRAY, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal
of the American Statistical Association 94, 496–509.

GERDS, T.A., SCHEIKE, T. H. ANDANDERSEN, P. K. (2012).Absolute risk regression for competing risks: interpretation,
link functions, and prediction. Statistics in Medicine 31, 3921–3930.

GESKUS, R. B. (2015). Data Analysis with Competing Risks and Intermediate States. Chapman and Hall/CRC.

GRAND, M. K., DE WITTE, T. J. M. AND PUTTER, H. (2018). Dynamic prediction of cumulative incidence functions
by direct binomial regression. Biometrical Journal 60, 734–747.

GRAW, F., GERDS, T. A. AND SCHUMACHER, M. (2009). On pseudo-values for regression analysis in competing risks
models. Lifetime Data Analysis 15, 241–255.

HALLER, B. AND ULM, K. (2014). Flexible simulation of competing risks data following prespecified subdistribution
hazards. Journal of Statistical Computation and Simulation 84, 2557–2576.

HANSEN, S. N., ANDERSEN, P. K. AND PARNER, E. T. (2014). Events per variable for risk differences and relative risks
using pseudo-observations. Lifetime Data Analysis 20, 584–598.

HINCHLIFFE, S. R., DICKMAN, P. W. AND LAMBERT, P. C. (2012). Adjusting for the proportion of cancer deaths in the
general population when using relative survival: a sensitivity analysis. Cancer Epidemiology 36, 148–152.

HJORT, N. L. (1992). On inference in parametric survival data models. International Statistical Review/Revue
Internationale de Statistique 60, 355–387.



118 D.-K. KIPOUROU AND OTHERS

JACOBSEN, M. AND MARTINUSSEN, T. (2016). A note on the large sample properties of estimators based on generalized
linear models for correlated pseudo-observations. Scandinavian Journal of Statistics 43, 845–862.

KIPOUROU, D. K., CHARVAT, H., RACHET, B. AND BELOT, A. (2019). Estimation of the adjusted cause-specific
cumulative probability using flexible regression models for the cause-specific hazards. Statistics in Medicine 38,
3896–3910.

KLEIN, J. P. (2006). Modelling competing risks in cancer studies. Statistics in Medicine 25, 1015–1034.

KLEIN, J. P AND ANDERSEN, P. K. (2005). Regression modeling of competing risks data based on pseudovalues of the
cumulative incidence function. Biometrics 61, 223–229.

LAMBERT, P. C., DICKMAN, P. W., NELSON, C. P. AND ROYSTON, P. (2010). Estimating the crude probability of death
due to cancer and other causes using relative survival models. Statistics in Medicine 29(7-8), 885–895.

LAMBERT, P. C., WILKES, S. R. AND CROWTHER, M. J. (2017). Flexible parametric modelling of the cause-specific
cumulative incidence function. Statistics in Medicine 36, 1429–1446.

LIANG, KUNG-YEE AND ZEGER, SCOTT L. (1986). Longitudinal data analysis using generalized linear models.
Biometrika 73, 13–22.

MARIOTTO,A. B., NOONE,A-M., HOWLADER, N., CHO, H., KEEL, G. E., GARSHELL, J., WOLOSHIN, S. AND SCHWARTZ,
L. M. (2014). Cancer survival: an overview of measures, uses, and interpretation. Journal of the National Cancer
Institute Monographs 2014, 145–186.

MORENO-BETANCUR, M. AND LATOUCHE, A. (2013). Regression modeling of the cumulative incidence function with
missing causes of failure using pseudo-values. Statistics in Medicine 32, 3206–3223.

MOZUMDER, S. I., RUTHERFORD, M. AND LAMBERT, P. (2018). Direct likelihood inference on the cause-specific
cumulative incidence function: a flexible parametric regression modelling approach. Statistics in Medicine 37,
82–97.

OVERGAARD, M., ANDERSEN, P. K., PARNER, E. T. (2015). Regression analysis of censored data using pseudo-
observations: an update. Stata Journal 15, 809–21.

OVERGAARD, M., PARNER, E. T. AND PEDERSEN, J. (2018). Estimating the variance in a pseudo-observation scheme
with competing risks. Scandinavian Journal of Statistics 45, 923–940.

OVERGAARD, M., PARNER, E. T., PEDERSEN, J. and others. (2017). Asymptotic theory of generalized estimating
equations based on jack-knife pseudo-observations. The Annals of Statistics 45, 1988–2015.

PAVLIČ, K., MARTINUSSEN, T. AND ANDERSEN, P. K. (2018). Goodness of fit tests for estimating equations based on
pseudo-observations. Lifetime Data Analysis 25, 1–17.
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