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A novel approach to understanding 
Parkinsonian cognitive 
decline using minimum 
spanning trees, edge cutting, 
and magnetoencephalography
Olivier B. Simon1,5, Isabelle Buard2,5, Donald C. Rojas3, Samantha K. Holden2, 
Benzi M. Kluger4 & Debashis Ghosh1*

Graph theory-based approaches are efficient tools for detecting clustering and group-wise differences 
in high-dimensional data across a wide range of fields, such as gene expression analysis and neural 
connectivity. Here, we examine data from a cross-sectional, resting-state magnetoencephalography 
study of 89 Parkinson’s disease patients, and use minimum-spanning tree (MST) methods to relate 
severity of Parkinsonian cognitive impairment to neural connectivity changes. In particular, we 
implement the two-sample multivariate-runs test of Friedman and Rafsky (Ann Stat 7(4):697–717, 
1979) and find it to be a powerful paradigm for distinguishing highly significant deviations from the 
null distribution in high-dimensional data. We also generalize this test for use with greater than two 
classes, and show its ability to localize significance to particular sub-classes. We observe multiple 
indications of altered connectivity in Parkinsonian dementia that may be of future use in diagnosis and 
prediction.

Abbreviations
PD-NC	� Parkinson’s disease, normal cognition
PD-MCI	� Parkinson’s disease with mild cognitive impairment
PDD	� Parkinson’s disease with dementia
MST	� Minimum spanning trees
MVR	� Multivariate runs

Studies of functional changes in the brain have typically focused on two distinct aspects of brain activity: regional 
activation, and connectivity. In the former, changes in spectral power at particular frequencies are traced to spe-
cific regions of the brain, while in the latter the focus is on inferring rates of information transfer between brain 
regions1. Modalities often employed for connectivity analysis include simple correlation, coherence, Granger 
causality, dynamic causal modeling, and phase transfer entropy2.

Graph theory, or more broadly, network science, provides a natural mathematical framework for the represen-
tation and analysis of complex networks1,3,4, giving it clear applicability for studies of brain connectivity. In such 
studies, brain regions of interest are represented as "nodes" of a graph structure, while significant information 
flow between the nodes is represented as connecting "edges". From this structure, useful statistical and structural 
principles can be derived that may give clues to pathological or functional changes5,6.

One approach to the study of graph connectivity is to threshold the connectivity values so that connections 
below a certain strength are excluded from the graph. This however introduces a subjective parameter into 
the analysis, which may dramatically affect results7. An alternative which has gained increased attention in 
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connectivity analysis recently is the minimum spanning tree (MST), defined as the set of connections that joins 
all nodes of the graph into a single contiguous tree with the minimum possible total connection distance8. Since 
the MST is unique for any given arrangement of nodes and is also efficient to calculate, studies based on MST 
analysis are relatively free from biases due to thresholding and normalization9–11.

A particularly elegant application of MSTs for detecting significant differences between populations is the 
multivariate-runs (MVR) test of Friedman and Rafsky8,12, which quantifies the probability that two classes of 
datapoints are drawn from the same underlying distribution. Additional, better-known metrics also useful for 
MST-based graph analysis include edge lengths, clustering coefficients, shortest path lengths, and node degree 
distribution5,6, all of which may be combined with two-sample tests to yield highly sensitive yet tractable meas-
ures of network characteristics and changes.

Parkinson’s disease (PD) is a chronic neurological condition best known for the progressive degeneration of 
motor neurons and concordant loss of coordination, irregularity of gait, resting tremor, and bradykinesia13–15; 
it is the second most common neurodegenerative disease in persons over age 653. Neurodegeneration in PD 
was first observed, and has been most thoroughly characterized, in the dopaminergic neurons of the substantia 
nigra, a region of the midbrain that influences looped thalamo-cortical connections16. Degradation of these con-
nections, in turn, is believed to play a central role both in the typical motor symptoms of PD and in executive 
dysfunction14,17,18. Most effective treatments for PD accordingly involve analogues or metabolic precursors of 
dopamine, particularly levodopa (l-dopa)18.

Although the motor symptoms of PD are perhaps the most distinctive and widely known feature of the dis-
ease, cognitive decline is also commonly observed with more advanced cases, with up to 75–83% of PD patients 
eventually developing dementia19,20. This pattern of advancing cognitive deficits, distinct from other dementia 
types such as Alzheimer’s, is known as parkinsonian dementia (PDD). PDD manifests as "dysexecutive" difficul-
ties in planning, abstract thinking, memory and visuo-spatial ability, with language relatively unaffected13,17,19, 
and is typically preceded by a gentler condition known as Mild Cognitive Impairment (MCI), observed in up 
to 38% of PD diagnoses21,22.

Magnetoencephalography (MEG) is a neuroimaging technique that directly observes magnetic fields pro-
duced by electric currents within the brain, using extremely sensitive superconducting magnetometers known 
as SQUIDs23. While MEG’s spatial resolution is lower than that of fMRI and it lacks fMRI’s ability to distinguish 
different chemical environments, MEG also has certain major advantages over fMRI, especially with regard to 
its temporal resolution (on the order of milliseconds) and its ability to collect electromagnetic signals directly 
produced by action potentials within the brain23. fMRI measurements, in contrast, depend fundamentally on 
the blood oxygen level dependent (BOLD) response, an indirect and time-lagged indicator of underlying brain 
activity24. Despite these potential advantages for brain connectivity analysis in neurodegenerative disorders, the 
use of MEG as an independent method for the assessment and analysis of PDD has received limited attention25.

In the present work, we explore the possibilities of MST-based methods, particularly the multivariate runs 
test, to detect group differences in medical information by performing connectivity analyses on cross-sectional 
resting-state magnetoencephalography (MEG) data drawn from three classes of PD patients—normal cognition 
(PD-NC), mild cognitive impairment (PD-MCI) and full dementia (PDD). For our connectivity analyses, we 
employ a simple time-lagged cross-correlation approach, based on the Pearson correlations between two MEG 
signals offset in time by an interval dt, to identify regions with the strongest through-time interactions in the 
five canonical frequency ranges. We find distinctive changes in connectivity and MST properties as a function 
of disease severity, as well as changes in variability in connectivity among patients. Further, by applying a modi-
fied version of the MVR test that generalizes it to operate on more than two classes, we find strong confirmation 
that our three cognitive groups arise from highly distinct distributions. This suggests the possible application 
of our multi-class MVR approach to many other contexts involving hypothesis-testing in high-dimensional 
medical data.

Methods
Participants.  Eighty-nine subjects with Parkinson’s disease were recruited from the University of Colorado 
Hospital Movement Disorders clinic as well as by fliers posted on campus. All gave informed consent to par-
ticipate, and the study was approved by the Colorado Multiple Institution Review Board. All methods were 
performed in accordance with the relevant guidelines and regulations. Inclusion depended on a diagnosis of 
probable PD in accord with UK Brain Bank Criteria26. PD subjects with features suggestive of other causes of 
parkinsonism, cerebrovascular disease, a history of major head trauma, or a history of deep brain stimulation 
or ablation surgery, were excluded. All subjects were examined while in the dopaminergic “ON” state. Table 1 
describes participants’ demographics and baseline clinical features.

Cognitive assessment and classification.  The three PD groups were defined according to their level 
of cognitive abilities: Normal Cognition (PD-NC; n = 35), mild cognitive impairment (PD-MCI; n = 37), and 
Parkinson’s disease dementia (PDD; n = 17). PD-MCI diagnosis was modeled on Movement Disorders Society 
(MDS) Task Force diagnostic criteria, requiring scores greater than one standard deviation below norms on at 
least two neuropsychological tests. Comprehensive neuropsychological test batteries used included the Montreal 
Cognitive Assessment27, the Boston Naming Test28, the Dementia Rating Scale-229, Trails Making Test30, the 
Brief Test of Attention31, the California Verbal Learning Test, Second Edition 32, the Symbol Digit Modality Test 
(SDMT) Oral33, the Delis-Kaplan Executive Function System (DKEFS) Verbal Fluency/Letter Fluency task34 and 
the Judgment of Line Orientation task (JLO)35. These tests were chosen based on previous work operationalizing 
the PD-MCI criteria36.
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Classification of PD-NC, PD-MCI, or PDD was determined by consensus conference, attended by a neu-
rologist and a neuropsychologist with experience in PD cognition. Prior to consensus conference meetings, 
raw scores were transformed to z-scores based on normative data for each of the individual neuropsychological 
tests (see next paragraph for a list of the tests), drawn from either testing manuals32,37–43 or additional normative 
studies44–47. MDS Task Force Level II diagnostic guidelines for PDD48 and PD-MCI49 were applied, requiring 
impairment on two tests in one cognitive domain (PD-MCI) or one test in each of two cognitive domains (PD-
MCI, PDD) for classification as cognitively impaired. Of note, we diverged from the MDS recommendations in 
that we did not have two neuropsychological tests for all domains tested (e.g. visuospatial abilities). Impairment 
was defined as performance of ≥ 2 standard deviations below age- and education-matched norms36. PD-MCI was 
differentiated from PDD based on the results of the neurologist’s functional interview: if significant functional 
impairment related to cognitive symptoms was present based on clinical impression, a participant was classified 
as PDD.

Cognitive data were found to violate the missing completely at random (MCAR) assumption (Little’s MCAR 
Test, p = 0.007). To address this, data were imputed to create five multiple imputations; this imputed data did 
not differ significantly from the original data (all ps > 0.05). Cognitive composite scores were created for data 
reduction, using PCA for each set of imputed data separately. Composites were created from two variables per 
domain as follows: Global cognition, MoCA and DRS-2 total scores; Attention, TMT-A and BTA; language: BNT 
and verbal fluency; learning and memory, CVLT trials 1–5 total score and CVLT long delay free recall; executive 
function, TMT-B and SDMT oral. As the JLO Test was the only test of visuospatial abilities, a composite score 
was not created.

MEG data acquisition and preprocessing.  Resting-state data was acquired continuously at 678.17 Hz 
using a Magnes 3600 whole-head MEG device with a 248-sensor array (4D Neuroimaging, San Diego, CA) in 
a magnetically shielded room (ETS-Lindgren, Cedar Park, TX, USA). Acquisition bandwidth was 0.1–200 Hz. 
Location and orientation of the MEG coils relative to each subject’s head were determined by digitizing fiducial 
reference points on the head with a Polhemus 3SPACE magnetic digitizer. Left and right preauricular points 
and the nasion were digitized as reference points and the shape of each participant’s head was digitized for use 
in constructing a volume conductor model for source localization. Next, data was acquired for a minimum of 
4 min, with subjects in supine position. Subjects were instructed to keep their eyes closed for the first half of the 
acquisition period, and eyes open for the second half, as announced by a brief sound (2 kHz sine wave). Eyes-
closed and eyes-open data were combined, while the period in which the sine wave was played was excluded.

Time-series MEG spectral power and source estimates of brain activity were processed with a custom pipeline 
in MATLAB 2016b (MathWorks, Inc., Natick, MA, USA) using the FieldTrip toolbox for MEG analysis50). Raw 
MEG data underwent bandpass filtering between 0.5 and 55 Hz using a 4th order, phase-invariant Butterworth 
characteristic filter. MEG channels showing excessive (> 2 SD) variance in signal intensity and spectral power 
relative to neighboring sensors were dropped; these, in turn, were visualized using heat-maps according to PD 
group, to check for class biases with regard to channel removal (Supplementary Figure S1). Additionally, MEG 
channels jump artifacts were identified and excluded, using the FieldTrip ft_artifact_jump.m function. Eye blink/
movement and electrocardiogram artifacts were identified and removed by Independent Components Analysis 
(ICA) using the ‘runica’ algorithm51, with the number of ICA components limited to 50 using principal compo-
nents analysis. The ICA-cleaned data was next subjected to discrete Fourier analysis, yielding a power spectrum 
over 99 frequencies over the range 0–50 Hz, encompassing the five main brainwave frequency bands (delta, 
0.5–3.5 Hz; theta, 4–7 Hz; alpha 8–12 Hz; beta, 13–30 Hz; and gamma, 31–55 Hz). The data were simultaneously 
formed into 2-s contiguous trials to allow resolution down to 0.5 Hz, with tapered 0.5 s overlaps to reduce data 
loss from spectral leakage, giving an average interval between trials of 1.5 s. Trials with amplitudes above ± 3 pT 
were excluded from further analysis.

MEG data analyses.  3D source reconstruction was carried out with a standardized MRI headmodel 
(standard_singleshell.mat from FieldTrip) in Montreal Neurological Institute (MNI) space; this model was used 
for all patients. Using the Matlab SPM 12 toolbox function spm_eeg_inv_rigidreg.m (SPM12; http://​www.​fil.​
ion.​ucl.​ac.​uk/​spm/), the MNI head model and an 8-mm cubic voxel, MNI space source model (standard_sourc-

Table 1.   Participant demographics and clinical features. Values are given as fractions, or means ± SD. The 
levodopa equivalence standard deviation is high in our cohort, indicating that participants used a broad 
range of dosages. “UPDRS” = Unified Parkinson’s Disease Rating Scale. The p-values in bold indicate those 
differences between the populations that are statistically significant at a 0.05 level of significance.

Demographics PD-NC PD-MCI PDD F/t/χ2-value p-value

Sex (male) 25/37 26/35 12/17 5.115 0.059

Age 69.74 ± 6.95 66.71 ± 6.86 75.78 ± 8.59 8.029 0.001

Education (years) 16.48 ± 4.05 15.76 ± 4.21 16.81 ± 3.03 0.523 0.568

Handedness (right) 31/37 28/35 15/17 0.728 0.402

Levodopa equivalence 374.17 ± 385.97 586.37 ± 421.17 753.61 ± 481.08 4.230 0.018

UPDRS total 39.04 ± 6.94 43.60 ± 12.24 170.22 ± 17.69 740.45 0.00001

Hoehn and Yahr 2.16 ± .27 2.23 ± .56 2.75 ± .72 3.294 0.059

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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emodel3d8mm.mat) were co-registered to the individual subjects using the MEG fiducials for each subject and 
corresponding MRI fiducials. Leadfields were then computed from the source model, and source analysis was 
conducted with the FieldTrip ft_sourceanalysis function.

To obtain the MEG time-series used for the connectivity analysis, minimum-norm estimation (’mne’) was 
used for the source modeling23. In order to achieve a resolution commensurate with subsequent brain parcella-
tion, interpolation was performed on the source model for each trial, increasing its dimensions from 20 × 22 × 25 
to 91 × 91 × 109. Voxel power was normalized by dividing the power of the trials with above-median power by 
those with below-median power (hereafter referred to as “ratio” power).

Volumetric models of brain activity were analyzed with respect to functionally organized brain "parcels" 
rather than individual voxels. Parcellation of the source models was carried out with the Anatomical Automatic 
Labeling (AAL) parcellation52, included in FieldTrip/MATLAB. This parcellation was chosen because it is readily 
available in FieldTrip and has been successfully used in prior PD studies20. In addition, its parcel sizes are large 
enough to be resolvable at spatial resolutions typical of MEG reconstruction. Analysis of the resulting parcellated 
3D activation data was also carried out in MATLAB. For each trial, each parcel’s ‘power’ was calculated as the 
average of the ratio powers of its constituent voxels for the brainwave frequency band of interest.

Minimum spanning tree (MST) analysis.  Once average power had been calculated for each parcel over 
successive trial intervals, Pearson correlations were computed between the parcels with a specified time off-
set between them, yielding a 116 × 116 matrix of time-lagged cross-correlations53,54. Parcel correlations were 
calculated for time offsets of dt = 0, 1, and 2 trials (0, 1.5, and 3 s). To visualize the inter-parcel connectivity 
patterns, MSTs were constructed among the correlation observations between the parcels in the following way. 
First, for each element of the time-lagged correlations matrix, absolute values were subtracted from 1, yielding 
a "distance": inter-parcel correlations of either 1 or − 1 thereby correspond to "zero distance" between parcels, 
while 0 correlation yields the maximum distance. This distance matrix was then symmetrized by choosing the 
shortest distance value between cross-diagonal pairs (i.e., the dominant direction of information flow between 
each parcel pair). MSTs were then generated from this distance matrix using MATLAB’s minspantree function.

MSTs were computed individually for each subject, as well as from correlations averaged over each of the three 
PD classes. In this way, differences between the three cognitive classes could be assessed by aggregating char-
acteristics from individual subject MSTs within classes. MST characteristics sampled included (1) pooled edge 
distances; (2) node degree distribution; (3) leaf count (number of nodes with degree = 1); (4) Average shortest 
path length, and (5) clustering coefficients, as defined in6. The Kolmogorov–Smirnov (KS) two-sample test, a sim-
ple, omnibus and widely-used non-parametric test for identifying significant differences between distributions, 
was used to compare distributions over the three possible pairings of disease classes and evaluate significance.

Differences in the structure of inter-parcel correlations were also assessed using the two-sample Multivariate 
Runs (MVR) Test8,12. In MVR, data-points from two different populations are pooled, and an MST is constructed 
connecting them. Hybrid edges of the MST (i.e., those joining dissimilar classes) are removed, and the test sta-
tistic, R, is the resulting number of disjoint trees plus 1.

From8 it is known that in the null case for a pair of MSTs with Na and Nb nodes respectively (and N = Na + Nb), 
R is normally distributed with mean equal to

The variance of R, dependent on the particular structure of the given MST, is equal to

Here the quantity C refers to the number of pairs of edges within the pooled MST that share a common 
node. The extent to which this statistic diverges from the null expectation then allows significance to be easily 
calculated. MVR was carried out for each combination of time offset (dt) and frequency band, for each of the 
three possible pairs of disease classes (N–M, M–P, N–P) were pooled, and a 2-class MST was generated over all 
correlation-vector endpoints in the pair of classes.

As our data involved three rather than two disease classes, we developed a 3-sample extension of the MVR 
method, using a pooled MST drawn over all three classes. Relationships between the classes in this pooled MST 
are stored in a “class-adjacency matrix”, where the entry aij contains the number of edges in the MST that link 
nodes from class i and j. In this scheme, the number of same-class edges is on the diagonal and the number of 
hybrid edges on the off-diagonal positions.

The expected variance in the total number of trees, as well as each individual edge type aij in the pooled 3-class 
MST after cutting dissimilar edges, is estimated by randomly permuting the node class labels of the pooled 3-class 
MST, and storing the number and type of edges in the resulting permuted MST in a class-adjacency matrix. This 
node-label permutation process is repeated, each time creating a new set of class-adjacency values, until the 
variance under the null for each type of edge was estimated to desired precision (for these experiments, we used 
50,000 iterations). Subtree counts from MVR for each iteration are then easily derived from the diagonal entries 
of the class-adjacency matrix and the number of observations in each class, because of the fact that

where Sk is the number of subtrees of class k after cutting all MST hybrid edges, Nk is the number of nodes of 
class k in the MST, and Ekk is the number of same-class edges of class k. (In other words, the number of trees 
resulting from MVR is the total number of observations minus the trace of the class-adjacency matrix.) Simulated 
standard deviations for all combinations of dt and brainwave frequency band were remarkably consistent at ~ 8.75, 
indicating that the differences in MST structure had a minimal effect on the variance of the 3-way MVR cut.

E[R] = 2Na ∗Nb/N + 1.

var[R|C] = 2Na∗Nb/N/(N− 1)∗{(2Na ∗Nb −N)/N+ (C−N+ 2)/(N− 2)/(N− 3) ∗ [N(N− 1)− 4Na ∗Nb + 2]}.

Sk = Nk− Ekk



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19704  | https://doi.org/10.1038/s41598-021-99167-2

www.nature.com/scientificreports/

We also constructed and visually inspected the cross-connectivity matrices for each disease class with respect 
to both mean correlation and correlation variability. To take into account the possibility that age or levodopa 
dosage could influence our results, a median split was performed to divide the patients for each cognitive class 
into “above-median” and “below-median” subgroups with respect to these two variables; our connectivity analysis 
was then repeated on each subgroup (Supplementary Figure S2 and Supplementary Figure S3).

Relevant MATLAB scripts include OS_MEGmakeCircularCorrMSTs02.m, which makes the time-lagged 
cross-correlation matrix, draws MSTs, calculates MST features, and carries out MVR; and OS_MultivariateR-
uns_varianceByPermuting.m, which carries out the 3-class MST class-adjacency variance estimation. All scripts 
are available online at https://​github.​com/​Ghosh​lab/​Osimo​nScri​pts/​tree/​main/​Conne​ctivi​tyPap​er.

Results
We first used time-lagged cross-correlations53,54 to assess brain-parcel connectivity in terms of (1) pooled edge 
distances; (2) node degree distribution; (3) leaf count (number of nodes with degree = 1); (4) Average shortest 
path length, and (5) clustering coefficients. We then carried out the MVR test on the overall MST and also inves-
tigated class-adjacency information in the MST from all three cognitive classes pooled.

General properties of MSTs drawn from parcel correlation matrices.  Properties of MSTs for each 
patient were aggregated by cognitive class. As might be expected, there is a general tendency towards weaker 
correlations as the time offset (dt) is increased. For simultaneous correlations (dt = 0), parcel correlations tend 
to be high (0.5–1) and exhibit a standard connectivity pattern with little variation, with a basal-to-frontal gen-
eral orientation likely dominated by the physical adjacency of the parcels. Therefore, for the dt = 0 case, each 
patient’s correlation structure, the average difference between adjacent and non-adjacent parcel correlations was 
calculated and subtracted from the adjacent correlations. For intermediate time offsets (dt = 1), correlations are 
smaller (0.1–0.5), but show more differences between frequency bands (Fig. 1a). For larger time offsets (dt = 2), 
the parcel correlations become much smaller, and the MSTs themselves show very little apparent common struc-
ture (Fig.  1b). With time-lagged correlations (dt > 0), MSTs instead begin to exhibit more prominent "hubs" 
(nodes of very high degree). In the theta band for example, with a time offset of dt = 2 trials, the PD-MCI group 
shows a single hyper-connected node at the right angular gyrus (Angular_R), whereas the PD-NC and PDD 
groups show a more mixed distribution of moderately connected nodes.

The distribution of MST edge lengths showed highly significant changes (often p < 10–8) with cognitive class 
in nearly all combinations of frequency band and time-offset (Supplementary Table S1); moreover, significance 
tended to increase with larger time offset. Node degree distributions, on the other hand, generally did not show 
significant differences, with the exception of the theta band where dt = 1, 2. After applying a Bonferroni correction 
for the number of comparisons (3 class pairings × 3 time offsets × 5 bands = 45), only the node degree differences 
in theta, dt = 1 between NC and MCI and between NC and PDD remained significant at a 0.05 overall significance 
level (p < 8.4 × 10–4 and p < 6.2 × 10–3, respectively).

Figure 1.   Examples of class-averaged parcel-correlation MSTs for beta-band frequencies and time offsets of 
dt = 1 (a) or dt = 2 trials (b). The left columns show the MSTs in a force-directed 2D layout, with nodes colored 
by parcel identity; middle columns show MSTs in a standard circular format which allows visual comparison; 
right columns show the locations of MST connectivity with respect to parcels’ positions in the brain. Substantial 
differences in overall connectivity are visible between the three disease classes, “normal cognition”, “MCI”, and 
“PDD”. PDD tends to show a more disorganized pattern in this band, with less prominent high-degree “hub” 
regions.

https://github.com/Ghoshlab/OsimonScripts/tree/main/ConnectivityPaper
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Figure 2.   Histograms of MST shortest-path-length and clustering coefficient histograms (left and right 
columns, respectively) for the five combinations of time-offset and frequency band that show particularly strong 
changes in distribution with disease class (delta, dt = 2; theta, dt = 2; alpha, dt = 2; beta, dt = 1; gamma, dt = 2). 
Beta (and to a lesser extent alpha) shows a steady increase in the overall path-length with disease severity, along 
with increased variance. Delta, by contrast, shows decreasing path-length and variance with severity. Trends for 
clustering coefficients tend to be roughly inverse to those in path-lengths.
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Histograms of MST shortest path-lengths between parcels, aggregated by class, show some dramatic differ-
ences between cognitive classes. The lower-frequency bands, (delta and theta) show differing patterns, with delta 
gradually increasing with cognitive decline (Fig. 2a) and theta gradually decreasing in MCI (Fig. 2b). For the 
alpha band, there is a suggestion of an increase in shortest path-lengths in PDD relative to MCI and NC (Fig. 2c). 
In the beta band, the distribution of shortest path-lengths shows, with worsening cognitive impairment, both 
an overall increase in shortest path lengths and an increase in variance of these distances (Fig. 2d). The shortest 
path-lengths for the gamma band, by contrast, show decreasing path-lengths and a decrease in variance, with 
partial recovery in PDD (Fig. 2e). In several cases, the KS tests yielded p-values so low as to be effectively zero 
(Supplementary Table S1). The distribution of clustering coefficients, meanwhile, tracks roughly inversely to the 
shortest path-lengths (Fig. 2f–j).

In general, there is no clear systematic change in the MSTs’ overall shape across bands, dementia classes, or 
time-lags, but the significant changes in the distributions of MST edge lengths may give clues to dementia-related 
changes in functional connectivity, particularly in the bands.

MVR for correlation MSTs.  For all three values of dt and all five frequency bands, MVR was carried out 
using the correlation data as position vectors (Fig. 3; additional examples shown in Supplementary Table S2). 
2-class test results showed highly significant differences in the MST between all three cognitive classes, indicat-
ing that their connectivity patterns derive from very significantly different distributions (often > 10 SD or more) 
from the expected value (Fig. 4). 3-class MST cuts showed similarly vast deviations from the null hypothesis, 
with far fewer trees after edge-cutting than reference distributions would predict (data not shown). Deviations 
were generally largest with NC-PDD pooled MSTs, and notably increased with time offset, so that for dt = 2 most 
bands and class combinations showed essentially the largest possible deviation from the null. Curiously, few 
strong differences were found between frequency bands in this respect: all five showed very large deviations from 
the expected value when the cognitive classes were compared.

To test that these very high significances were indeed representative of differences between the cognitive 
groups, MVR was also carried out on simulated distance matrices containing only random Gaussian values, as 
well on actual distance matrices with trials randomly assigned to disjoint "cognitive groups" of 3000 trials. In 
both cases, MVR yielded fragment-counts far higher than those based on actual correlation data or dementia 
class groupings, and indistinguishable (i.e., within 1 SD) from the expected null value. This confirms that MVR 
can be used to detect substantial cognitive class-based differences within the parcel correlation structure.

One concern in these analyses is the possible confounding effects of age and levodopa treatment. By divid-
ing the patient classes according to age and levodopa intake, we found that the MST-based measures were 

Figure 2.   (continued)
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considerably more robust to such potential confounders than the purely correlation-based maps (Supplementary 
Figure S2 and Supplementary Figure S3).

MST edge‑adjacency effects.  In considering the properties of the pooled MST generated by the MVR 
test, we wondered whether the distribution of the MST edge-types might carry useful information regarding the 
relative proximity or similarity of the 3 cognitive classes. Therefore, we binned the MST edges according to the 
class identity of both nodes. Aggregated over all conditions, we found nodes from the PD-NC and MCI classes 
were most likely to share edges in the 3-class MST, while PD-NC and PDD were much less likely; the number 
of shared edges between PD-MCI and PDD were intermediate (Fig. 5). Viewed individually, the alpha, beta and 
gamma bands concurred with this overall pattern, while theta showed the opposite trend with PD-NC and PDD 
most likely to share edges; delta was intermediate, with NC-MCI class adjacency the highest but MCI-PDD 
adjacency somewhat lower than NC-PDD (Supplementary Table S3).

Correlation matrix visualizations.  Maps displaying the correlation structure among the 116 AAL par-
cels, averaged over each cognitive class, are shown in Fig. 6. These allow a more intuitive, visual impression of 
which subsets of parcels show significant correlation, while including correlations that were necessarily excluded 
in the creation of the MST. Note that the vertical axis indicates parcels in the "previous state", while the horizon-
tal indicates these parcels in the "subsequent state" (or, in the Granger sense, "cause" and "effect")2.

For the delta and theta bands, we observe a strong increase in overall correlation with worsening cognitive 
decline (Fig. 6a,b), suggesting that the increase in low-frequency power also is marked by increased connectivity 
for such power essentially brain-wide. By contrast, this trend is reversed in the alpha band, particularly dt = 2 
(Fig. 6c), so that cognitive decline appears to involve decreased connectivity. Here, the PD-NC group shows 
strongly heightened correlations in both hemispheres between the calcarine sulcus (primary visual cortex), 
cuneus, lingual gyrus, postcentral gyrus, supramarginal gyrus, angular gyrus, and precuneus, which greatly 
decrease with cognitive decline. This correlation pattern is also detectable, though much less distinctly, in the 
beta band, though on the whole the two higher-frequency bands show a much more global reversal of the low-
frequency correlation trend, with the beta and gamma showing a strong decline in correlation with increasing 
dementia severity. With the exception of this group of alpha-generating regions, no distinct groups of parcels 
acting together as "sub-networks" or "resting state networks" were apparent.

Figure 3.   Illustrations of the multivariate-runs (MVR) MST-cutting procedure. The nodes for different disease 
classes are pooled, yielding and MST composed of a mixture of class characteristics (left panels). The MST edges 
between dissimilar node-classes are then removed, yielding disjoint subtrees (right panels). The test statistic 
is the number of trees produced; in general the fewer the subtrees, the less probable is the null hypothesis. (a) 
Presents an example with the classic 2-class test; (b) Shows results from pooling all three disease classes.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19704  | https://doi.org/10.1038/s41598-021-99167-2

www.nature.com/scientificreports/

In addition to correlation itself, maps of inter-subject variance in correlation were also generated (Fig. 7). 
Interestingly, we found strong indications in all bands that connectivity becomes considerably less variable 
between patients with dementia progression, while for lower-frequency bands there is a partial recovery of this 
variability going from PD-MCI to PDD.

Figure 4.   MVR 2-class edge-cut results, presented in terms of number of standard deviations from the null 
expected value. Graphs represent deviations for (a) dt = 0; (b) dt = 1; and (c) dt = 2. In general, all bands and all 
class pairings show increasingly significant deviations with increasing time-delay. Bars are grouped as follows: 
‘1’ = ‘NC-MCI’; ‘2’ = ‘MCI-PDD’; and ‘3’ = ‘NC-PDD’.
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Discussion
It has been proposed that "dementia is a holistic clinical condition that does not emanate from a single region 
of a single FC [functional connectivity] network"16. In the case of our connectivity results, the holistic nature of 
dementia is apparent: mostly diffuse changes are noticeable in the correlation structure between disease classes. 
Such changes generally involved an increase in connectivity for the slower-wave bands and a non-linear trend 
for the higher frequencies. Inter-subject variability in connectivity showed, if anything, stronger trends than 
connectivity itself. This only underscores the need for methods capable of distilling key network properties out 
of this wide variability.

We found that the simultaneous MSTs (mostly dt = 0, but also dt = 1 for alpha) are dominated by a largely 
unchanging pattern closely similar to the pattern of parcel-adjacency for the AAL atlas. Likewise, the distribu-
tion of edge weights for MSTs at dt = 0 dramatically differs from that seen in the other time offsets, with many 
edges showing near-zero distance (much higher correlation). We suspect this homogeneity at dt = 0 is due to 
field-spread causing artifactual connectivity between adjacent parcels. We therefore subtracted out the difference 
in parcel correlations for the adjacent-parcel cases, but still found few interesting class-wise differences at dt = 0. 
At other time offsets, particularly in alpha with dt = 2, we found a prominent grouping of correlations centered 
in the parieto-occipital region. Strong alpha band activity in this region is typical during relaxed wakefulness, 
particularly with eyes closed55. Interestingly however, this grouping showed much weakened alpha correlations 
in the MCI group, and was nearly indistinguishable in the PDD cases (Fig. 6c). Outside of this, few distinctive 
parcel cross-peaks are seen across bands that would indicate a simple, conserved connectivity motif that distin-
guishes disease classes.

It has been reported that, compared with non-demented PD patients, people with PDD exhibit reduced 
connectivity specifically between the inferior frontal cortex and the cingulate (rows/columns 11–16 and 31–36, 
respectively, in the connectivity maps in Fig. 6)16. In addition, the orbito-frontal regions (channels 5–6, 9–10, 
15–16) have an important role in PD progression with regard to network properties25. In contrast, our con-
nectivity maps generally exhibit global changes in connectivity, with the sign of the change dependent upon the 
frequency band examined.

It is worth mentioning that the MST edge length distributions, in which we observed very high-significance 
differences between cognitive classes, are a kind of distillation of the correlation maps shown in Fig. 6. As the 
overall amount of correlation increases, the distances of the MSTs based on those correlations will tend to 
decrease. Therefore the KS-test results on the MST edge lengths (Supplementary Table S1) can be seen as giving 
a sense of the significance of the differences that are visible in these maps.

Using our correlation maps as a proxy for overall connectivity, we found strong increases in overall parcel 
correlation for the low-frequency bands, and large decreases for higher frequencies, with the alpha band as an 
intermediate case, showing a strong increase chiefly for the group of occipital-parietal parcels previously men-
tioned. It is tempting to connect the increase in low-frequency correlation with the widely observed increase in 
low-frequency power in PDD, though findings on this point have been inconsistent9, and in our case we are not 
measuring total power at all, but rather time-lagged correlation between parcels.

The class-average MSTs for higher time offsets, mainly for the beta band, showed a dramatic change in struc-
ture from a more locally connected random or "regular" network1 to one centered far more on a few very high 
degree nodes, much more consistent with a "scale-free" or "rich club" structure, in which a few nodes dominate 
the connectivity pattern. Changes in such "hubs" are thought to be highly important in cognitive dysfunction1,6. 
Yet, examination of the individual patient MSTs in these time offsets generally shows little consistency as to the 
location of these "hubs". In general, for dt > 0, the individual variations in MST structure become larger than the 

Figure 5.   Class adjacency results for 3-class MSTs, aggregated for all bands and time-offset values. Overall, 
nodes from PD-NC and PD-MCI parcels are the likeliest to share edges in the combined MST, suggesting that 
these two groups are closest in overall connectivity structure. The pairing of PD-NC and PDD, representing the 
most drastic difference in cognitive function, also shows the lowest adjacency.
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Figure 6.   AAL parcel-correlation maps showing most substantial correlation differences among the five 
frequency bands [(a) delta, (b) theta, (c) alpha, (d) beta, (e) gamma]. Vertical axis represents the earlier state of 
the parcel, while horizontal axis represents the later.
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common features seen in the averaged MSTs. Furthermore, the failure to detect significant differences in degree 
distribution between classes (except in the theta-band) argues against any widespread change in scale-freeness.

The beta band is an interesting exception to this general lack of pattern; here, we instead observe a pattern 
reminiscent of the "hub overload" model1: although the overall node-degree distribution is not significantly 
changed, the PD-NC group shows a single strongly connected hub in the occipital lobe, the PD-MCI group 
shows a (perhaps compensatory) partial shift to alternate hubs mainly in the postcentral gyrus and the frontal 
lobe, and the PDD group shows a final weakening or disappearance of these hubs (Fig. 1). Such shifting of beta 
band information flow from the occipital to frontal/temporal regions was previously reported20; it is worth not-
ing that other work, however, has found changes in information integration in Parkinsonian dementia solely in 
the alpha1 band56.

Considering the shortest-path length distributions for the three cognitive classes, the beta band again shows 
a particularly stepwise progression with increasing dementia severity (Fig. 2d), with both increasing mean path-
length and greater variance, suggesting both a decrease in connection efficiency and increasing disorganization 
or diversity of pathways. The trend in the other bands is more puzzling, however, and may indicate a previously 
unrecognized role in dementia progression. Theta and gamma appear to show major changes for the MCI 
group alone, which may indicate that a particular network scale becomes predominant or catalytic during this 
intermediate phase of dementia. The distribution of clustering coefficients, which tracks roughly inversely to the 
path lengths distribution, may be rationalized as follows: both shorter path lengths and higher clustering imply 
a more efficient information-transferring structure.

To our knowledge, little or no attention has been given to the level of inter-patient variation in different grades 
of cognitive decline. Yet the differences in variance between cognitive groups (Fig. 7) were marked, suggesting 
a global convergence of correlation structure in most bands (i.e., decreasing variability with dementia sever-
ity) contrasted with a divergence in the low-frequency bands. While this phenomenon does not lend itself to 
individual-level diagnostics based on connectivity (indeed, it suggests a limitation to them), it may hold promise 
for better understanding of the etiology and mechanism of PD-related cognitive decline.

Our use of MVR and MST class-adjacency statistics, and a permutation-based method to generalize MVR to 
more than two classes, showed extremely significant pairwise class differences through MVR, while also observ-
ing very marked differences in class-adjacency between the three cognitive classes. In particular, the fact that 
the PD-NC and PD-MCI groups shared the largest number of hybrid edges overall, and PD-NC and PDD the 
lowest (Fig. 5) is consistent with what might be expected of a progressive disease, where PDD represents much 
more serious impairment than MCI, although such conclusions are limited by the cross-sectional nature of our 

Figure 6.   (continued)
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Figure 7.   Correlation variance maps. For all brain-wave frequency bands except delta, there is a marked, mostly 
global drop in correlation variability from PD-NC to PD-MCI groups [(a) delta, (b) theta, (c) alpha, (d) beta, (e) 
gamma]. The two lower-frequency bands show a partial recovery in variability in the PDD cases.
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data. Though these results are tentative, the relative “closeness” of the PD-NC and PD-MCI nodes in the MST 
suggests that the most marked changes in brain connectivity (as distinct from activation) instead occur during 
the progression from PD-MCI to PDD, rather from PD-NC to PD-MCI. To our knowledge, this is the first use 
of MST class-adjacencies as a tool for analyzing relative disease group differences.

In general, class-adjacency may help expand upon the limited information provided by the MVR, by esti-
mating graphically not just that some classes are drawn from different distributions, but also which classes are 
more or less different. For the three-way MVR cut, 5 of the 15 possible combinations of band and dt (essentially, 
all of the dt = 0 cases) showed only very small (< 2 SD) from the expected number of total trees; however, these 
all still showed highly significant deviations from expectation in the individual elements of the class adjacency 
matrix (Supplementary Table S2).

Though the relative sizes of the deviations in the class-adjacency elements closely paralleled the correspond-
ing pairwise MVRs, deviations were more poorly resolved in the latter, most likely because pairwise tests cannot 
take into account simultaneous, hierarchical associations and contexts that exist between multiple classes; the 
multi-class approach, therefore, may be inherently more powerful at establishing class differences. We believe 
this underscores the potential utility of the class-adjacency approach to multi-class MST analysis for detecting 
structure and clustering between data classes.

Overall, our approach is novel in being one of the few examples of graph-theoretical connectivity analyses 
applied to MEG data, and the first attempt at an approximate generalization of the MVR concept to > 2 classes. 
It is also, to our knowledge, the only MEG study that applies the MVR or class-adjacency approach to detect 
differences in connectivity between brain disease states. Our finding that the MST-based approaches, particularly 
3-class MVR, were relatively robust to confounders such as patient age and levodopa intake also suggests that 
combining MSTs with edge-cut testing may be a substantially more robust way to analyze functional connectiv-
ity than by correlations alone.

We have pursued MSTs because they avoid the inherent arbitrariness of threshold choice in other forms of 
connectivity analysis, which has often led to conflicting findings in the literature, particularly regarding network 
features1. By providing a simple and objective standard for connection selection, the MST offers some hope of 
decisively resolving this bias and arbitrariness1,7,10,11. Similarly, the multivariate-runs approach offers promise 
because of its simplicity and its avoidance of arbitrary thresholds.

Differences between imaging technologies can exacerbate differences in local connectivity in many graph 
methods, so that even studies using the same imaging method sometimes show contradictory network effects1. 

Figure 7.   (continued)
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We suggest that the use of k-MSTs and MVR can considerably alleviate this limitation, by drawing on a basket 
of shortest-paths instead of the single absolute shortest path.

There have been concerns about the "curse of dimensionality" in the application of the MVR test, especially 
in cases where the underlying distributions differ mainly in their variance ("scale alternatives")57. It is proposed 
in57 that test power can be improved by including the second- through fifth-order MST connections (an nth-
order MST is derived by removing the connections in the first n-order MSTs and calculating a new MST from 
the connections that remain). In this case, we found the test performed adequately using just the first-order MST 
alone, however this may be a useful future direction.

In conclusion, we have used MST-based metrics, including the multivariate-runs test and MST class-adjacency 
statistics, to detect clear differences in network properties and underlying distributions associated with different 
stages of Parkinsonian cognitive decline. Future work may focus on ways to validate and combine these tests in 
order to develop more accurate, non-invasive models of PD and other brain-connectivity diseases.
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