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Abstract

LTB4 is an inflammatory lipid mediator mainly biosynthesized by leukocytes. Since its impli-

cation in inflammatory diseases is well recognized, many tools to regulate its biosynthesis

have been developed and showed promising results in vitro and in vivo, but mixed results in

clinical trials. Recently, the mTOR pathway component p70S6 kinase 1 (p70S6K1) has

been linked to LTC4 synthase and the biosynthesis of cysteinyl-leukotrienes. In this respect,

we investigated if p70S6K1 could also play a role in LTB4 biosynthesis. We thus evaluated

the impact of the p70S6K1 inhibitors PF-4708671 and LY2584702 on LTB4 biosynthesis in

human neutrophils. At a concentration of 10 μM, both compounds inhibited S6 phosphoryla-

tion, although neither one inhibited the thapsigargin-induced LTB4 biosynthesis, as

assessed by the sum of LTB4, 20-OH-LTB4, and 20-COOH-LTB4. However, PF-4708671,

but not LY2584702, inhibited the ω-oxidation of LTB4 into 20-OH-LTB4 by intact neutrophils

and by recombinant CYP4F3A, leading to increased LTB4 levels. This was true for both

endogenously biosynthesized and exogenously added LTB4. In contrast to that of 17-octa-

decynoic acid, the inhibitory effect of PF-4708671 was easily removed by washing the neu-

trophils, indicating that PF-4708671 was a reversible CYP4F3A inhibitor. At optimal

concentration, PF-4708671 increased the half-life of LTB4 in our neutrophil suspensions by

7.5 fold, compared to 5 fold for 17-octadecynoic acid. Finally, Michaelis-Menten and Line-

weaver-Burk plots indicate that PF-4708671 is a mixed inhibitor of CYP4F3A. In conclusion,

we show that PF-4708671 inhibits CYP4F3A and prevents the ω-oxidation of LTB4 in cel-

lulo, which might result in increased LTB4 levels in vivo.

Introduction

Leukotrienes (LT) are inflammatory lipid mediators derived from arachidonic acid. They par-

ticipate in the inflammatory cascade in numerous conditions, notably asthma, rheumatoid
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arthritis, allergies and in host defense [1, 2]. They are mainly biosynthesized by leukocytes via

the 5-lipoxygenase (5-LO) pathway. With the help of its activating protein, 5-LO metabolizes

arachidonic acid into the unstable intermediate LTA4. LTA4 can subsequently be metabolized

into LTB4 by the LTA4 hydrolase, or into LTC4 by the LTC4 synthase. Cysteinyl-LTs are well

known for their role in asthma and bronchoconstriction, while LTB4 is more involved in leu-

kocyte recruitment and activation. In humans, LTB4 can be further metabolized into 12-oxo-

LTB4 by the LTB4 12-hydroxydehydrogenase, or it can be ω-oxidized by the CYP4F3A [3–5].

The latter, which is mainly expressed in neutrophils, catalyzes the formation of 20-OH-LTB4,

then 20-COOH-LTB4.

The recognized implication of LTB4 in inflammation makes it an attractive therapeutic tar-

get. However, the inhibition of LTB4 biosynthesis showed mixed results in clinical trials,

despite promising results in mice models of inflammatory diseases [1, 2]. Among the numer-

ous compounds tested, only the 5-LO inhibitor Zileuton has been approved as a treatment for

asthma. Therefore, a better understanding of LTB4 metabolism and its regulation could lead to

new therapeutic approaches.

Two recent studies linked the mTOR pathway component p70S6 kinase 1 (p70S6K1) to

LTC4 biosynthesis, showing that p70S6K1 could phosphorylate the LTC4 synthase, hence

modulating its activity [6, 7]. Herein, we sought to determine whether p70S6K1 could also

modulate LTB4 biosynthesis and metabolism. We thus evaluated the impact of two selective

p70S6K1 inhibitors, PF-4708671 [8] and LY2584702 [9], on the biosynthesis of LTB4 and its

metabolites in human neutrophils.

Materials and Methods

Material

Lymphocyte separation medium, aprotinin, dimethyl sulfoxide (DMSO) and solvents for

HPLC and LC/MS were purchased from Thermo Fisher Scientific (Ottawa, Ontario, Canada).

Dextran, adenosine deaminase, leupeptin and potassium phosphate were obtained from

Sigma-Aldrich Canada (Oakville, Ontario, Canada). HBSS was purchased from Wisent Bio-

products (St-Bruno, Quebec, Canada). 19-OH-prostaglandin (PG) B2, PGB2, PGB2-D4 and

17-octadecynoic acid (17-ODYA) were purchased from Cayman Chemicals (Ann Arbor,

Michigan, USA). PF-4708671 was obtained from Abcam (Cambridge, Massachusetts, USA)

and LY2584702 from Selleckchem (Houston, Texas, USA). Thapsigargin was obtained from

Tocris Bioscience (Ellisville. Missouri, USA). LTB4 was a generous gift from Dr Louis Flamand

(Université Laval, Québec City, Canada). Recombinant CYP4F3A and the NADPH regenerat-

ing system were purchased from Corning (Corning, New York, USA). Protease and phospha-

tase inhibitor cocktail tablets were purchased from Roche (Laval, Quebec, Canada). Primary

(anti-phospho-S6 #2211 and anti-S6 #2317) and secondary antibodies were obtained from Cell

Signaling (Danvers, Massachusetts, USA). The enhanced chemiluminescent (ECL) substrate

was obtained from Millipore Canada Ltd (Toronto, Ontario, Canada).

Preparation and utilization of adenosine deaminase

Adenosine deaminase was prepared and utilized exactly as described before [10].

Isolation of human neutrophils and cell stimulations

Human neutrophils were isolated from the peripheral blood of healthy volunteers, without

consideration for gender, as described before [11]. For the experiments investigating the

impact of p70S6 kinase inhibitors on LTB4 biosynthesis and LTB4 half-life, pre-warmed
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human neutrophil suspensions (37˚C, 5 million cells/ml in HBSS containing 1.6 mM CaCl2)

were incubated with PF-4708671, LY2584702 or vehicle (DMSO) for 5 minutes, then stimu-

lated with 100 nM thapsigargin for 10 minutes or 1 μM LTB4 for different times (see Figures).

For experiments in which the reversibility of PF-4708671 and 17-ODYA were assessed, pre-

warmed human neutrophil suspensions were incubated with PF-4708671, 17-ODYA or vehi-

cle (DMSO) for 5, 15 or 30 minutes. Cells were centrifuged (350 × g) and the pellets were sus-

pended in HBSS-CaCl2 or autologous plasma for 20 minutes. Cells were washed 3 times with

warm HBSS-CaCl2 before adding 1 μM LTB4 for 20 minutes.

Analysis of LTB4 and its ω-oxidation products

Incubations were stopped by adding 1 volume of a cold (-30˚C) stop solution (MeOH/MeCN,

1/1, v/v) containing 12.5 ng of both 19-OH-PGB2 and PGB2 as internal standards. The samples

were placed at -30˚C overnight to allow protein denaturation and then centrifuged (1000 × g,

10 minutes, 4˚C). The resulting supernatants were analyzed by reversed-phase HPLC using a

Shimadzu HPLC System (Shimadzu corporation, Kyoto, Japan) and an on-line extraction pro-

cedure based on a method from Borgeat et al [12]. In brief, samples were diluted 1/3 with

water, then injected and loaded onto a C8 precolumn (Aquapore Octyl 7 μM, PerkinElmer,

Waltham, USA) using water containing 0.01% phosphoric acid during 4.25 minutes. The C8

precolumn was then switched on-line with the HPLC analytical column (Accucore™ C18,

50 × 4.6 mm, 2.6 μm, ThermoFisher Scientific, Ottawa, Canada) and elution was performed

using a discontinuous binary gradient with solvent A and solvent B. Solvent A consisted of

MeOH/MeCN/H2O at a 44/11/45 ratio (v/v/v) plus 0.01% AcOH and DMSO. Solvent B con-

sisted of MeOH/MeCN/H2O at a 63/32/5 ratio (v/v/v) plus 0.01% AcOH. The gradient was:

0–15% B from 4.25 to 5.25 minutes; 15–70% B from 5.25 to 12 minutes; 70–100% B from 12 to

12.30 minutes and held at 100% during 4 minutes. Column then was re-equilibrated into 15%

solvent B during 5 minutes before the next sample was injected. Using this method, the reten-

tion times were 5.3 minutes for 19-OH-PGB2, 6.4 minutes for 20-COOH-LTB4, 6.7 minutes

for 20-OH-LTB4, 8.9 minutes for PGB2, 9.8 minutes for 6Z-LTB4, 9.9 minutes for 6Z-12epi-

LTB4, 10.1 minutes for LTB4, and 12.5 minutes for 5-HETE. Internal standards and LTs were

detected by UV at 270 nm while 5-HETE was detected at 235 nm. Leukotrienes represent the

sum of LTB4, 20-OH-LTB4 and 20-COOH-LTB4.

In vitro CYP4F3A assay

Human recombinant CYP4F3A (5 pg/ml) in potassium phosphate buffer (100 mM, pH 7.4)

containing a NADPH generating system (glucose-6-phosphate, NADP+, glucose-6-phosphate

dehydrogenase, MgCl2) was warmed at 37˚C then incubated for 5 minutes with inhibitors or

vehicle (DMSO). LTB4 (1-20 μM) then was added and reactions were stopped at different

times with 5 volumes of a cold stop solution. LTB4 and its ω-oxidation products were quanti-

fied by HPLC as described in methods. The initial reaction rate for each LTB4 concentration

was determined. The maximal velocity (vmax) and the Michaelis-Menten constant (KM) were

calculated for each concentration of PF-4708671 to assess the type of inhibition, using non-lin-

ear regression of the Michaelis-Menten graph with the Graphpad Prism 7 Software (GraphPad

Software, Inc., La Jolla, California, USA). The Michaelis-Menten graph was also linearized

using the Lineweaver-Burk (double reciprocal) plot.

Immunoblot

Pre-warmed neutrophil suspensions (37˚C, 5 million cells/ml in HBSS containing 1.6 mM

CaCl2) were stimulated with 100 nM of thapsigargin or N-Formylmethionine-leucyl-
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phenylalanine (fMLP) for 5 minutes. PF-4708671, LY2584702 or vehicle were added 5 minutes

before stimulation. Incubations were stopped using 1 volume of cold (4˚C) incubation buffer.

The suspensions were centrifuged (350 x g, 5 min, 4˚C) and then lysed in a cold (4˚C) hypo-

tonic buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 1 mM EDTA, pH 7.4) containing

0.1% NP-40, protease inhibitors (10 μg/ml aprotinin, 10 μg/ml leupetin, 1 mM PMSF, protease

inhibitor cocktail tablets), 2 mM diisopropyl fluorophosphate (DFP) and phosSTOP. Cells

were vortexed for 15 seconds, then immediately solubilized in electrophoresis sample buffer

(62.5 mM Tris-HCl, pH 6.8, 10% glycerol, 0.01% bromophenol blue, 5% β-mercaptoethanol,

2% SDS) and boiled for 10 minutes. Proteins were loaded on a 12% polyacrylamide gel for elec-

trophoresis, and transferred onto a PVDF membrane. Membranes were blocked using TBS/

Tween buffer containing 5% w/v skim milk and incubated overnight at 4˚C with primary anti-

bodies (anti-phospho-S6 #2211 and anti-S6 #2317, Cell Signaling) in TBS/Tween containing

5% skim milk. HRP-linked secondary antibodies and ECL substrate were used for detection.

Quantification of PF-4708671 by LC-MS/MS

Incubations were stopped by adding one volume of cold (-30˚C) MeOH + 0.01% acetic acid

containing 2 ng of PGB2-D4 as an internal standard. The samples were placed at -30˚C over-

night to allow protein denaturation and then centrifuged (1000 × g, 10 minutes). The resulting

supernatants were collected and diluted with water + 0.01% acetic acid to obtain a final MeOH

concentration� 10%. Lipids were extracted from the samples using solid phase extraction car-

tridges (Strata-X Polymeric Reversed Phase, 60 mg/1ml, Phenomenex). The eluate was dried

under a stream of nitrogen and reconstituted in 50 μl of MeOH. 1 μl was injected onto an

HPLC column (Kinetex C8, 150 × 2.1 mm, 2.6 μm, Phenomenex) and eluted at a flow rate of

500 μl/min with a linear gradient using 0.1% formic acid (solvent A) and acetonitrile contain-

ing 0.1% formic acid (solvent B). The gradient lasted 20 minutes, starting at 10:90 (A:B) a fin-

ishing at 90:10 (A:B). The HPLC system was interfaced with the electrospray source of a

Shimadzu 8050 triple quadrupole mass spectrometer and mass spectrometric analysis was

done in the negative ion mode using multiple reaction monitoring for the specific mass transi-

tion m/z 389.10! 197.95.

Statistical analyses

Data are represented as the mean ± S.D. All calculations were done using the Graphpad Prism

7 Software.

Ethics

This study was approved by the local ethics committee (Comité d’éthique de la recherche de

l’Institut universitaire de cardiologie et de pneumologie de Québec) and all subjects signed a

consent form.

Results

p70S6 kinase 1 inhibitors do not inhibit the biosynthesis of LTB4 but PF-

4708671 prevents further LTB4 metabolism

In the first series of experiments, we investigated whether p70S6K1 inhibitors modulated LTB4

biosynthesis. As shown in Fig 1A, PF-4708671 and LY2584702 at a concentration of 10 μM did

not stimulate nor inhibit the thapsigargin-induced LTB4 biosynthesis. At this concentration,

both compounds inhibited the phosphorylation of S6 induced by thapsigargin or fMLP

(Fig 1B), indicating that they were both efficiently inhibiting the p70S6K1. However, we
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noticed that 10 μM PF-4708671 prevented the metabolism of LTB4 into 20-OH-LTB4 and

20-COOH-LTB4 in thapsigargin-stimulated neutrophils with an IC50 of ~800 nM (Fig 1C).

This led to a decrease in 20-OH- and 20-COOH-LTB4 levels, and an increase in LTB4 levels. In

contrast, LY2584702 did not prevent the metabolism of LTB4 into 20-OH- and

20-COOH-LTB4 in thapsigargin-stimulated neutrophils (Fig 1D).

We next determined if PF-4708671 could also inhibit the degradation of exogenously

added LTB4 to 20-OH- and 20-COOH-LTB4 by performing kinetic experiments in which neu-

trophils were incubated with 1 μM LTB4. PF-4708671 increased the half-life of LTB4 by 7.5

fold, from ~20 minutes to ~150 minutes (Fig 2A). In contrast, LY2584702 did not significantly

modulate LTB4 half-life (Fig 2B). In comparison, the CYP4F3A inhibitor 17-ODYA, previ-

ously shown to inhibit the metabolism of LTB4 into 20-OH-LTB4 in human neutrophils [13],

increased LTB4 half-life by 5 fold, from ~10 minutes to ~50 minutes (Fig 2C). In these experi-

ments, neutrophils were treated with PF-4708671 and 17-ODYA during 5 and 30 minutes

Fig 1. Impact of the p70S6K1 inhibitors on LTB4 biosynthesis andω-oxidation in neutrophil suspensions. A-D) Pre-warmed human neutrophil

suspensions (37˚C, 5 million cells/ml in HBSS containing 1.6 mM CaCl2) were incubated with PF-4708671, LY2584702 or vehicle (DMSO) for 5

minutes, then stimulated with 100 nM thapsigargin for 10 minutes. A,C,D) Samples were processed and analyzed for LTB4 biosynthesis as described in

methods. Data are the mean (± S.D) of 5 independent experiments, each performed in duplicate. A) Leukotrienes represent the sum of LTB4,

20-OH-LTB4 and 20-COOH-LTB4. C,D)ω-LTB4 represents the sum of 20-OH-LTB4 and 20-COOH-LTB4. B) Samples were processed and analyzed

for S6 and phospho-S6 content as described in methods. Data are from one experiment, representative of three.

doi:10.1371/journal.pone.0169804.g001
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respectively before the addition of LTB4. This is because PF-4708671 exerted its inhibitory

constraint almost instantaneously while the optimal inhibitory effect of 17-ODYA was

observed after 30 minutes (Fig 2D). Of note, the conversion of LTB4 into 20-OH- and

20-COOH-LTB4 only occured when neutrophils were present in the incubation media

(Fig 2E). Indeed, LTB4 was not transformed into ω-LTB4 in our incubation medium (HBSS)

or in a neutrophil supernatant, but was efficiently ω-oxidized in neutrophil suspensions, sup-

porting the fact that the ω-oxidation of LTB4 is an intracellular event.

PF-4708671 is a mixed inhibitor of CYP4F3A

The distinct inhibitory profiles of PF-4708671 and LY2584702 on LTB4 metabolism raised the

possibility that PF-4708671 was a CYP4F3A inhibitor. We thus tested this hypothesis by com-

paring the effect of p70S6K1 inhibitors with the CYP4F3A inhibitor 17-ODYA on human

recombinant CYP4F3A activity. Human recombinant CYP4F3A was incubated with increas-

ing concentrations of PF-4708671 or 17-ODYA for 5 and 30 minutes respectively, before the

addition of 1 μM of LTB4 for 1 minute. PF-4708671 induced a concentration-dependent inhi-

bition of ω-oxidation product formation (IC50 ~750 nM) while LY2584702 poorly affected this

enzymatic conversion (Fig 3A). In other experiments, CYP4F3A was treated with increasing

concentrations of PF-4708671 before the addition of various LTB4 concentrations. We then

calculated the maximal rate of the reaction (vmax) and the Michaelis-Menten constant (KM)

during the steady-state of the reaction using the non-linear regression of the Michaelis-Menten

graph. The representation of the data using either the Michaelis-Menten graph (Fig 3C) or the

Fig 2. Impact of p70S6K1 and CYP4F3A on the half-life of LTB4 in cellulo. Pre-warmed human neutrophil suspensions (37˚C, 5 million cells/ml in

HBSS containing 1.6 mM CaCl2) were incubated 5 minutes with vehicle (DMSO), A) PF-4708671 (30 μM), B) LY2584702 (10 μM), or 30 minutes with C)

17-ODYA (30 μM), then treated with 1 μM of LTB4 for the indicated times. D) PF-4708671 (30 μM) or 17-ODYA (30 μM) were added to neutrophil

suspensions for the indicated times before adding 1 μM LTB4 for 20 minutes. E) LTB4 (1 μM) was added for 20 minutes to either incubation medium,

neutrophil supernatants (incubation medium incubated with neutrophils during 30 minutes) or neutrophil suspensions. A-E) Samples then were

processed and analyzed for LTB4 biosynthesis as described in methods.ω-LTB4 represents the sum of 20-OH-LTB4 and 20-COOH-LTB4. Data are the

mean (± S.D) of 4-5 independent experiments, each performed in duplicate.

doi:10.1371/journal.pone.0169804.g002
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Lineweaver-Burk plot (Fig 3D) are consistent with a model of mixed inhibition. This mixed

inhibition indicated that PF-4708671 was perhaps a substrate of CYP4F3A. However, LC-MS/

MS analyses of PF-4708671 levels indicated that the compound remained stable in our neutro-

phil suspensions and in our enzymatic assay with recombinant CYP4F3A for up to 2 hours

(data not shown).

The inhibitory effect of PF-4708671 on LTB4 ω-oxidation is reversible

Finally, we assessed if the inhibitory effect of PF-4708671 was reversible by comparing it with

the irreversible CYP4F3A inhibitor 17-ODYA [13]. In these experiments, neutrophils were

incubated with PF-4708671 for 5 minutes or 17-ODYA for 30 minutes (optimal incubation

times) or with the inhibitors for 15 minutes (comparable incubation time). Then, neutrophils

were either washed with HBSS-CaCl2, washed with autologous plasma or not washed at all,

before treatement with either 100 nM thapsigargin or 1 μM LTB4. In absence of washing, both

PF-4708671 and 17-ODYA inhibited the metabolism of LTB4 into 20-OH- and

20-COOH-LTB4 (Fig 4). Washing the PF-4708671-treated neutrophils with either

HBSS-CaCl2 or autologous plasma restored the ability of neutrophils to metabolize endoge-

nously formed and exogenously added LTB4 into 20-OH- and 20-COOH-LTB4 (Fig 4A–4C).

In contrast, 17-ODYA-treated neutrophils that were washed with either HBSS-CaCl2 or

Fig 3. Impact of PF-4708671 on human recombinant CYP4F3A activity. A) Pre-warmed human recombinant CYP4F3A in phosphate buffer

containing a NADPH regenerating system was incubated with increasing concentrations of PF-4708671 for 5 minutes, with LY2584702 (10-5M) for 5

minutes or with 17-ODYA (10-5M) for 30 minutes before the addition of 1 μM LTB4 for 1 minute. B) Representative time curves of theω-oxidation of

LTB4 par CYP4F3A. Initial rates were calculated by linear regession. C) Michaelis-Menten kinetics of the inhibition of CYP4F3A by PF-4708671.

Human recombinant CYP4F3A was incubated with increasing concentrations of PF-4708671 before the addition of LTB4 at different concentrations.

LTB4, andω-LTB4 (20-OH-LTB4 and 20-COOH-LTB4) were quantified by HPLC as described in methods and represent the addition of 20-OH-LTB4

and 20-COOH-LTB4. Data are shown as the mean (± S.D) of 8 independent experiments. D) Data from the Michaelis-Menten graph were transformed

using the Lineweaver-Burk plot (double reciprocal plot). E) Legend for C and D.

doi:10.1371/journal.pone.0169804.g003
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autologous plasma remained incapable of metabolizing endogenously biosynthesized or exog-

enously added LTB4 into 20-OH- or 20-COOH-LTB4 (Fig 4D–4F). Furtermore, similar results

were obtained whether we used the optimal incubation time for each inhibitor or the compara-

ble incubation time (5 and 30 minutes for PF-4708671 and 17-ODYA vs. 15 minutes for each

inhibitor). These experiments indicate that in contrast to the irreversible inhibitor 17-ODYA,

the inhibitory constraint of PF-4708671 is easily removable and that the latter is a reversible

inhibitor of the CYP4F3A enzyme.

Discussion

Two recent studies have linked the mTOR pathway component p70S6K1 to LTC4 synthase

function, providing a possible new way of regulating cysteinyl-LT biosynthesis [6, 7]. Thus, we

wondered if p70S6K1 could play a similar role in the regulation of LTB4 synthesis. In that

regard, our data show that 1) the thapsigargin-induced LTB4 biosynthesis is not inhibited by

p70S6K1 inhibitors; 2) PF-4708671, but not LY2584702, inhibits the metabolism of LTB4 into

20-OH- and 20-COOH-LTB4 in a concentration-dependant manner; 3) PF-4708671, but not

LY2584702, inhibits human recombinant CYP4F3A; 4) PF-4708671 is a reversible inhibitor of

CYP4F3A; and 5) PF-4708671 is a mixed inhibitor of CYP4F3A.

Fig 4. Removal of the inhibitory constraint exerted by CYP4F3A inhibitors on LTB4 ω-oxidation in neutrophils. Pre-warmed human neutrophil

suspensions (37˚C, 5 million cells/ml in HBSS containing 1.6 mM CaCl2) were incubated with A,B) 30 μM PF-4708671 or vehicle for 5 minutes, C) 30 μM

PF-4708671 for 15 minutes, D,E) 30 μM 17-ODYA for 30 minutes, or F) 30 μM 17-ODYA for 15 minutes. Neutrophils were washed (or not) with

autologous plasma or HBSS-CaCl2 as described in methods. A,D) 100 nM thapsigargin or B,C,E,F) 1 μM LTB4 were then added for 10 and 20 minutes,

respectively. Samples then were processed and analyzed for 20-OH-LTB4 and 20-COOH-LTB4 as described in methods. Data are the mean (± S.D) of 4

independent experiments, each performed in duplicate.

doi:10.1371/journal.pone.0169804.g004
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In this study, we aimed at documenting the inhibitory effect of p70S6K1 inhibitors on the

ability of human neutrophils to metabolize LTB4 into 20-OH- and 20-COOH-LTB4. For that

reason, we utilized an experimental model in which the priming of the arachidonic acid cas-

cade and the 5-LO pathway were not involved, i.e. thapsigargin-stimulated neutrophils. In that

experimental model, we could show that the ability of neutrophils to biosynthesize LTB4,

which includes the sum of LTB4, 20-OH-LTB4, and 20-COOH-LTB4, was unchanged. This

indicates that at the concentration utilized, the p70S6K1 inhibitors PF-4708671 and

LY2584702 did not inhibit the enzymes involved in LTB4 biosynthesis in human neutrophils,

notably cPLA2α, 5-LO, 5-LO-activating protein and LTA4 hydrolase [14–17]. However, it

remains possible that the p70S6K1 inhibitors used in this study might impact LTB4 biosynthe-

sis in human neutrophils when other signaling mechanisms are involved, notably those linked

to the priming of LTB4 biosynthesis such as cytokines and TLR activation [18, 19], raising the

possibility that PF-4708671, and possibly LY2584702, modulate LT biosynthetic pathways

through multiple mechanisms of action.

We found that PF-4708671, but not LY2584702, inhibited the metabolism of LTB4 into

20-OH- and 20-COOH-LTB4 in a concentration-dependant manner. In that regard, PF-

4708671 was more potent than 17-ODYA, a recognized CYP4F3A inhibitor [13]. Moreover,

the effect of PF-4708671 was more pronounced that of 17-ODYA. While PF-4708671

increased the half-life of LTB4 in our human neutrophil suspensions by 7.5 fold, 17-ODYA

increased it by 5 fold. This indicates that PF-4708671 might be a promising tool to develop spe-

cific and potent inhibitors of the CYP4F3A enzyme.

Given that the Michaelis-Menten and the Lineweaver-Burk plots indicated that PF-4708671

was a mixed inhibitor, we thought that perhaps PF-4708671 was a CYP4F3A substrate and was

metabolized to some extent by the enzyme. However, this hypothesis was proven incorrect, as

PF-4708671 was stable for at least 2 hours in the presence of either recombinant CYP4F3A or

human neutrophils. The mixed inhibition we observed also raised the possibility that a con-

taminant in our commercial PF-4708671 preparation might also inhibit CYP4F3A. Although

we cannot infirm that possibility, we tested three different batches of PF-4708671 which all

yielded the same results, indicating that the effects we are documenting are very unlikely to be

caused by a compound that is present in trace amounts.

This is not the first study to underscore a non-specific effect of PF-4708671. Another group

reported an off-target effect of PF-4708671 in immortalized mouse fibroblasts, showing that

PF-4708671 activates AMPK and inhibits the mitochondrial respiratory chain complex I, inde-

pendently of p70S6K1 [20]. Moreover, PF-4708671 is used as a tool to study the mTOR path-

way in various in vivo and in vitro studies, mainly in models of type 2 diabetes and cancer [21–

33]. In light of our findings, it cannot be ruled out that some of the previously reported effects

of PF-4708671 are caused by its lack of specificity and possibly increased LTB4 levels.

It was previously reported that LTB4 levels are increased in white adipose tissue, liver and

muscles of mice fed with an high fat diet [34, 35]. Furthermore, mice lacking LTB4 receptor 1

are less susceptible to diet-induced insulin resistance [36, 37]. Therefore, using PF-4708671 in

models of type 2 diabetes could increase LTB4 levels and possibly lead to an increased inflam-

mation. However, in rodents, the functional orthologue of CYP4F3A is CYP4F18, which trans-

forms LTB4 into 18-OH-LTB4 instead of 20-OH-LTB4 [38, 39]. While the activity of CYP4F18

towards LTB4 has been characterized, it is still unknown whether PF-4708671 exerts an inhibi-

tory effect on CYP4F18 as well.

In conclusion, we demonstrate that PF-4708671 is a reversible CYP4F3A inhibitor prevent-

ing the metabolism of LTB4 into 20-OH- and 20-COOH-LTB4. In addition to characterizing a

new compound that induces a sustained elevation in LTB4 levels, our data shed some light on

the non-specific effects of a widely used p70S6K1 inhibitor. Given that it is more potent than
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the only currently available CYP4F3A inhibitor, PF-4708671 might be an helpful tool for the

development of potent CYP4F3A inhibitors to study the regulation of LTB4 metabolism and

its impact in inflammation.
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